Lines Matching refs:input
385 bool reshapePrepare(const Shape& input, const int32_t* targetDims, const int32_t targetDimsSize, in reshapePrepare() argument
391 int32_t numInputElements = (int32_t)getNumberOfElements(input); in reshapePrepare()
414 output->type = input.type; in reshapePrepare()
416 output->offset = input.offset; in reshapePrepare()
417 output->scale = input.scale; in reshapePrepare()
422 bool depthToSpacePrepare(const Shape& input, int32_t blockSize, Shape* output) { in depthToSpacePrepare() argument
423 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in depthToSpacePrepare()
426 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare()
427 uint32_t height = getSizeOfDimension(input, 1); in depthToSpacePrepare()
428 uint32_t width = getSizeOfDimension(input, 2); in depthToSpacePrepare()
429 uint32_t channels = getSizeOfDimension(input, 3); in depthToSpacePrepare()
432 output->type = input.type; in depthToSpacePrepare()
435 output->offset = input.offset; in depthToSpacePrepare()
436 output->scale = input.scale; in depthToSpacePrepare()
441 bool spaceToDepthPrepare(const Shape& input, int32_t blockSize, Shape* output) { in spaceToDepthPrepare() argument
442 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in spaceToDepthPrepare()
445 uint32_t batches = getSizeOfDimension(input, 0); in spaceToDepthPrepare()
446 uint32_t height = getSizeOfDimension(input, 1); in spaceToDepthPrepare()
447 uint32_t width = getSizeOfDimension(input, 2); in spaceToDepthPrepare()
448 uint32_t channels = getSizeOfDimension(input, 3); in spaceToDepthPrepare()
453 output->type = input.type; in spaceToDepthPrepare()
456 output->offset = input.offset; in spaceToDepthPrepare()
457 output->scale = input.scale; in spaceToDepthPrepare()
503 bool padPrepare(const Shape& input, const int32_t* paddingsData, const Shape& paddingsShape, in padPrepare() argument
505 uint32_t numInputDims = getNumberOfDimensions(input); in padPrepare()
519 outDims[i] = beforePadding + getSizeOfDimension(input, i) + afterPadding; in padPrepare()
521 output->type = input.type; in padPrepare()
523 output->offset = input.offset; in padPrepare()
524 output->scale = input.scale; in padPrepare()
529 bool batchToSpacePrepare(const Shape& input, const int32_t* blockSizeData, in batchToSpacePrepare() argument
532 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in batchToSpacePrepare()
540 uint32_t batches = getSizeOfDimension(input, 0); in batchToSpacePrepare()
541 uint32_t height = getSizeOfDimension(input, 1); in batchToSpacePrepare()
542 uint32_t width = getSizeOfDimension(input, 2); in batchToSpacePrepare()
543 uint32_t channels = getSizeOfDimension(input, 3); in batchToSpacePrepare()
546 output->type = input.type; in batchToSpacePrepare()
549 output->offset = input.offset; in batchToSpacePrepare()
550 output->scale = input.scale; in batchToSpacePrepare()
555 bool spaceToBatchPrepare(const Shape& input, const int32_t* blockSizeData, in spaceToBatchPrepare() argument
559 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in spaceToBatchPrepare()
573 uint32_t batches = getSizeOfDimension(input, 0); in spaceToBatchPrepare()
574 uint32_t height = getSizeOfDimension(input, 1); in spaceToBatchPrepare()
575 uint32_t width = getSizeOfDimension(input, 2); in spaceToBatchPrepare()
576 uint32_t channels = getSizeOfDimension(input, 3); in spaceToBatchPrepare()
584 output->type = input.type; in spaceToBatchPrepare()
588 output->offset = input.offset; in spaceToBatchPrepare()
589 output->scale = input.scale; in spaceToBatchPrepare()
594 bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, in meanPrepare() argument
600 int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(input)); in meanPrepare()
617 outDims[idx] = getSizeOfDimension(input, idx); in meanPrepare()
654 outDims[idx - numSkipAxis] = getSizeOfDimension(input, idx); in meanPrepare()
664 output->type = input.type; in meanPrepare()
665 output->offset = input.offset; in meanPrepare()
666 output->scale = input.scale; in meanPrepare()
671 bool argMinMaxPrepare(const Shape& input, int32_t axis, Shape* output) { in argMinMaxPrepare() argument
672 NN_CHECK(handleNegativeAxis(input, &axis)); in argMinMaxPrepare()
678 if (getNumberOfDimensions(input) > 1) { in argMinMaxPrepare()
679 output->dimensions.reserve(getNumberOfDimensions(input) - 1); in argMinMaxPrepare()
680 output->dimensions.insert(output->dimensions.end(), input.dimensions.begin(), in argMinMaxPrepare()
681 input.dimensions.begin() + axis); in argMinMaxPrepare()
682 output->dimensions.insert(output->dimensions.end(), input.dimensions.begin() + axis + 1, in argMinMaxPrepare()
683 input.dimensions.end()); in argMinMaxPrepare()
691 bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, in splitPrepare() argument
693 NN_CHECK(handleNegativeAxis(input, &axis)); in splitPrepare()
695 const int32_t sizeOfAxisToSplit = input.dimensions[axis]; in splitPrepare()
700 output->at(i).type = input.type; in splitPrepare()
701 output->at(i).dimensions = input.dimensions; in splitPrepare()
703 output->at(i).offset = input.offset; in splitPrepare()
704 output->at(i).scale = input.scale; in splitPrepare()
709 bool groupedConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, in groupedConvPrepare() argument
714 NN_OPS_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM || in groupedConvPrepare()
715 input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED); in groupedConvPrepare()
717 NN_OPS_CHECK(input.type == filter.type); in groupedConvPrepare()
719 if (input.type == OperandType::TENSOR_QUANT8_ASYMM || in groupedConvPrepare()
720 input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { in groupedConvPrepare()
723 NN_OPS_CHECK(input.type == bias.type); in groupedConvPrepare()
725 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in groupedConvPrepare()
731 NN_OPS_CHECK(getSizeOfDimension(filter, 3) * numGroups == getSizeOfDimension(input, 3)); in groupedConvPrepare()
735 uint32_t width = getSizeOfDimension(input, 2); in groupedConvPrepare()
736 uint32_t height = getSizeOfDimension(input, 1); in groupedConvPrepare()
739 uint32_t batches = getSizeOfDimension(input, 0); in groupedConvPrepare()
751 output->type = input.type; in groupedConvPrepare()