/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "block_builder.h" #include "base/logging.h" // FOR VLOG. #include "dex/bytecode_utils.h" #include "dex/code_item_accessors-inl.h" #include "dex/dex_file_exception_helpers.h" #include "quicken_info.h" namespace art { HBasicBlockBuilder::HBasicBlockBuilder(HGraph* graph, const DexFile* const dex_file, const CodeItemDebugInfoAccessor& accessor, ScopedArenaAllocator* local_allocator) : allocator_(graph->GetAllocator()), graph_(graph), dex_file_(dex_file), code_item_accessor_(accessor), local_allocator_(local_allocator), branch_targets_(code_item_accessor_.HasCodeItem() ? code_item_accessor_.InsnsSizeInCodeUnits() : /* fake dex_pc=0 for intrinsic graph */ 1u, nullptr, local_allocator->Adapter(kArenaAllocGraphBuilder)), throwing_blocks_(kDefaultNumberOfThrowingBlocks, local_allocator->Adapter(kArenaAllocGraphBuilder)), number_of_branches_(0u), quicken_index_for_dex_pc_(std::less(), local_allocator->Adapter(kArenaAllocGraphBuilder)) {} HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t dex_pc) { return MaybeCreateBlockAt(dex_pc, dex_pc); } HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t semantic_dex_pc, uint32_t store_dex_pc) { HBasicBlock* block = branch_targets_[store_dex_pc]; if (block == nullptr) { block = new (allocator_) HBasicBlock(graph_, semantic_dex_pc); branch_targets_[store_dex_pc] = block; } DCHECK_EQ(block->GetDexPc(), semantic_dex_pc); return block; } bool HBasicBlockBuilder::CreateBranchTargets() { // Create the first block for the dex instructions, single successor of the entry block. MaybeCreateBlockAt(0u); if (code_item_accessor_.TriesSize() != 0) { // Create branch targets at the start/end of the TryItem range. These are // places where the program might fall through into/out of the a block and // where TryBoundary instructions will be inserted later. Other edges which // enter/exit the try blocks are a result of branches/switches. for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) { uint32_t dex_pc_start = try_item.start_addr_; uint32_t dex_pc_end = dex_pc_start + try_item.insn_count_; MaybeCreateBlockAt(dex_pc_start); if (dex_pc_end < code_item_accessor_.InsnsSizeInCodeUnits()) { // TODO: Do not create block if the last instruction cannot fall through. MaybeCreateBlockAt(dex_pc_end); } else if (dex_pc_end == code_item_accessor_.InsnsSizeInCodeUnits()) { // The TryItem spans until the very end of the CodeItem and therefore // cannot have any code afterwards. } else { // The TryItem spans beyond the end of the CodeItem. This is invalid code. VLOG(compiler) << "Not compiled: TryItem spans beyond the end of the CodeItem"; return false; } } // Create branch targets for exception handlers. const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData(); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); for (uint32_t idx = 0; idx < handlers_size; ++idx) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { MaybeCreateBlockAt(iterator.GetHandlerAddress()); } handlers_ptr = iterator.EndDataPointer(); } } // Iterate over all instructions and find branching instructions. Create blocks for // the locations these instructions branch to. for (const DexInstructionPcPair& pair : code_item_accessor_) { const uint32_t dex_pc = pair.DexPc(); const Instruction& instruction = pair.Inst(); if (instruction.IsBranch()) { number_of_branches_++; MaybeCreateBlockAt(dex_pc + instruction.GetTargetOffset()); } else if (instruction.IsSwitch()) { number_of_branches_++; // count as at least one branch (b/77652521) DexSwitchTable table(instruction, dex_pc); for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) { MaybeCreateBlockAt(dex_pc + s_it.CurrentTargetOffset()); // Create N-1 blocks where we will insert comparisons of the input value // against the Switch's case keys. if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) { // Store the block under dex_pc of the current key at the switch data // instruction for uniqueness but give it the dex_pc of the SWITCH // instruction which it semantically belongs to. MaybeCreateBlockAt(dex_pc, s_it.GetDexPcForCurrentIndex()); } } } else if (instruction.Opcode() == Instruction::MOVE_EXCEPTION) { // End the basic block after MOVE_EXCEPTION. This simplifies the later // stage of TryBoundary-block insertion. } else { continue; } if (instruction.CanFlowThrough()) { DexInstructionIterator next(std::next(DexInstructionIterator(pair))); if (next == code_item_accessor_.end()) { // In the normal case we should never hit this but someone can artificially forge a dex // file to fall-through out the method code. In this case we bail out compilation. VLOG(compiler) << "Not compiled: Fall-through beyond the CodeItem"; return false; } MaybeCreateBlockAt(next.DexPc()); } } return true; } void HBasicBlockBuilder::ConnectBasicBlocks() { HBasicBlock* block = graph_->GetEntryBlock(); graph_->AddBlock(block); size_t quicken_index = 0; bool is_throwing_block = false; // Calculate the qucikening index here instead of CreateBranchTargets since it's easier to // calculate in dex_pc order. for (const DexInstructionPcPair& pair : code_item_accessor_) { const uint32_t dex_pc = pair.DexPc(); const Instruction& instruction = pair.Inst(); // Check if this dex_pc address starts a new basic block. HBasicBlock* next_block = GetBlockAt(dex_pc); if (next_block != nullptr) { // We only need quicken index entries for basic block boundaries. quicken_index_for_dex_pc_.Put(dex_pc, quicken_index); if (block != nullptr) { // Last instruction did not end its basic block but a new one starts here. // It must have been a block falling through into the next one. block->AddSuccessor(next_block); } block = next_block; is_throwing_block = false; graph_->AddBlock(block); } // Make sure to increment this before the continues. if (QuickenInfoTable::NeedsIndexForInstruction(&instruction)) { ++quicken_index; } if (block == nullptr) { // Ignore dead code. continue; } if (!is_throwing_block && IsThrowingDexInstruction(instruction)) { DCHECK(!ContainsElement(throwing_blocks_, block)); is_throwing_block = true; throwing_blocks_.push_back(block); } if (instruction.IsBranch()) { uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset(); block->AddSuccessor(GetBlockAt(target_dex_pc)); } else if (instruction.IsReturn() || (instruction.Opcode() == Instruction::THROW)) { block->AddSuccessor(graph_->GetExitBlock()); } else if (instruction.IsSwitch()) { DexSwitchTable table(instruction, dex_pc); for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) { uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset(); block->AddSuccessor(GetBlockAt(target_dex_pc)); if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) { uint32_t next_case_dex_pc = s_it.GetDexPcForCurrentIndex(); HBasicBlock* next_case_block = GetBlockAt(next_case_dex_pc); block->AddSuccessor(next_case_block); block = next_case_block; graph_->AddBlock(block); } } } else { // Remaining code only applies to instructions which end their basic block. continue; } // Go to the next instruction in case we read dex PC below. if (instruction.CanFlowThrough()) { block->AddSuccessor(GetBlockAt(std::next(DexInstructionIterator(pair)).DexPc())); } // The basic block ends here. Do not add any more instructions. block = nullptr; } graph_->AddBlock(graph_->GetExitBlock()); } // Returns the TryItem stored for `block` or nullptr if there is no info for it. static const dex::TryItem* GetTryItem( HBasicBlock* block, const ScopedArenaSafeMap& try_block_info) { auto iterator = try_block_info.find(block->GetBlockId()); return (iterator == try_block_info.end()) ? nullptr : iterator->second; } // Iterates over the exception handlers of `try_item`, finds the corresponding // catch blocks and makes them successors of `try_boundary`. The order of // successors matches the order in which runtime exception delivery searches // for a handler. static void LinkToCatchBlocks(HTryBoundary* try_boundary, const CodeItemDataAccessor& accessor, const dex::TryItem* try_item, const ScopedArenaSafeMap& catch_blocks) { for (CatchHandlerIterator it(accessor.GetCatchHandlerData(try_item->handler_off_)); it.HasNext(); it.Next()) { try_boundary->AddExceptionHandler(catch_blocks.Get(it.GetHandlerAddress())); } } bool HBasicBlockBuilder::MightHaveLiveNormalPredecessors(HBasicBlock* catch_block) { if (kIsDebugBuild) { DCHECK_NE(catch_block->GetDexPc(), kNoDexPc) << "Should not be called on synthetic blocks"; DCHECK(!graph_->GetEntryBlock()->GetSuccessors().empty()) << "Basic blocks must have been created and connected"; for (HBasicBlock* predecessor : catch_block->GetPredecessors()) { DCHECK(!predecessor->IsSingleTryBoundary()) << "TryBoundary blocks must not have not been created yet"; } } const Instruction& first = code_item_accessor_.InstructionAt(catch_block->GetDexPc()); if (first.Opcode() == Instruction::MOVE_EXCEPTION) { // Verifier guarantees that if a catch block begins with MOVE_EXCEPTION then // it has no live normal predecessors. return false; } else if (catch_block->GetPredecessors().empty()) { // Normal control-flow edges have already been created. Since block's list of // predecessors is empty, it cannot have any live or dead normal predecessors. return false; } // The catch block has normal predecessors but we do not know which are live // and which will be removed during the initial DCE. Return `true` to signal // that it may have live normal predecessors. return true; } void HBasicBlockBuilder::InsertTryBoundaryBlocks() { if (code_item_accessor_.TriesSize() == 0) { return; } // Keep a map of all try blocks and their respective TryItems. We do not use // the block's pointer but rather its id to ensure deterministic iteration. ScopedArenaSafeMap try_block_info( std::less(), local_allocator_->Adapter(kArenaAllocGraphBuilder)); // Obtain TryItem information for blocks with throwing instructions, and split // blocks which are both try & catch to simplify the graph. for (HBasicBlock* block : graph_->GetBlocks()) { if (block->GetDexPc() == kNoDexPc) { continue; } // Do not bother creating exceptional edges for try blocks which have no // throwing instructions. In that case we simply assume that the block is // not covered by a TryItem. This prevents us from creating a throw-catch // loop for synchronized blocks. if (ContainsElement(throwing_blocks_, block)) { // Try to find a TryItem covering the block. const dex::TryItem* try_item = code_item_accessor_.FindTryItem(block->GetDexPc()); if (try_item != nullptr) { // Block throwing and in a TryItem. Store the try block information. try_block_info.Put(block->GetBlockId(), try_item); } } } // Map from a handler dex_pc to the corresponding catch block. ScopedArenaSafeMap catch_blocks( std::less(), local_allocator_->Adapter(kArenaAllocGraphBuilder)); // Iterate over catch blocks, create artifical landing pads if necessary to // simplify the CFG, and set metadata. const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData(); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); for (uint32_t idx = 0; idx < handlers_size; ++idx) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { uint32_t address = iterator.GetHandlerAddress(); auto existing = catch_blocks.find(address); if (existing != catch_blocks.end()) { // Catch block already processed. TryCatchInformation* info = existing->second->GetTryCatchInformation(); if (iterator.GetHandlerTypeIndex() != info->GetCatchTypeIndex()) { // The handler is for multiple types. We could record all the types, but // doing class resolution here isn't ideal, and it's unclear whether wasting // the space in TryCatchInformation is worth it. info->SetInvalidTypeIndex(); } continue; } // Check if we should create an artifical landing pad for the catch block. // We create one if the catch block is also a try block because we do not // have a strategy for inserting TryBoundaries on exceptional edges. // We also create one if the block might have normal predecessors so as to // simplify register allocation. HBasicBlock* catch_block = GetBlockAt(address); bool is_try_block = (try_block_info.find(catch_block->GetBlockId()) != try_block_info.end()); if (is_try_block || MightHaveLiveNormalPredecessors(catch_block)) { HBasicBlock* new_catch_block = new (allocator_) HBasicBlock(graph_, address); new_catch_block->AddInstruction(new (allocator_) HGoto(address)); new_catch_block->AddSuccessor(catch_block); graph_->AddBlock(new_catch_block); catch_block = new_catch_block; } catch_blocks.Put(address, catch_block); catch_block->SetTryCatchInformation( new (allocator_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_)); } handlers_ptr = iterator.EndDataPointer(); } // Do a pass over the try blocks and insert entering TryBoundaries where at // least one predecessor is not covered by the same TryItem as the try block. // We do not split each edge separately, but rather create one boundary block // that all predecessors are relinked to. This preserves loop headers (b/23895756). for (const auto& entry : try_block_info) { uint32_t block_id = entry.first; const dex::TryItem* try_item = entry.second; HBasicBlock* try_block = graph_->GetBlocks()[block_id]; for (HBasicBlock* predecessor : try_block->GetPredecessors()) { if (GetTryItem(predecessor, try_block_info) != try_item) { // Found a predecessor not covered by the same TryItem. Insert entering // boundary block. HTryBoundary* try_entry = new (allocator_) HTryBoundary( HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc()); try_block->CreateImmediateDominator()->AddInstruction(try_entry); LinkToCatchBlocks(try_entry, code_item_accessor_, try_item, catch_blocks); break; } } } // Do a second pass over the try blocks and insert exit TryBoundaries where // the successor is not in the same TryItem. for (const auto& entry : try_block_info) { uint32_t block_id = entry.first; const dex::TryItem* try_item = entry.second; HBasicBlock* try_block = graph_->GetBlocks()[block_id]; // NOTE: Do not use iterators because SplitEdge would invalidate them. for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) { HBasicBlock* successor = try_block->GetSuccessors()[i]; // If the successor is a try block, all of its predecessors must be // covered by the same TryItem. Otherwise the previous pass would have // created a non-throwing boundary block. if (GetTryItem(successor, try_block_info) != nullptr) { DCHECK_EQ(try_item, GetTryItem(successor, try_block_info)); continue; } // Insert TryBoundary and link to catch blocks. HTryBoundary* try_exit = new (allocator_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc()); graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit); LinkToCatchBlocks(try_exit, code_item_accessor_, try_item, catch_blocks); } } } void HBasicBlockBuilder::InsertSynthesizedLoopsForOsr() { ArenaSet targets(allocator_->Adapter(kArenaAllocGraphBuilder)); // Collect basic blocks that are targets of a negative branch. for (const DexInstructionPcPair& pair : code_item_accessor_) { const uint32_t dex_pc = pair.DexPc(); const Instruction& instruction = pair.Inst(); if (instruction.IsBranch()) { uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset(); if (target_dex_pc < dex_pc) { HBasicBlock* block = GetBlockAt(target_dex_pc); CHECK_NE(kNoDexPc, block->GetDexPc()); targets.insert(block->GetBlockId()); } } else if (instruction.IsSwitch()) { DexSwitchTable table(instruction, dex_pc); for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) { uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset(); if (target_dex_pc < dex_pc) { HBasicBlock* block = GetBlockAt(target_dex_pc); CHECK_NE(kNoDexPc, block->GetDexPc()); targets.insert(block->GetBlockId()); } } } } // Insert synthesized loops before the collected blocks. for (uint32_t block_id : targets) { HBasicBlock* block = graph_->GetBlocks()[block_id]; HBasicBlock* loop_block = new (allocator_) HBasicBlock(graph_, block->GetDexPc()); graph_->AddBlock(loop_block); while (!block->GetPredecessors().empty()) { block->GetPredecessors()[0]->ReplaceSuccessor(block, loop_block); } loop_block->AddSuccessor(loop_block); loop_block->AddSuccessor(block); // We loop on false - we know this won't be optimized later on as the loop // is marked irreducible, which disables loop optimizations. loop_block->AddInstruction(new (allocator_) HIf(graph_->GetIntConstant(0), kNoDexPc)); } } bool HBasicBlockBuilder::Build() { DCHECK(code_item_accessor_.HasCodeItem()); DCHECK(graph_->GetBlocks().empty()); graph_->SetEntryBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc)); graph_->SetExitBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc)); // TODO(dbrazdil): Do CreateBranchTargets and ConnectBasicBlocks in one pass. if (!CreateBranchTargets()) { return false; } ConnectBasicBlocks(); InsertTryBoundaryBlocks(); if (graph_->IsCompilingOsr()) { InsertSynthesizedLoopsForOsr(); } return true; } void HBasicBlockBuilder::BuildIntrinsic() { DCHECK(!code_item_accessor_.HasCodeItem()); DCHECK(graph_->GetBlocks().empty()); // Create blocks. HBasicBlock* entry_block = new (allocator_) HBasicBlock(graph_, kNoDexPc); HBasicBlock* exit_block = new (allocator_) HBasicBlock(graph_, kNoDexPc); HBasicBlock* body = MaybeCreateBlockAt(/* semantic_dex_pc= */ kNoDexPc, /* store_dex_pc= */ 0u); // Add blocks to the graph. graph_->AddBlock(entry_block); graph_->AddBlock(body); graph_->AddBlock(exit_block); graph_->SetEntryBlock(entry_block); graph_->SetExitBlock(exit_block); // Connect blocks. entry_block->AddSuccessor(body); body->AddSuccessor(exit_block); } size_t HBasicBlockBuilder::GetQuickenIndex(uint32_t dex_pc) const { return quicken_index_for_dex_pc_.Get(dex_pc); } } // namespace art