Lines Matching refs:getQuantizationMin
494 const hexagon_nn_input& in1_min = model->getQuantizationMin(ins[0]); in add()
496 const hexagon_nn_input& in2_min = model->getQuantizationMin(ins[1]); in add()
547 const hexagon_nn_input& in_min = model->getQuantizationMin(ins[0]); in average_pool_2d()
568 inputs[i + 1 + numInputTensors * 1] = model->getQuantizationMin(ins[i]); in concatenation()
621 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in conv_2d()
623 const hexagon_nn_input& filter_min = model->getQuantizationMin(ins[1]); in conv_2d()
625 const hexagon_nn_input& bias_min = model->getQuantizationMin(ins[2]); in conv_2d()
678 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in depthwise_conv_2d()
680 const hexagon_nn_input& filter_min = model->getQuantizationMin(ins[1]); in depthwise_conv_2d()
682 const hexagon_nn_input& bias_min = model->getQuantizationMin(ins[2]); in depthwise_conv_2d()
702 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in dequantize()
721 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in fully_connected()
723 const hexagon_nn_input& weights_min = model->getQuantizationMin(ins[1]); in fully_connected()
725 const hexagon_nn_input& bias_min = model->getQuantizationMin(ins[2]); in fully_connected()
742 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in logistic()
795 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in max_pool_2d()
815 const hexagon_nn_input& in1_min = model->getQuantizationMin(ins[0]); in mul()
817 const hexagon_nn_input& in2_min = model->getQuantizationMin(ins[1]); in mul()
833 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in relu()
851 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in relu1()
868 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in relu6()
885 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in reshape()
902 const hexagon_nn_input& input_min = model->getQuantizationMin(ins[0]); in softmax()