/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ #define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ #include "code_generator.h" #include "instruction_simplifier_shared.h" #include "locations.h" #include "nodes.h" #include "utils/arm64/assembler_arm64.h" // TODO(VIXL): Make VIXL compile with -Wshadow. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #include "aarch64/disasm-aarch64.h" #include "aarch64/macro-assembler-aarch64.h" #include "aarch64/simulator-aarch64.h" #pragma GCC diagnostic pop namespace art { using helpers::CanFitInShifterOperand; using helpers::HasShifterOperand; namespace arm64 { namespace helpers { // Convenience helpers to ease conversion to and from VIXL operands. static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32), "Unexpected values for register codes."); inline int VIXLRegCodeFromART(int code) { if (code == SP) { return vixl::aarch64::kSPRegInternalCode; } if (code == XZR) { return vixl::aarch64::kZeroRegCode; } return code; } inline int ARTRegCodeFromVIXL(int code) { if (code == vixl::aarch64::kSPRegInternalCode) { return SP; } if (code == vixl::aarch64::kZeroRegCode) { return XZR; } return code; } inline vixl::aarch64::Register XRegisterFrom(Location location) { DCHECK(location.IsRegister()) << location; return vixl::aarch64::Register::GetXRegFromCode(VIXLRegCodeFromART(location.reg())); } inline vixl::aarch64::Register WRegisterFrom(Location location) { DCHECK(location.IsRegister()) << location; return vixl::aarch64::Register::GetWRegFromCode(VIXLRegCodeFromART(location.reg())); } inline vixl::aarch64::Register RegisterFrom(Location location, DataType::Type type) { DCHECK(type != DataType::Type::kVoid && !DataType::IsFloatingPointType(type)) << type; return type == DataType::Type::kInt64 ? XRegisterFrom(location) : WRegisterFrom(location); } inline vixl::aarch64::Register OutputRegister(HInstruction* instr) { return RegisterFrom(instr->GetLocations()->Out(), instr->GetType()); } inline vixl::aarch64::Register InputRegisterAt(HInstruction* instr, int input_index) { return RegisterFrom(instr->GetLocations()->InAt(input_index), instr->InputAt(input_index)->GetType()); } inline vixl::aarch64::VRegister DRegisterFrom(Location location) { DCHECK(location.IsFpuRegister()) << location; return vixl::aarch64::VRegister::GetDRegFromCode(location.reg()); } inline vixl::aarch64::VRegister QRegisterFrom(Location location) { DCHECK(location.IsFpuRegister()) << location; return vixl::aarch64::VRegister::GetQRegFromCode(location.reg()); } inline vixl::aarch64::VRegister VRegisterFrom(Location location) { DCHECK(location.IsFpuRegister()) << location; return vixl::aarch64::VRegister::GetVRegFromCode(location.reg()); } inline vixl::aarch64::VRegister SRegisterFrom(Location location) { DCHECK(location.IsFpuRegister()) << location; return vixl::aarch64::VRegister::GetSRegFromCode(location.reg()); } inline vixl::aarch64::VRegister HRegisterFrom(Location location) { DCHECK(location.IsFpuRegister()) << location; return vixl::aarch64::VRegister::GetHRegFromCode(location.reg()); } inline vixl::aarch64::VRegister FPRegisterFrom(Location location, DataType::Type type) { DCHECK(DataType::IsFloatingPointType(type)) << type; return type == DataType::Type::kFloat64 ? DRegisterFrom(location) : SRegisterFrom(location); } inline vixl::aarch64::VRegister OutputFPRegister(HInstruction* instr) { return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType()); } inline vixl::aarch64::VRegister InputFPRegisterAt(HInstruction* instr, int input_index) { return FPRegisterFrom(instr->GetLocations()->InAt(input_index), instr->InputAt(input_index)->GetType()); } inline vixl::aarch64::CPURegister CPURegisterFrom(Location location, DataType::Type type) { return DataType::IsFloatingPointType(type) ? vixl::aarch64::CPURegister(FPRegisterFrom(location, type)) : vixl::aarch64::CPURegister(RegisterFrom(location, type)); } inline vixl::aarch64::CPURegister OutputCPURegister(HInstruction* instr) { return DataType::IsFloatingPointType(instr->GetType()) ? static_cast(OutputFPRegister(instr)) : static_cast(OutputRegister(instr)); } inline vixl::aarch64::CPURegister InputCPURegisterAt(HInstruction* instr, int index) { return DataType::IsFloatingPointType(instr->InputAt(index)->GetType()) ? static_cast(InputFPRegisterAt(instr, index)) : static_cast(InputRegisterAt(instr, index)); } inline vixl::aarch64::CPURegister InputCPURegisterOrZeroRegAt(HInstruction* instr, int index) { HInstruction* input = instr->InputAt(index); DataType::Type input_type = input->GetType(); if (input->IsConstant() && input->AsConstant()->IsZeroBitPattern()) { return (DataType::Size(input_type) >= vixl::aarch64::kXRegSizeInBytes) ? vixl::aarch64::Register(vixl::aarch64::xzr) : vixl::aarch64::Register(vixl::aarch64::wzr); } return InputCPURegisterAt(instr, index); } inline int64_t Int64FromLocation(Location location) { return Int64FromConstant(location.GetConstant()); } inline vixl::aarch64::Operand OperandFrom(Location location, DataType::Type type) { if (location.IsRegister()) { return vixl::aarch64::Operand(RegisterFrom(location, type)); } else { return vixl::aarch64::Operand(Int64FromLocation(location)); } } inline vixl::aarch64::Operand InputOperandAt(HInstruction* instr, int input_index) { return OperandFrom(instr->GetLocations()->InAt(input_index), instr->InputAt(input_index)->GetType()); } inline vixl::aarch64::MemOperand StackOperandFrom(Location location) { return vixl::aarch64::MemOperand(vixl::aarch64::sp, location.GetStackIndex()); } inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base, size_t offset = 0) { // A heap reference must be 32bit, so fit in a W register. DCHECK(base.IsW()); return vixl::aarch64::MemOperand(base.X(), offset); } inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base, const vixl::aarch64::Register& regoffset, vixl::aarch64::Shift shift = vixl::aarch64::LSL, unsigned shift_amount = 0) { // A heap reference must be 32bit, so fit in a W register. DCHECK(base.IsW()); return vixl::aarch64::MemOperand(base.X(), regoffset, shift, shift_amount); } inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base, Offset offset) { return HeapOperand(base, offset.SizeValue()); } inline vixl::aarch64::MemOperand HeapOperandFrom(Location location, Offset offset) { return HeapOperand(RegisterFrom(location, DataType::Type::kReference), offset); } inline Location LocationFrom(const vixl::aarch64::Register& reg) { return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.GetCode())); } inline Location LocationFrom(const vixl::aarch64::VRegister& fpreg) { return Location::FpuRegisterLocation(fpreg.GetCode()); } inline vixl::aarch64::Operand OperandFromMemOperand( const vixl::aarch64::MemOperand& mem_op) { if (mem_op.IsImmediateOffset()) { return vixl::aarch64::Operand(mem_op.GetOffset()); } else { DCHECK(mem_op.IsRegisterOffset()); if (mem_op.GetExtend() != vixl::aarch64::NO_EXTEND) { return vixl::aarch64::Operand(mem_op.GetRegisterOffset(), mem_op.GetExtend(), mem_op.GetShiftAmount()); } else if (mem_op.GetShift() != vixl::aarch64::NO_SHIFT) { return vixl::aarch64::Operand(mem_op.GetRegisterOffset(), mem_op.GetShift(), mem_op.GetShiftAmount()); } else { LOG(FATAL) << "Should not reach here"; UNREACHABLE(); } } } inline bool AddSubCanEncodeAsImmediate(int64_t value) { // If `value` does not fit but `-value` does, VIXL will automatically use // the 'opposite' instruction. return vixl::aarch64::Assembler::IsImmAddSub(value) || vixl::aarch64::Assembler::IsImmAddSub(-value); } inline bool Arm64CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) { int64_t value = CodeGenerator::GetInt64ValueOf(constant); // TODO: Improve this when IsSIMDConstantEncodable method is implemented in VIXL. if (instr->IsVecReplicateScalar()) { if (constant->IsLongConstant()) { return false; } else if (constant->IsFloatConstant()) { return vixl::aarch64::Assembler::IsImmFP32(constant->AsFloatConstant()->GetValue()); } else if (constant->IsDoubleConstant()) { return vixl::aarch64::Assembler::IsImmFP64(constant->AsDoubleConstant()->GetValue()); } return IsUint<8>(value); } // Code generation for Min/Max: // Cmp left_op, right_op // Csel dst, left_op, right_op, cond if (instr->IsMin() || instr->IsMax()) { if (constant->GetUses().HasExactlyOneElement()) { // If value can be encoded as immediate for the Cmp, then let VIXL handle // the constant generation for the Csel. return AddSubCanEncodeAsImmediate(value); } // These values are encodable as immediates for Cmp and VIXL will use csinc and csinv // with the zr register as right_op, hence no constant generation is required. return constant->IsZeroBitPattern() || constant->IsOne() || constant->IsMinusOne(); } // For single uses we let VIXL handle the constant generation since it will // use registers that are not managed by the register allocator (wip0, wip1). if (constant->GetUses().HasExactlyOneElement()) { return true; } // Our code generator ensures shift distances are within an encodable range. if (instr->IsRor()) { return true; } if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) { // Uses logical operations. return vixl::aarch64::Assembler::IsImmLogical(value, vixl::aarch64::kXRegSize); } else if (instr->IsNeg()) { // Uses mov -immediate. return vixl::aarch64::Assembler::IsImmMovn(value, vixl::aarch64::kXRegSize); } else { DCHECK(instr->IsAdd() || instr->IsIntermediateAddress() || instr->IsBoundsCheck() || instr->IsCompare() || instr->IsCondition() || instr->IsSub()) << instr->DebugName(); // Uses aliases of ADD/SUB instructions. return AddSubCanEncodeAsImmediate(value); } } inline Location ARM64EncodableConstantOrRegister(HInstruction* constant, HInstruction* instr) { if (constant->IsConstant() && Arm64CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) { return Location::ConstantLocation(constant->AsConstant()); } return Location::RequiresRegister(); } // Check if registers in art register set have the same register code in vixl. If the register // codes are same, we can initialize vixl register list simply by the register masks. Currently, // only SP/WSP and ZXR/WZR codes are different between art and vixl. // Note: This function is only used for debug checks. inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers, size_t num_core, uint32_t art_fpu_registers, size_t num_fpu) { // The register masks won't work if the number of register is larger than 32. DCHECK_GE(sizeof(art_core_registers) * 8, num_core); DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu); for (size_t art_reg_code = 0; art_reg_code < num_core; ++art_reg_code) { if (RegisterSet::Contains(art_core_registers, art_reg_code)) { if (art_reg_code != static_cast(VIXLRegCodeFromART(art_reg_code))) { return false; } } } // There is no register code translation for float registers. return true; } inline vixl::aarch64::Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) { switch (op_kind) { case HDataProcWithShifterOp::kASR: return vixl::aarch64::ASR; case HDataProcWithShifterOp::kLSL: return vixl::aarch64::LSL; case HDataProcWithShifterOp::kLSR: return vixl::aarch64::LSR; default: LOG(FATAL) << "Unexpected op kind " << op_kind; UNREACHABLE(); return vixl::aarch64::NO_SHIFT; } } inline vixl::aarch64::Extend ExtendFromOpKind(HDataProcWithShifterOp::OpKind op_kind) { switch (op_kind) { case HDataProcWithShifterOp::kUXTB: return vixl::aarch64::UXTB; case HDataProcWithShifterOp::kUXTH: return vixl::aarch64::UXTH; case HDataProcWithShifterOp::kUXTW: return vixl::aarch64::UXTW; case HDataProcWithShifterOp::kSXTB: return vixl::aarch64::SXTB; case HDataProcWithShifterOp::kSXTH: return vixl::aarch64::SXTH; case HDataProcWithShifterOp::kSXTW: return vixl::aarch64::SXTW; default: LOG(FATAL) << "Unexpected op kind " << op_kind; UNREACHABLE(); return vixl::aarch64::NO_EXTEND; } } inline bool ShifterOperandSupportsExtension(HInstruction* instruction) { DCHECK(HasShifterOperand(instruction, InstructionSet::kArm64)); // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg` // does *not* support extension. This is because the `extended register` form // of the `sub` instruction interprets the left register with code 31 as the // stack pointer and not the zero register. (So does the `immediate` form.) In // the other form `shifted register, the register with code 31 is interpreted // as the zero register. return instruction->IsAdd() || instruction->IsSub(); } inline bool IsConstantZeroBitPattern(const HInstruction* instruction) { return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern(); } } // namespace helpers } // namespace arm64 } // namespace art #endif // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_