/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/arena_allocator.h" #include "builder.h" #include "dex/dex_instruction.h" #include "nodes.h" #include "optimizing_unit_test.h" #include "gtest/gtest.h" namespace art { class OptimizerTest : public OptimizingUnitTest { protected: void TestCode(const std::vector& data, const uint32_t* blocks, size_t blocks_length); }; void OptimizerTest::TestCode(const std::vector& data, const uint32_t* blocks, size_t blocks_length) { HGraph* graph = CreateCFG(data); ASSERT_EQ(graph->GetBlocks().size(), blocks_length); for (size_t i = 0, e = blocks_length; i < e; ++i) { if (blocks[i] == kInvalidBlockId) { if (graph->GetBlocks()[i] == nullptr) { // Dead block. } else { // Only the entry block has no dominator. ASSERT_EQ(nullptr, graph->GetBlocks()[i]->GetDominator()); ASSERT_TRUE(graph->GetBlocks()[i]->IsEntryBlock()); } } else { ASSERT_NE(nullptr, graph->GetBlocks()[i]->GetDominator()); ASSERT_EQ(blocks[i], graph->GetBlocks()[i]->GetDominator()->GetBlockId()); } } } TEST_F(OptimizerTest, ReturnVoid) { const std::vector data = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID); // Block number 1 const uint32_t dominators[] = { kInvalidBlockId, 0, 1 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG1) { const std::vector data = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, // Block number 1 Instruction::RETURN_VOID); // Block number 2 const uint32_t dominators[] = { kInvalidBlockId, 0, 1, 2 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG2) { const std::vector data = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, // Block number 1 Instruction::GOTO | 0x100, // Block number 2 Instruction::RETURN_VOID); // Block number 3 const uint32_t dominators[] = { kInvalidBlockId, 0, 1, 2, 3 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG3) { const std::vector data1 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x200, // Block number 1 Instruction::RETURN_VOID, // Block number 2 Instruction::GOTO | 0xFF00); // Block number 3 const uint32_t dominators[] = { kInvalidBlockId, 0, 3, 1, 2 }; TestCode(data1, dominators, sizeof(dominators) / sizeof(int)); const std::vector data2 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_16, 3, Instruction::RETURN_VOID, Instruction::GOTO_16, 0xFFFF); TestCode(data2, dominators, sizeof(dominators) / sizeof(int)); const std::vector data3 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 4, 0, Instruction::RETURN_VOID, Instruction::GOTO_32, 0xFFFF, 0xFFFF); TestCode(data3, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG4) { const std::vector data1 = ZERO_REGISTER_CODE_ITEM( Instruction::NOP, Instruction::GOTO | 0xFF00); const uint32_t dominators[] = { kInvalidBlockId, 3, kInvalidBlockId, 0 }; TestCode(data1, dominators, sizeof(dominators) / sizeof(int)); const std::vector data2 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 0, 0); TestCode(data2, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG5) { const std::vector data = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID, // Block number 1 Instruction::GOTO | 0x100, // Dead block Instruction::GOTO | 0xFE00); // Block number 2 const uint32_t dominators[] = { kInvalidBlockId, 0, kInvalidBlockId, 1 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG6) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); const uint32_t dominators[] = { kInvalidBlockId, 0, 1, 1, 3, 1, // Synthesized block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG7) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, // Block number 1 Instruction::GOTO | 0x100, // Block number 2 Instruction::GOTO | 0xFF00); // Block number 3 const uint32_t dominators[] = { kInvalidBlockId, 0, 1, 1, kInvalidBlockId, // exit block is not dominated by any block due to the spin loop. 1, // block to avoid critical edge. 1 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG8) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, // Block number 1 Instruction::GOTO | 0x200, // Block number 2 Instruction::GOTO | 0x100, // Block number 3 Instruction::GOTO | 0xFF00); // Block number 4 const uint32_t dominators[] = { kInvalidBlockId, 0, 1, 1, 1, kInvalidBlockId, // exit block is not dominated by any block due to the spin loop. 1 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG9) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, // Block number 1 Instruction::GOTO | 0x200, // Block number 2 Instruction::GOTO | 0x100, // Block number 3 Instruction::GOTO | 0xFE00); // Block number 4 const uint32_t dominators[] = { kInvalidBlockId, 0, 1, 1, 1, kInvalidBlockId, // exit block is not dominated by any block due to the spin loop. 1 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST_F(OptimizerTest, CFG10) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 6, // Block number 1 Instruction::IF_EQ, 3, // Block number 2 Instruction::GOTO | 0x100, // Block number 3 Instruction::GOTO | 0x100, // Block number 4 Instruction::RETURN_VOID); // Block number 5 const uint32_t dominators[] = { kInvalidBlockId, 0, 1, 2, 2, 1, 5, // Block number 5 dominates exit block 1, // block to avoid critical edge. 2 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } } // namespace art