/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_CMDLINE_CMDLINE_TYPES_H_ #define ART_CMDLINE_CMDLINE_TYPES_H_ #define CMDLINE_NDEBUG 1 // Do not output any debugging information for parsing. #include #include #include "android-base/stringprintf.h" #include "cmdline_type_parser.h" #include "detail/cmdline_debug_detail.h" #include "memory_representation.h" #include "android-base/logging.h" #include "android-base/strings.h" // Includes for the types that are being specialized #include #include "base/time_utils.h" #include "base/logging.h" #include "experimental_flags.h" #include "gc/collector_type.h" #include "gc/space/large_object_space.h" #include "jdwp_provider.h" #include "jit/profile_saver_options.h" #include "plugin.h" #include "read_barrier_config.h" #include "ti/agent.h" #include "unit.h" namespace art { // The default specialization will always fail parsing the type from a string. // Provide your own specialization that inherits from CmdlineTypeParser // and implements either Parse or ParseAndAppend // (only if the argument was defined with ::AppendValues()) but not both. template struct CmdlineType : CmdlineTypeParser { }; // Specializations for CmdlineType follow: // Parse argument definitions for Unit-typed arguments. template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& args) { if (args == "") { return Result::Success(Unit{}); } return Result::Failure("Unexpected extra characters " + args); } }; template <> struct CmdlineType : CmdlineTypeParser { /* * Handle a single JDWP provider name. Must be either 'internal', 'default', or the file name of * an agent. A plugin will make use of this and the jdwpOptions to set up jdwp when appropriate. */ Result Parse(const std::string& option) { if (option == "help") { return Result::Usage( "Example: -XjdwpProvider:none to disable JDWP\n" "Example: -XjdwpProvider:adbconnection for adb connection mediated jdwp implementation\n" "Example: -XjdwpProvider:default for the default jdwp implementation\n"); } else if (option == "default") { return Result::Success(JdwpProvider::kDefaultJdwpProvider); } else if (option == "adbconnection") { return Result::Success(JdwpProvider::kAdbConnection); } else if (option == "none") { return Result::Success(JdwpProvider::kNone); } else { return Result::Failure(std::string("not a valid jdwp provider: ") + option); } } static const char* Name() { return "JdwpProvider"; } static const char* DescribeType() { return "none|adbconnection|default"; } }; template struct CmdlineType> : CmdlineTypeParser> { using typename CmdlineTypeParser>::Result; Result Parse(const std::string& arg) { CMDLINE_DEBUG_LOG << "Parsing memory: " << arg << std::endl; size_t val = ParseMemoryOption(arg.c_str(), Divisor); CMDLINE_DEBUG_LOG << "Memory parsed to size_t value: " << val << std::endl; if (val == 0) { return Result::Failure(std::string("not a valid memory value, or not divisible by ") + std::to_string(Divisor)); } return Result::Success(Memory(val)); } // Parse a string of the form /[0-9]+[kKmMgG]?/, which is used to specify // memory sizes. [kK] indicates kilobytes, [mM] megabytes, and // [gG] gigabytes. // // "s" should point just past the "-Xm?" part of the string. // "div" specifies a divisor, e.g. 1024 if the value must be a multiple // of 1024. // // The spec says the -Xmx and -Xms options must be multiples of 1024. It // doesn't say anything about -Xss. // // Returns 0 (a useless size) if "s" is malformed or specifies a low or // non-evenly-divisible value. // static size_t ParseMemoryOption(const char* s, size_t div) { // strtoul accepts a leading [+-], which we don't want, // so make sure our string starts with a decimal digit. if (isdigit(*s)) { char* s2; size_t val = strtoul(s, &s2, 10); if (s2 != s) { // s2 should be pointing just after the number. // If this is the end of the string, the user // has specified a number of bytes. Otherwise, // there should be exactly one more character // that specifies a multiplier. if (*s2 != '\0') { // The remainder of the string is either a single multiplier // character, or nothing to indicate that the value is in // bytes. char c = *s2++; if (*s2 == '\0') { size_t mul; if (c == '\0') { mul = 1; } else if (c == 'k' || c == 'K') { mul = KB; } else if (c == 'm' || c == 'M') { mul = MB; } else if (c == 'g' || c == 'G') { mul = GB; } else { // Unknown multiplier character. return 0; } if (val <= std::numeric_limits::max() / mul) { val *= mul; } else { // Clamp to a multiple of 1024. val = std::numeric_limits::max() & ~(1024-1); } } else { // There's more than one character after the numeric part. return 0; } } // The man page says that a -Xm value must be a multiple of 1024. if (val % div == 0) { return val; } } } return 0; } static const char* Name() { return Memory::Name(); } static const char* DescribeType() { static std::string str; if (str.empty()) { str = "Memory with granularity of " + std::to_string(Divisor) + " bytes"; } return str.c_str(); } }; template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& str) { char* end = nullptr; errno = 0; double value = strtod(str.c_str(), &end); if (*end != '\0') { return Result::Failure("Failed to parse double from " + str); } if (errno == ERANGE) { return Result::OutOfRange( "Failed to parse double from " + str + "; overflow/underflow occurred"); } return Result::Success(value); } static const char* Name() { return "double"; } static const char* DescribeType() { return "double value"; } }; template static inline CmdlineParseResult ParseNumeric(const std::string& str) { static_assert(sizeof(T) < sizeof(long long int), // NOLINT [runtime/int] [4] "Current support is restricted."); const char* begin = str.c_str(); char* end; // Parse into a larger type (long long) because we can't use strtoul // since it silently converts negative values into unsigned long and doesn't set errno. errno = 0; long long int result = strtoll(begin, &end, 10); // NOLINT [runtime/int] [4] if (begin == end || *end != '\0' || errno == EINVAL) { return CmdlineParseResult::Failure("Failed to parse integer from " + str); } else if ((errno == ERANGE) || // NOLINT [runtime/int] [4] result < std::numeric_limits::min() || result > std::numeric_limits::max()) { return CmdlineParseResult::OutOfRange( "Failed to parse integer from " + str + "; out of range"); } return CmdlineParseResult::Success(static_cast(result)); } template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& str) { return ParseNumeric(str); } static const char* Name() { return "unsigned integer"; } static const char* DescribeType() { return "unsigned integer value"; } }; template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& str) { return ParseNumeric(str); } static const char* Name() { return "integer"; } static const char* DescribeType() { return "integer value"; } }; // Lightweight nanosecond value type. Allows parser to convert user-input from milliseconds // to nanoseconds automatically after parsing. // // All implicit conversion from uint64_t uses nanoseconds. struct MillisecondsToNanoseconds { // Create from nanoseconds. MillisecondsToNanoseconds(uint64_t nanoseconds) : nanoseconds_(nanoseconds) { // NOLINT [runtime/explicit] [5] } // Create from milliseconds. static MillisecondsToNanoseconds FromMilliseconds(unsigned int milliseconds) { return MillisecondsToNanoseconds(MsToNs(milliseconds)); } // Get the underlying nanoseconds value. uint64_t GetNanoseconds() const { return nanoseconds_; } // Get the milliseconds value [via a conversion]. Loss of precision will occur. uint64_t GetMilliseconds() const { return NsToMs(nanoseconds_); } // Get the underlying nanoseconds value. operator uint64_t() const { return GetNanoseconds(); } // Default constructors/copy-constructors. MillisecondsToNanoseconds() : nanoseconds_(0ul) {} MillisecondsToNanoseconds(const MillisecondsToNanoseconds&) = default; MillisecondsToNanoseconds(MillisecondsToNanoseconds&&) = default; private: uint64_t nanoseconds_; }; template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& str) { CmdlineType uint_parser; CmdlineParseResult res = uint_parser.Parse(str); if (res.IsSuccess()) { return Result::Success(MillisecondsToNanoseconds::FromMilliseconds(res.GetValue())); } else { return Result::CastError(res); } } static const char* Name() { return "MillisecondsToNanoseconds"; } static const char* DescribeType() { return "millisecond value"; } }; template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& args) { return Result::Success(args); } Result ParseAndAppend(const std::string& args, std::string& existing_value) { if (existing_value.empty()) { existing_value = args; } else { existing_value += ' '; existing_value += args; } return Result::SuccessNoValue(); } static const char* DescribeType() { return "string value"; } }; template <> struct CmdlineType> : CmdlineTypeParser> { Result Parse(const std::string& args) { assert(false && "Use AppendValues() for a Plugin vector type"); return Result::Failure("Unconditional failure: Plugin vector must be appended: " + args); } Result ParseAndAppend(const std::string& args, std::vector& existing_value) { existing_value.push_back(Plugin::Create(args)); return Result::SuccessNoValue(); } static const char* Name() { return "std::vector"; } static const char* DescribeType() { return "/path/to/libplugin.so"; } }; template <> struct CmdlineType> : CmdlineTypeParser> { Result Parse(const std::string& args) { assert(false && "Use AppendValues() for an Agent list type"); return Result::Failure("Unconditional failure: Agent list must be appended: " + args); } Result ParseAndAppend(const std::string& args, std::list& existing_value) { existing_value.emplace_back(args); return Result::SuccessNoValue(); } static const char* Name() { return "std::list"; } static const char* DescribeType() { return "/path/to/libagent.so=options"; } }; template <> struct CmdlineType> : CmdlineTypeParser> { Result Parse(const std::string& args) { assert(false && "Use AppendValues() for a string vector type"); return Result::Failure("Unconditional failure: string vector must be appended: " + args); } Result ParseAndAppend(const std::string& args, std::vector& existing_value) { existing_value.push_back(args); return Result::SuccessNoValue(); } static const char* Name() { return "std::vector"; } static const char* DescribeType() { return "string value"; } }; template struct ParseStringList { explicit ParseStringList(std::vector&& list) : list_(list) {} operator std::vector() const { return list_; } operator std::vector&&() && { return std::move(list_); } size_t Size() const { return list_.size(); } std::string Join() const { return android::base::Join(list_, Separator); } static ParseStringList Split(const std::string& str) { std::vector list; art::Split(str, Separator, &list); return ParseStringList(std::move(list)); } ParseStringList() = default; ParseStringList(const ParseStringList&) = default; ParseStringList(ParseStringList&&) = default; private: std::vector list_; }; template struct CmdlineType> : CmdlineTypeParser> { using Result = CmdlineParseResult>; Result Parse(const std::string& args) { return Result::Success(ParseStringList::Split(args)); } static const char* Name() { return "ParseStringList"; } static const char* DescribeType() { static std::string str; if (str.empty()) { str = android::base::StringPrintf("list separated by '%c'", Separator); } return str.c_str(); } }; template <> struct CmdlineType> : CmdlineTypeParser> { using Result = CmdlineParseResult>; Result Parse(const std::string& args) { std::vector list; const char* pos = args.c_str(); errno = 0; while (true) { char* end = nullptr; int64_t value = strtol(pos, &end, 10); if (pos == end || errno == EINVAL) { return Result::Failure("Failed to parse integer from " + args); } else if ((errno == ERANGE) || // NOLINT [runtime/int] [4] value < std::numeric_limits::min() || value > std::numeric_limits::max()) { return Result::OutOfRange("Failed to parse integer from " + args + "; out of range"); } list.push_back(static_cast(value)); if (*end == '\0') { break; } else if (*end != ',') { return Result::Failure(std::string("Unexpected character: ") + *end); } pos = end + 1; } return Result::Success(std::move(list)); } static const char* Name() { return "std::vector"; } static const char* DescribeType() { return "unsigned integer value"; } }; static gc::CollectorType ParseCollectorType(const std::string& option) { if (option == "MS" || option == "nonconcurrent") { return gc::kCollectorTypeMS; } else if (option == "CMS" || option == "concurrent") { return gc::kCollectorTypeCMS; } else if (option == "SS") { return gc::kCollectorTypeSS; } else if (option == "CC") { return gc::kCollectorTypeCC; } else { return gc::kCollectorTypeNone; } } struct XGcOption { // These defaults are used when the command line arguments for -Xgc: // are either omitted completely or partially. gc::CollectorType collector_type_ = gc::kCollectorTypeDefault; bool verify_pre_gc_heap_ = false; bool verify_pre_sweeping_heap_ = kIsDebugBuild; bool generational_cc = kEnableGenerationalCCByDefault; bool verify_post_gc_heap_ = false; bool verify_pre_gc_rosalloc_ = kIsDebugBuild; bool verify_pre_sweeping_rosalloc_ = false; bool verify_post_gc_rosalloc_ = false; // Do no measurements for kUseTableLookupReadBarrier to avoid test timeouts. b/31679493 bool measure_ = kIsDebugBuild && !kUseTableLookupReadBarrier; bool gcstress_ = false; }; template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& option) { // -Xgc: already stripped XGcOption xgc{}; std::vector gc_options; Split(option, ',', &gc_options); for (const std::string& gc_option : gc_options) { gc::CollectorType collector_type = ParseCollectorType(gc_option); if (collector_type != gc::kCollectorTypeNone) { xgc.collector_type_ = collector_type; } else if (gc_option == "preverify") { xgc.verify_pre_gc_heap_ = true; } else if (gc_option == "nopreverify") { xgc.verify_pre_gc_heap_ = false; } else if (gc_option == "presweepingverify") { xgc.verify_pre_sweeping_heap_ = true; } else if (gc_option == "nopresweepingverify") { xgc.verify_pre_sweeping_heap_ = false; } else if (gc_option == "generational_cc") { // Note: Option "-Xgc:generational_cc" can be passed directly by // app_process/zygote (see `android::AndroidRuntime::startVm`). If this // option is ever deprecated, it should still be accepted (but ignored) // for compatibility reasons (this should not prevent the runtime from // starting up). xgc.generational_cc = true; } else if (gc_option == "nogenerational_cc") { // Note: Option "-Xgc:nogenerational_cc" can be passed directly by // app_process/zygote (see `android::AndroidRuntime::startVm`). If this // option is ever deprecated, it should still be accepted (but ignored) // for compatibility reasons (this should not prevent the runtime from // starting up). xgc.generational_cc = false; } else if (gc_option == "postverify") { xgc.verify_post_gc_heap_ = true; } else if (gc_option == "nopostverify") { xgc.verify_post_gc_heap_ = false; } else if (gc_option == "preverify_rosalloc") { xgc.verify_pre_gc_rosalloc_ = true; } else if (gc_option == "nopreverify_rosalloc") { xgc.verify_pre_gc_rosalloc_ = false; } else if (gc_option == "presweepingverify_rosalloc") { xgc.verify_pre_sweeping_rosalloc_ = true; } else if (gc_option == "nopresweepingverify_rosalloc") { xgc.verify_pre_sweeping_rosalloc_ = false; } else if (gc_option == "postverify_rosalloc") { xgc.verify_post_gc_rosalloc_ = true; } else if (gc_option == "nopostverify_rosalloc") { xgc.verify_post_gc_rosalloc_ = false; } else if (gc_option == "gcstress") { xgc.gcstress_ = true; } else if (gc_option == "nogcstress") { xgc.gcstress_ = false; } else if (gc_option == "measure") { xgc.measure_ = true; } else if ((gc_option == "precise") || (gc_option == "noprecise") || (gc_option == "verifycardtable") || (gc_option == "noverifycardtable")) { // Ignored for backwards compatibility. } else { return Result::Usage(std::string("Unknown -Xgc option ") + gc_option); } } return Result::Success(std::move(xgc)); } static const char* Name() { return "XgcOption"; } static const char* DescribeType() { return "MS|nonconccurent|concurrent|CMS|SS|CC|[no]preverify[_rosalloc]|" "[no]presweepingverify[_rosalloc]|[no]generation_cc|[no]postverify[_rosalloc]|" "[no]gcstress|measure|[no]precisce|[no]verifycardtable"; } }; struct BackgroundGcOption { // If background_collector_type_ is kCollectorTypeNone, it defaults to the // XGcOption::collector_type_ after parsing options. If you set this to // kCollectorTypeHSpaceCompact then we will do an hspace compaction when // we transition to background instead of a normal collector transition. gc::CollectorType background_collector_type_; BackgroundGcOption(gc::CollectorType background_collector_type) // NOLINT [runtime/explicit] [5] : background_collector_type_(background_collector_type) {} BackgroundGcOption() : background_collector_type_(gc::kCollectorTypeNone) { } operator gc::CollectorType() const { return background_collector_type_; } }; template<> struct CmdlineType : CmdlineTypeParser, private BackgroundGcOption { Result Parse(const std::string& substring) { // Special handling for HSpaceCompact since this is only valid as a background GC type. if (substring == "HSpaceCompact") { background_collector_type_ = gc::kCollectorTypeHomogeneousSpaceCompact; } else { gc::CollectorType collector_type = ParseCollectorType(substring); if (collector_type != gc::kCollectorTypeNone) { background_collector_type_ = collector_type; } else { return Result::Failure(); } } BackgroundGcOption res = *this; return Result::Success(res); } static const char* Name() { return "BackgroundGcOption"; } static const char* DescribeType() { return "HSpaceCompact|MS|nonconccurent|CMS|concurrent|SS|CC"; } }; template <> struct CmdlineType : CmdlineTypeParser { Result Parse(const std::string& options) { LogVerbosity log_verbosity = LogVerbosity(); std::vector verbose_options; Split(options, ',', &verbose_options); for (size_t j = 0; j < verbose_options.size(); ++j) { if (verbose_options[j] == "class") { log_verbosity.class_linker = true; } else if (verbose_options[j] == "collector") { log_verbosity.collector = true; } else if (verbose_options[j] == "compiler") { log_verbosity.compiler = true; } else if (verbose_options[j] == "deopt") { log_verbosity.deopt = true; } else if (verbose_options[j] == "gc") { log_verbosity.gc = true; } else if (verbose_options[j] == "heap") { log_verbosity.heap = true; } else if (verbose_options[j] == "interpreter") { log_verbosity.interpreter = true; } else if (verbose_options[j] == "jdwp") { log_verbosity.jdwp = true; } else if (verbose_options[j] == "jit") { log_verbosity.jit = true; } else if (verbose_options[j] == "jni") { log_verbosity.jni = true; } else if (verbose_options[j] == "monitor") { log_verbosity.monitor = true; } else if (verbose_options[j] == "oat") { log_verbosity.oat = true; } else if (verbose_options[j] == "profiler") { log_verbosity.profiler = true; } else if (verbose_options[j] == "signals") { log_verbosity.signals = true; } else if (verbose_options[j] == "simulator") { log_verbosity.simulator = true; } else if (verbose_options[j] == "startup") { log_verbosity.startup = true; } else if (verbose_options[j] == "third-party-jni") { log_verbosity.third_party_jni = true; } else if (verbose_options[j] == "threads") { log_verbosity.threads = true; } else if (verbose_options[j] == "verifier") { log_verbosity.verifier = true; } else if (verbose_options[j] == "verifier-debug") { log_verbosity.verifier_debug = true; } else if (verbose_options[j] == "image") { log_verbosity.image = true; } else if (verbose_options[j] == "systrace-locks") { log_verbosity.systrace_lock_logging = true; } else if (verbose_options[j] == "plugin") { log_verbosity.plugin = true; } else if (verbose_options[j] == "agents") { log_verbosity.agents = true; } else if (verbose_options[j] == "dex") { log_verbosity.dex = true; } else { return Result::Usage(std::string("Unknown -verbose option ") + verbose_options[j]); } } return Result::Success(log_verbosity); } static const char* Name() { return "LogVerbosity"; } static const char* DescribeType() { return "class|collector|compiler|deopt|gc|heap|interpreter|jdwp|jit|jni|monitor|oat|profiler|" "signals|simulator|startup|third-party-jni|threads|verifier|verifier-debug|image|" "systrace-locks|plugin|agents|dex"; } }; template <> struct CmdlineType : CmdlineTypeParser { using Result = CmdlineParseResult; private: using StringResult = CmdlineParseResult; using DoubleResult = CmdlineParseResult; template static Result ParseInto(ProfileSaverOptions& options, T ProfileSaverOptions::*pField, CmdlineParseResult&& result) { assert(pField != nullptr); if (result.IsSuccess()) { options.*pField = result.ReleaseValue(); return Result::SuccessNoValue(); } return Result::CastError(result); } static std::string RemovePrefix(const std::string& source) { size_t prefix_idx = source.find(':'); if (prefix_idx == std::string::npos) { return ""; } return source.substr(prefix_idx + 1); } public: Result ParseAndAppend(const std::string& option, ProfileSaverOptions& existing) { // Special case which doesn't include a wildcard argument definition. // We pass-it through as-is. if (option == "-Xjitsaveprofilinginfo") { existing.enabled_ = true; return Result::SuccessNoValue(); } if (option == "profile-boot-class-path") { existing.profile_boot_class_path_ = true; return Result::SuccessNoValue(); } if (option == "profile-aot-code") { existing.profile_aot_code_ = true; return Result::SuccessNoValue(); } if (option == "save-without-jit-notifications") { existing.wait_for_jit_notifications_to_save_ = false; return Result::SuccessNoValue(); } // The rest of these options are always the wildcard from '-Xps-*' std::string suffix = RemovePrefix(option); if (android::base::StartsWith(option, "min-save-period-ms:")) { CmdlineType type_parser; return ParseInto(existing, &ProfileSaverOptions::min_save_period_ms_, type_parser.Parse(suffix)); } if (android::base::StartsWith(option, "save-resolved-classes-delay-ms:")) { CmdlineType type_parser; return ParseInto(existing, &ProfileSaverOptions::save_resolved_classes_delay_ms_, type_parser.Parse(suffix)); } if (android::base::StartsWith(option, "hot-startup-method-samples:")) { CmdlineType type_parser; return ParseInto(existing, &ProfileSaverOptions::hot_startup_method_samples_, type_parser.Parse(suffix)); } if (android::base::StartsWith(option, "min-methods-to-save:")) { CmdlineType type_parser; return ParseInto(existing, &ProfileSaverOptions::min_methods_to_save_, type_parser.Parse(suffix)); } if (android::base::StartsWith(option, "min-classes-to-save:")) { CmdlineType type_parser; return ParseInto(existing, &ProfileSaverOptions::min_classes_to_save_, type_parser.Parse(suffix)); } if (android::base::StartsWith(option, "min-notification-before-wake:")) { CmdlineType type_parser; return ParseInto(existing, &ProfileSaverOptions::min_notification_before_wake_, type_parser.Parse(suffix)); } if (android::base::StartsWith(option, "max-notification-before-wake:")) { CmdlineType type_parser; return ParseInto(existing, &ProfileSaverOptions::max_notification_before_wake_, type_parser.Parse(suffix)); } if (android::base::StartsWith(option, "profile-path:")) { existing.profile_path_ = suffix; return Result::SuccessNoValue(); } return Result::Failure(std::string("Invalid suboption '") + option + "'"); } static const char* Name() { return "ProfileSaverOptions"; } static const char* DescribeType() { return "string|unsigned integer"; } static constexpr bool kCanParseBlankless = true; }; template<> struct CmdlineType : CmdlineTypeParser { Result ParseAndAppend(const std::string& option, ExperimentalFlags& existing) { if (option == "none") { existing = ExperimentalFlags::kNone; } else { return Result::Failure(std::string("Unknown option '") + option + "'"); } return Result::SuccessNoValue(); } static const char* Name() { return "ExperimentalFlags"; } static const char* DescribeType() { return "none"; } }; } // namespace art #endif // ART_CMDLINE_CMDLINE_TYPES_H_