/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_x86_64.h" #include "arch/x86_64/jni_frame_x86_64.h" #include "art_method-inl.h" #include "class_table.h" #include "code_generator_utils.h" #include "compiled_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/accounting/card_table.h" #include "gc/space/image_space.h" #include "heap_poisoning.h" #include "intrinsics.h" #include "intrinsics_x86_64.h" #include "jit/profiling_info.h" #include "linker/linker_patch.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/object_reference.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "utils/assembler.h" #include "utils/stack_checks.h" #include "utils/x86_64/assembler_x86_64.h" #include "utils/x86_64/managed_register_x86_64.h" namespace art { template class GcRoot; namespace x86_64 { static constexpr int kCurrentMethodStackOffset = 0; static constexpr Register kMethodRegisterArgument = RDI; // The compare/jump sequence will generate about (1.5 * num_entries) instructions. A jump // table version generates 7 instructions and num_entries literals. Compare/jump sequence will // generates less code/data with a small num_entries. static constexpr uint32_t kPackedSwitchJumpTableThreshold = 5; static constexpr Register kCoreCalleeSaves[] = { RBX, RBP, R12, R13, R14, R15 }; static constexpr FloatRegister kFpuCalleeSaves[] = { XMM12, XMM13, XMM14, XMM15 }; static constexpr int kC2ConditionMask = 0x400; static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { // Custom calling convention: RAX serves as both input and output. RegisterSet caller_saves = RegisterSet::Empty(); caller_saves.Add(Location::RegisterLocation(RAX)); return caller_saves; } // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(codegen->GetAssembler())-> // NOLINT #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86_64PointerSize, x).Int32Value() class NullCheckSlowPathX86_64 : public SlowPathCode { public: explicit NullCheckSlowPathX86_64(HNullCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } x86_64_codegen->InvokeRuntime(kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "NullCheckSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86_64); }; class DivZeroCheckSlowPathX86_64 : public SlowPathCode { public: explicit DivZeroCheckSlowPathX86_64(HDivZeroCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); x86_64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "DivZeroCheckSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86_64); }; class DivRemMinusOneSlowPathX86_64 : public SlowPathCode { public: DivRemMinusOneSlowPathX86_64(HInstruction* at, Register reg, DataType::Type type, bool is_div) : SlowPathCode(at), cpu_reg_(CpuRegister(reg)), type_(type), is_div_(is_div) {} void EmitNativeCode(CodeGenerator* codegen) override { __ Bind(GetEntryLabel()); if (type_ == DataType::Type::kInt32) { if (is_div_) { __ negl(cpu_reg_); } else { __ xorl(cpu_reg_, cpu_reg_); } } else { DCHECK_EQ(DataType::Type::kInt64, type_); if (is_div_) { __ negq(cpu_reg_); } else { __ xorl(cpu_reg_, cpu_reg_); } } __ jmp(GetExitLabel()); } const char* GetDescription() const override { return "DivRemMinusOneSlowPathX86_64"; } private: const CpuRegister cpu_reg_; const DataType::Type type_; const bool is_div_; DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86_64); }; class SuspendCheckSlowPathX86_64 : public SlowPathCode { public: SuspendCheckSlowPathX86_64(HSuspendCheck* instruction, HBasicBlock* successor) : SlowPathCode(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // Only saves full width XMM for SIMD. x86_64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); RestoreLiveRegisters(codegen, locations); // Only restores full width XMM for SIMD. if (successor_ == nullptr) { __ jmp(GetReturnLabel()); } else { __ jmp(x86_64_codegen->GetLabelOf(successor_)); } } Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } const char* GetDescription() const override { return "SuspendCheckSlowPathX86_64"; } private: HBasicBlock* const successor_; Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86_64); }; class BoundsCheckSlowPathX86_64 : public SlowPathCode { public: explicit BoundsCheckSlowPathX86_64(HBoundsCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } // Are we using an array length from memory? HInstruction* array_length = instruction_->InputAt(1); Location length_loc = locations->InAt(1); InvokeRuntimeCallingConvention calling_convention; if (array_length->IsArrayLength() && array_length->IsEmittedAtUseSite()) { // Load the array length into our temporary. HArrayLength* length = array_length->AsArrayLength(); uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(length); Location array_loc = array_length->GetLocations()->InAt(0); Address array_len(array_loc.AsRegister(), len_offset); length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(1)); // Check for conflicts with index. if (length_loc.Equals(locations->InAt(0))) { // We know we aren't using parameter 2. length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(2)); } __ movl(length_loc.AsRegister(), array_len); if (mirror::kUseStringCompression && length->IsStringLength()) { __ shrl(length_loc.AsRegister(), Immediate(1)); } } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. codegen->EmitParallelMoves( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), DataType::Type::kInt32, length_loc, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), DataType::Type::kInt32); QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ? kQuickThrowStringBounds : kQuickThrowArrayBounds; x86_64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); CheckEntrypointTypes(); } bool IsFatal() const override { return true; } const char* GetDescription() const override { return "BoundsCheckSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86_64); }; class LoadClassSlowPathX86_64 : public SlowPathCode { public: LoadClassSlowPathX86_64(HLoadClass* cls, HInstruction* at) : SlowPathCode(at), cls_(cls) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); Location out = locations->Out(); const uint32_t dex_pc = instruction_->GetDexPc(); bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // Custom calling convention: RAX serves as both input and output. if (must_resolve_type) { DCHECK(IsSameDexFile(cls_->GetDexFile(), x86_64_codegen->GetGraph()->GetDexFile())); dex::TypeIndex type_index = cls_->GetTypeIndex(); __ movl(CpuRegister(RAX), Immediate(type_index.index_)); x86_64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); CheckEntrypointTypes(); // If we also must_do_clinit, the resolved type is now in the correct register. } else { DCHECK(must_do_clinit); Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); x86_64_codegen->Move(Location::RegisterLocation(RAX), source); } if (must_do_clinit) { x86_64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); CheckEntrypointTypes(); } // Move the class to the desired location. if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); x86_64_codegen->Move(out, Location::RegisterLocation(RAX)); } RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const override { return "LoadClassSlowPathX86_64"; } private: // The class this slow path will load. HLoadClass* const cls_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86_64); }; class LoadStringSlowPathX86_64 : public SlowPathCode { public: explicit LoadStringSlowPathX86_64(HLoadString* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); // Custom calling convention: RAX serves as both input and output. __ movl(CpuRegister(RAX), Immediate(string_index.index_)); x86_64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); x86_64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const override { return "LoadStringSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86_64); }; class TypeCheckSlowPathX86_64 : public SlowPathCode { public: TypeCheckSlowPathX86_64(HInstruction* instruction, bool is_fatal) : SlowPathCode(instruction), is_fatal_(is_fatal) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); uint32_t dex_pc = instruction_->GetDexPc(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); if (kPoisonHeapReferences && instruction_->IsCheckCast() && instruction_->AsCheckCast()->GetTypeCheckKind() == TypeCheckKind::kInterfaceCheck) { // First, unpoison the `cls` reference that was poisoned for direct memory comparison. __ UnpoisonHeapReference(locations->InAt(1).AsRegister()); } if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { SaveLiveRegisters(codegen, locations); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves(locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), DataType::Type::kReference); if (instruction_->IsInstanceOf()) { x86_64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); CheckEntrypointTypes(); } else { DCHECK(instruction_->IsCheckCast()); x86_64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); CheckEntrypointTypes(); } if (!is_fatal_) { if (instruction_->IsInstanceOf()) { x86_64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); } RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } } const char* GetDescription() const override { return "TypeCheckSlowPathX86_64"; } bool IsFatal() const override { return is_fatal_; } private: const bool is_fatal_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86_64); }; class DeoptimizationSlowPathX86_64 : public SlowPathCode { public: explicit DeoptimizationSlowPathX86_64(HDeoptimize* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); __ Bind(GetEntryLabel()); LocationSummary* locations = instruction_->GetLocations(); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; x86_64_codegen->Load32BitValue( CpuRegister(calling_convention.GetRegisterAt(0)), static_cast(instruction_->AsDeoptimize()->GetDeoptimizationKind())); x86_64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); } const char* GetDescription() const override { return "DeoptimizationSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86_64); }; class ArraySetSlowPathX86_64 : public SlowPathCode { public: explicit ArraySetSlowPathX86_64(HInstruction* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); parallel_move.AddMove( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, nullptr); parallel_move.AddMove( locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), DataType::Type::kInt32, nullptr); parallel_move.AddMove( locations->InAt(2), Location::RegisterLocation(calling_convention.GetRegisterAt(2)), DataType::Type::kReference, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); x86_64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes(); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const override { return "ArraySetSlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86_64); }; // Slow path marking an object reference `ref` during a read // barrier. The field `obj.field` in the object `obj` holding this // reference does not get updated by this slow path after marking (see // ReadBarrierMarkAndUpdateFieldSlowPathX86_64 below for that). // // This means that after the execution of this slow path, `ref` will // always be up-to-date, but `obj.field` may not; i.e., after the // flip, `ref` will be a to-space reference, but `obj.field` will // probably still be a from-space reference (unless it gets updated by // another thread, or if another thread installed another object // reference (different from `ref`) in `obj.field`). class ReadBarrierMarkSlowPathX86_64 : public SlowPathCode { public: ReadBarrierMarkSlowPathX86_64(HInstruction* instruction, Location ref, bool unpoison_ref_before_marking) : SlowPathCode(instruction), ref_(ref), unpoison_ref_before_marking_(unpoison_ref_before_marking) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const override { return "ReadBarrierMarkSlowPathX86_64"; } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); CpuRegister ref_cpu_reg = ref_.AsRegister(); Register ref_reg = ref_cpu_reg.AsRegister(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsArraySet() || instruction_->IsLoadClass() || instruction_->IsLoadString() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); if (unpoison_ref_before_marking_) { // Object* ref = ref_addr->AsMirrorPtr() __ MaybeUnpoisonHeapReference(ref_cpu_reg); } // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); DCHECK_NE(ref_reg, RSP); DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; // "Compact" slow path, saving two moves. // // Instead of using the standard runtime calling convention (input // and output in R0): // // RDI <- ref // RAX <- ReadBarrierMark(RDI) // ref <- RAX // // we just use rX (the register containing `ref`) as input and output // of a dedicated entrypoint: // // rX <- ReadBarrierMarkRegX(rX) // int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(ref_reg); // This runtime call does not require a stack map. x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); __ jmp(GetExitLabel()); } private: // The location (register) of the marked object reference. const Location ref_; // Should the reference in `ref_` be unpoisoned prior to marking it? const bool unpoison_ref_before_marking_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86_64); }; // Slow path marking an object reference `ref` during a read barrier, // and if needed, atomically updating the field `obj.field` in the // object `obj` holding this reference after marking (contrary to // ReadBarrierMarkSlowPathX86_64 above, which never tries to update // `obj.field`). // // This means that after the execution of this slow path, both `ref` // and `obj.field` will be up-to-date; i.e., after the flip, both will // hold the same to-space reference (unless another thread installed // another object reference (different from `ref`) in `obj.field`). class ReadBarrierMarkAndUpdateFieldSlowPathX86_64 : public SlowPathCode { public: ReadBarrierMarkAndUpdateFieldSlowPathX86_64(HInstruction* instruction, Location ref, CpuRegister obj, const Address& field_addr, bool unpoison_ref_before_marking, CpuRegister temp1, CpuRegister temp2) : SlowPathCode(instruction), ref_(ref), obj_(obj), field_addr_(field_addr), unpoison_ref_before_marking_(unpoison_ref_before_marking), temp1_(temp1), temp2_(temp2) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const override { return "ReadBarrierMarkAndUpdateFieldSlowPathX86_64"; } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); CpuRegister ref_cpu_reg = ref_.AsRegister(); Register ref_reg = ref_cpu_reg.AsRegister(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; // This slow path is only used by the UnsafeCASObject intrinsic. DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking and field updating slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); __ Bind(GetEntryLabel()); if (unpoison_ref_before_marking_) { // Object* ref = ref_addr->AsMirrorPtr() __ MaybeUnpoisonHeapReference(ref_cpu_reg); } // Save the old (unpoisoned) reference. __ movl(temp1_, ref_cpu_reg); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); DCHECK_NE(ref_reg, RSP); DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; // "Compact" slow path, saving two moves. // // Instead of using the standard runtime calling convention (input // and output in R0): // // RDI <- ref // RAX <- ReadBarrierMark(RDI) // ref <- RAX // // we just use rX (the register containing `ref`) as input and output // of a dedicated entrypoint: // // rX <- ReadBarrierMarkRegX(rX) // int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(ref_reg); // This runtime call does not require a stack map. x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); // If the new reference is different from the old reference, // update the field in the holder (`*field_addr`). // // Note that this field could also hold a different object, if // another thread had concurrently changed it. In that case, the // LOCK CMPXCHGL instruction in the compare-and-set (CAS) // operation below would abort the CAS, leaving the field as-is. NearLabel done; __ cmpl(temp1_, ref_cpu_reg); __ j(kEqual, &done); // Update the the holder's field atomically. This may fail if // mutator updates before us, but it's OK. This is achived // using a strong compare-and-set (CAS) operation with relaxed // memory synchronization ordering, where the expected value is // the old reference and the desired value is the new reference. // This operation is implemented with a 32-bit LOCK CMPXLCHG // instruction, which requires the expected value (the old // reference) to be in EAX. Save RAX beforehand, and move the // expected value (stored in `temp1_`) into EAX. __ movq(temp2_, CpuRegister(RAX)); __ movl(CpuRegister(RAX), temp1_); // Convenience aliases. CpuRegister base = obj_; CpuRegister expected = CpuRegister(RAX); CpuRegister value = ref_cpu_reg; bool base_equals_value = (base.AsRegister() == value.AsRegister()); Register value_reg = ref_reg; if (kPoisonHeapReferences) { if (base_equals_value) { // If `base` and `value` are the same register location, move // `value_reg` to a temporary register. This way, poisoning // `value_reg` won't invalidate `base`. value_reg = temp1_.AsRegister(); __ movl(CpuRegister(value_reg), base); } // Check that the register allocator did not assign the location // of `expected` (RAX) to `value` nor to `base`, so that heap // poisoning (when enabled) works as intended below. // - If `value` were equal to `expected`, both references would // be poisoned twice, meaning they would not be poisoned at // all, as heap poisoning uses address negation. // - If `base` were equal to `expected`, poisoning `expected` // would invalidate `base`. DCHECK_NE(value_reg, expected.AsRegister()); DCHECK_NE(base.AsRegister(), expected.AsRegister()); __ PoisonHeapReference(expected); __ PoisonHeapReference(CpuRegister(value_reg)); } __ LockCmpxchgl(field_addr_, CpuRegister(value_reg)); // If heap poisoning is enabled, we need to unpoison the values // that were poisoned earlier. if (kPoisonHeapReferences) { if (base_equals_value) { // `value_reg` has been moved to a temporary register, no need // to unpoison it. } else { __ UnpoisonHeapReference(CpuRegister(value_reg)); } // No need to unpoison `expected` (RAX), as it is be overwritten below. } // Restore RAX. __ movq(CpuRegister(RAX), temp2_); __ Bind(&done); __ jmp(GetExitLabel()); } private: // The location (register) of the marked object reference. const Location ref_; // The register containing the object holding the marked object reference field. const CpuRegister obj_; // The address of the marked reference field. The base of this address must be `obj_`. const Address field_addr_; // Should the reference in `ref_` be unpoisoned prior to marking it? const bool unpoison_ref_before_marking_; const CpuRegister temp1_; const CpuRegister temp2_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathX86_64); }; // Slow path generating a read barrier for a heap reference. class ReadBarrierForHeapReferenceSlowPathX86_64 : public SlowPathCode { public: ReadBarrierForHeapReferenceSlowPathX86_64(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) : SlowPathCode(instruction), out_(out), ref_(ref), obj_(obj), offset_(offset), index_(index) { DCHECK(kEmitCompilerReadBarrier); // If `obj` is equal to `out` or `ref`, it means the initial // object has been overwritten by (or after) the heap object // reference load to be instrumented, e.g.: // // __ movl(out, Address(out, offset)); // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); // // In that case, we have lost the information about the original // object, and the emitted read barrier cannot work properly. DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; } void EmitNativeCode(CodeGenerator* codegen) override { CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); CpuRegister reg_out = out_.AsRegister(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.AsRegister())) << out_; DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for heap reference slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We may have to change the index's value, but as `index_` is a // constant member (like other "inputs" of this slow path), // introduce a copy of it, `index`. Location index = index_; if (index_.IsValid()) { // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. if (instruction_->IsArrayGet()) { // Compute real offset and store it in index_. Register index_reg = index_.AsRegister().AsRegister(); DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); if (codegen->IsCoreCalleeSaveRegister(index_reg)) { // We are about to change the value of `index_reg` (see the // calls to art::x86_64::X86_64Assembler::shll and // art::x86_64::X86_64Assembler::AddImmediate below), but it // has not been saved by the previous call to // art::SlowPathCode::SaveLiveRegisters, as it is a // callee-save register -- // art::SlowPathCode::SaveLiveRegisters does not consider // callee-save registers, as it has been designed with the // assumption that callee-save registers are supposed to be // handled by the called function. So, as a callee-save // register, `index_reg` _would_ eventually be saved onto // the stack, but it would be too late: we would have // changed its value earlier. Therefore, we manually save // it here into another freely available register, // `free_reg`, chosen of course among the caller-save // registers (as a callee-save `free_reg` register would // exhibit the same problem). // // Note we could have requested a temporary register from // the register allocator instead; but we prefer not to, as // this is a slow path, and we know we can find a // caller-save register that is available. Register free_reg = FindAvailableCallerSaveRegister(codegen).AsRegister(); __ movl(CpuRegister(free_reg), CpuRegister(index_reg)); index_reg = free_reg; index = Location::RegisterLocation(index_reg); } else { // The initial register stored in `index_` has already been // saved in the call to art::SlowPathCode::SaveLiveRegisters // (as it is not a callee-save register), so we can freely // use it. } // Shifting the index value contained in `index_reg` by the // scale factor (2) cannot overflow in practice, as the // runtime is unable to allocate object arrays with a size // larger than 2^26 - 1 (that is, 2^28 - 4 bytes). __ shll(CpuRegister(index_reg), Immediate(TIMES_4)); static_assert( sizeof(mirror::HeapReference) == sizeof(int32_t), "art::mirror::HeapReference and int32_t have different sizes."); __ AddImmediate(CpuRegister(index_reg), Immediate(offset_)); } else { // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile // intrinsics, `index_` is not shifted by a scale factor of 2 // (as in the case of ArrayGet), as it is actually an offset // to an object field within an object. DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) << instruction_->AsInvoke()->GetIntrinsic(); DCHECK_EQ(offset_, 0U); DCHECK(index_.IsRegister()); } } // We're moving two or three locations to locations that could // overlap, so we need a parallel move resolver. InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); parallel_move.AddMove(ref_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), DataType::Type::kReference, nullptr); parallel_move.AddMove(obj_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), DataType::Type::kReference, nullptr); if (index.IsValid()) { parallel_move.AddMove(index, Location::RegisterLocation(calling_convention.GetRegisterAt(2)), DataType::Type::kInt32, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); } else { codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); __ movl(CpuRegister(calling_convention.GetRegisterAt(2)), Immediate(offset_)); } x86_64_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes< kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); x86_64_codegen->Move(out_, Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathX86_64"; } private: CpuRegister FindAvailableCallerSaveRegister(CodeGenerator* codegen) { size_t ref = static_cast(ref_.AsRegister().AsRegister()); size_t obj = static_cast(obj_.AsRegister().AsRegister()); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { return static_cast(i); } } // We shall never fail to find a free caller-save register, as // there are more than two core caller-save registers on x86-64 // (meaning it is possible to find one which is different from // `ref` and `obj`). DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); LOG(FATAL) << "Could not find a free caller-save register"; UNREACHABLE(); } const Location out_; const Location ref_; const Location obj_; const uint32_t offset_; // An additional location containing an index to an array. // Only used for HArrayGet and the UnsafeGetObject & // UnsafeGetObjectVolatile intrinsics. const Location index_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86_64); }; // Slow path generating a read barrier for a GC root. class ReadBarrierForRootSlowPathX86_64 : public SlowPathCode { public: ReadBarrierForRootSlowPathX86_64(HInstruction* instruction, Location out, Location root) : SlowPathCode(instruction), out_(out), root_(root) { DCHECK(kEmitCompilerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) override { LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) << "Unexpected instruction in read barrier for GC root slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); x86_64_codegen->Move(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); x86_64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes*>(); x86_64_codegen->Move(out_, Location::RegisterLocation(RAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const override { return "ReadBarrierForRootSlowPathX86_64"; } private: const Location out_; const Location root_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86_64); }; #undef __ // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(GetAssembler())-> // NOLINT inline Condition X86_64IntegerCondition(IfCondition cond) { switch (cond) { case kCondEQ: return kEqual; case kCondNE: return kNotEqual; case kCondLT: return kLess; case kCondLE: return kLessEqual; case kCondGT: return kGreater; case kCondGE: return kGreaterEqual; case kCondB: return kBelow; case kCondBE: return kBelowEqual; case kCondA: return kAbove; case kCondAE: return kAboveEqual; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } // Maps FP condition to x86_64 name. inline Condition X86_64FPCondition(IfCondition cond) { switch (cond) { case kCondEQ: return kEqual; case kCondNE: return kNotEqual; case kCondLT: return kBelow; case kCondLE: return kBelowEqual; case kCondGT: return kAbove; case kCondGE: return kAboveEqual; default: break; // should not happen } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } void CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(LocationSummary* locations) { // We have to ensure that the native code we call directly (such as @CriticalNative // or some intrinsic helpers, say Math.sin()) doesn't clobber the XMM registers // which are non-volatile for ART, but volatile for Native calls. This will ensure // that they are saved in the prologue and properly restored. for (FloatRegister fp_reg : non_volatile_xmm_regs) { locations->AddTemp(Location::FpuRegisterLocation(fp_reg)); } } HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86_64::GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method ATTRIBUTE_UNUSED) { return desired_dispatch_info; } void CodeGeneratorX86_64::GenerateStaticOrDirectCall( HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { // All registers are assumed to be correctly set up. Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. switch (invoke->GetMethodLoadKind()) { case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { // temp = thread->string_init_entrypoint uint32_t offset = GetThreadOffset(invoke->GetStringInitEntryPoint()).Int32Value(); __ gs()->movq(temp.AsRegister(), Address::Absolute(offset, /* no_rip= */ true)); break; } case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex()); break; case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); __ leal(temp.AsRegister(), Address::Absolute(kPlaceholder32BitOffset, /* no_rip= */ false)); RecordBootImageMethodPatch(invoke); break; case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: { // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load. __ movl(temp.AsRegister(), Address::Absolute(kPlaceholder32BitOffset, /* no_rip= */ false)); RecordBootImageRelRoPatch(GetBootImageOffset(invoke)); break; } case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: { __ movq(temp.AsRegister(), Address::Absolute(kPlaceholder32BitOffset, /* no_rip= */ false)); RecordMethodBssEntryPatch(invoke); // No need for memory fence, thanks to the x86-64 memory model. break; } case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress: Load64BitValue(temp.AsRegister(), invoke->GetMethodAddress()); break; case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: { GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); return; // No code pointer retrieval; the runtime performs the call directly. } } switch (invoke->GetCodePtrLocation()) { case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: __ call(&frame_entry_label_); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); break; case HInvokeStaticOrDirect::CodePtrLocation::kCallCriticalNative: { size_t out_frame_size = PrepareCriticalNativeCall(invoke); // (callee_method + offset_of_jni_entry_point)() __ call(Address(callee_method.AsRegister(), ArtMethod::EntryPointFromJniOffset(kX86_64PointerSize).SizeValue())); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); // Zero-/sign-extend the result when needed due to native and managed ABI mismatch. switch (invoke->GetType()) { case DataType::Type::kBool: __ movzxb(CpuRegister(RAX), CpuRegister(RAX)); break; case DataType::Type::kInt8: __ movsxb(CpuRegister(RAX), CpuRegister(RAX)); break; case DataType::Type::kUint16: __ movzxw(CpuRegister(RAX), CpuRegister(RAX)); break; case DataType::Type::kInt16: __ movsxw(CpuRegister(RAX), CpuRegister(RAX)); break; case DataType::Type::kInt32: case DataType::Type::kInt64: case DataType::Type::kFloat32: case DataType::Type::kFloat64: case DataType::Type::kVoid: break; default: DCHECK(false) << invoke->GetType(); break; } if (out_frame_size != 0u) { DecreaseFrame(out_frame_size); } break; } case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: // (callee_method + offset_of_quick_compiled_code)() __ call(Address(callee_method.AsRegister(), ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64PointerSize).SizeValue())); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); break; } DCHECK(!IsLeafMethod()); } void CodeGeneratorX86_64::GenerateVirtualCall( HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) { CpuRegister temp = temp_in.AsRegister(); size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kX86_64PointerSize).SizeValue(); // Use the calling convention instead of the location of the receiver, as // intrinsics may have put the receiver in a different register. In the intrinsics // slow path, the arguments have been moved to the right place, so here we are // guaranteed that the receiver is the first register of the calling convention. InvokeDexCallingConvention calling_convention; Register receiver = calling_convention.GetRegisterAt(0); size_t class_offset = mirror::Object::ClassOffset().SizeValue(); // /* HeapReference */ temp = receiver->klass_ __ movl(temp, Address(CpuRegister(receiver), class_offset)); MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); MaybeGenerateInlineCacheCheck(invoke, temp); // temp = temp->GetMethodAt(method_offset); __ movq(temp, Address(temp, method_offset)); // call temp->GetEntryPoint(); __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86_64PointerSize).SizeValue())); RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); } void CodeGeneratorX86_64::RecordBootImageIntrinsicPatch(uint32_t intrinsic_data) { boot_image_other_patches_.emplace_back(/* target_dex_file= */ nullptr, intrinsic_data); __ Bind(&boot_image_other_patches_.back().label); } void CodeGeneratorX86_64::RecordBootImageRelRoPatch(uint32_t boot_image_offset) { boot_image_other_patches_.emplace_back(/* target_dex_file= */ nullptr, boot_image_offset); __ Bind(&boot_image_other_patches_.back().label); } void CodeGeneratorX86_64::RecordBootImageMethodPatch(HInvokeStaticOrDirect* invoke) { boot_image_method_patches_.emplace_back( invoke->GetTargetMethod().dex_file, invoke->GetTargetMethod().index); __ Bind(&boot_image_method_patches_.back().label); } void CodeGeneratorX86_64::RecordMethodBssEntryPatch(HInvokeStaticOrDirect* invoke) { method_bss_entry_patches_.emplace_back(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()); __ Bind(&method_bss_entry_patches_.back().label); } void CodeGeneratorX86_64::RecordBootImageTypePatch(HLoadClass* load_class) { boot_image_type_patches_.emplace_back( &load_class->GetDexFile(), load_class->GetTypeIndex().index_); __ Bind(&boot_image_type_patches_.back().label); } Label* CodeGeneratorX86_64::NewTypeBssEntryPatch(HLoadClass* load_class) { type_bss_entry_patches_.emplace_back( &load_class->GetDexFile(), load_class->GetTypeIndex().index_); return &type_bss_entry_patches_.back().label; } void CodeGeneratorX86_64::RecordBootImageStringPatch(HLoadString* load_string) { boot_image_string_patches_.emplace_back( &load_string->GetDexFile(), load_string->GetStringIndex().index_); __ Bind(&boot_image_string_patches_.back().label); } Label* CodeGeneratorX86_64::NewStringBssEntryPatch(HLoadString* load_string) { string_bss_entry_patches_.emplace_back( &load_string->GetDexFile(), load_string->GetStringIndex().index_); return &string_bss_entry_patches_.back().label; } void CodeGeneratorX86_64::LoadBootImageAddress(CpuRegister reg, uint32_t boot_image_reference) { if (GetCompilerOptions().IsBootImage()) { __ leal(reg, Address::Absolute(CodeGeneratorX86_64::kPlaceholder32BitOffset, /* no_rip= */ false)); RecordBootImageIntrinsicPatch(boot_image_reference); } else if (GetCompilerOptions().GetCompilePic()) { __ movl(reg, Address::Absolute(CodeGeneratorX86_64::kPlaceholder32BitOffset, /* no_rip= */ false)); RecordBootImageRelRoPatch(boot_image_reference); } else { DCHECK(GetCompilerOptions().IsJitCompiler()); gc::Heap* heap = Runtime::Current()->GetHeap(); DCHECK(!heap->GetBootImageSpaces().empty()); const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; __ movl(reg, Immediate(dchecked_integral_cast(reinterpret_cast(address)))); } } void CodeGeneratorX86_64::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke, uint32_t boot_image_offset) { DCHECK(invoke->IsStatic()); InvokeRuntimeCallingConvention calling_convention; CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0)); if (GetCompilerOptions().IsBootImage()) { DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference); // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. __ leal(argument, Address::Absolute(CodeGeneratorX86_64::kPlaceholder32BitOffset, /* no_rip= */ false)); MethodReference target_method = invoke->GetTargetMethod(); dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; boot_image_type_patches_.emplace_back(target_method.dex_file, type_idx.index_); __ Bind(&boot_image_type_patches_.back().label); } else { LoadBootImageAddress(argument, boot_image_offset); } InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); } // The label points to the end of the "movl" or another instruction but the literal offset // for method patch needs to point to the embedded constant which occupies the last 4 bytes. constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u; template inline void CodeGeneratorX86_64::EmitPcRelativeLinkerPatches( const ArenaDeque>& infos, ArenaVector* linker_patches) { for (const PatchInfo