Lines Matching refs:outputShape

137     uint32_t outHeight = getSizeOfDimension(outputShape, 1);                      \
138 uint32_t outWidth = getSizeOfDimension(outputShape, 2); \
145 im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0); \
146 im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1); \
147 im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2); \
198 float* outputData, const Shape& outputShape) { in convNhwc() argument
218 convertShapeToDims(outputShape), need_im2colData ? im2colData : nullptr, im2colDim); in convNhwc()
227 uint8_t* outputData, const Shape& outputShape) { in convNhwc() argument
234 int32_t outputOffset = outputShape.offset; in convNhwc()
242 NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape, in convNhwc()
247 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in convNhwc()
269 convertShapeToDims(outputShape), in convNhwc()
281 int8_t* outputData, Shape outputShape) { in convNhwc() argument
292 std::vector<uint8_t> unsignedOutput(getNumberOfElements(outputShape)); in convNhwc()
293 outputShape.offset += 128; in convNhwc()
298 dilation_height_factor, activation, unsignedOutput.data(), outputShape)); in convNhwc()
310 _Float16* outputData, const Shape& outputShape) { in convNhwc() argument
316 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); in convNhwc()
325 dilation_height_factor, activation, outputData_float32.data(), outputShape); in convNhwc()
337 const Shape& outputShape) { in conv() argument
341 NN_RET_CHECK(output.initialize(outputData, outputShape)); in conv()
358 const Shape& outputShape) { in convQuant8PerChannelNhwc() argument
368 uint32_t outputHeight = getSizeOfDimension(outputShape, 1); in convQuant8PerChannelNhwc()
369 uint32_t outputWidth = getSizeOfDimension(outputShape, 2); in convQuant8PerChannelNhwc()
370 uint32_t outputDepth = getSizeOfDimension(outputShape, 3); in convQuant8PerChannelNhwc()
373 int32_t outputOffset = outputShape.offset; in convQuant8PerChannelNhwc()
385 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); in convQuant8PerChannelNhwc()
392 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in convQuant8PerChannelNhwc()
451 const Shape& outputShape) { in convQuant8PerChannelNhwc() argument
461 uint32_t outputHeight = getSizeOfDimension(outputShape, 1); in convQuant8PerChannelNhwc()
462 uint32_t outputWidth = getSizeOfDimension(outputShape, 2); in convQuant8PerChannelNhwc()
463 uint32_t outputDepth = getSizeOfDimension(outputShape, 3); in convQuant8PerChannelNhwc()
466 int32_t outputOffset = outputShape.offset; in convQuant8PerChannelNhwc()
478 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); in convQuant8PerChannelNhwc()
483 CalculateActivationRangeInt8(activation, outputShape, &output_activation_min, in convQuant8PerChannelNhwc()
488 convParams.output_offset = outputShape.offset; in convQuant8PerChannelNhwc()
503 convertShapeToTflshape(outputShape), outputData); in convQuant8PerChannelNhwc()
514 T* outputData, const Shape& outputShape) { in convQuant8PerChannel() argument
518 NN_RET_CHECK(output.initialize(outputData, outputShape)); in convQuant8PerChannel()