/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "loop_analysis.h" #include "base/bit_vector-inl.h" #include "induction_var_range.h" namespace art { void LoopAnalysis::CalculateLoopBasicProperties(HLoopInformation* loop_info, LoopAnalysisInfo* analysis_results, int64_t trip_count) { analysis_results->trip_count_ = trip_count; for (HBlocksInLoopIterator block_it(*loop_info); !block_it.Done(); block_it.Advance()) { HBasicBlock* block = block_it.Current(); // Check whether one of the successor is loop exit. for (HBasicBlock* successor : block->GetSuccessors()) { if (!loop_info->Contains(*successor)) { analysis_results->exits_num_++; // We track number of invariant loop exits which correspond to HIf instruction and // can be eliminated by loop peeling; other control flow instruction are ignored and will // not cause loop peeling to happen as they either cannot be inside a loop, or by // definition cannot be loop exits (unconditional instructions), or are not beneficial for // the optimization. HIf* hif = block->GetLastInstruction()->AsIf(); if (hif != nullptr && !loop_info->Contains(*hif->InputAt(0)->GetBlock())) { analysis_results->invariant_exits_num_++; } } } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); if (it.Current()->GetType() == DataType::Type::kInt64) { analysis_results->has_long_type_instructions_ = true; } if (MakesScalarPeelingUnrollingNonBeneficial(instruction)) { analysis_results->has_instructions_preventing_scalar_peeling_ = true; analysis_results->has_instructions_preventing_scalar_unrolling_ = true; } analysis_results->instr_num_++; } analysis_results->bb_num_++; } } int64_t LoopAnalysis::GetLoopTripCount(HLoopInformation* loop_info, const InductionVarRange* induction_range) { int64_t trip_count; if (!induction_range->HasKnownTripCount(loop_info, &trip_count)) { trip_count = LoopAnalysisInfo::kUnknownTripCount; } return trip_count; } // Default implementation of loop helper; used for all targets unless a custom implementation // is provided. Enables scalar loop peeling and unrolling with the most conservative heuristics. class ArchDefaultLoopHelper : public ArchNoOptsLoopHelper { public: // Scalar loop unrolling parameters and heuristics. // // Maximum possible unrolling factor. static constexpr uint32_t kScalarMaxUnrollFactor = 2; // Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled. static constexpr uint32_t kScalarHeuristicMaxBodySizeInstr = 17; // Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled. static constexpr uint32_t kScalarHeuristicMaxBodySizeBlocks = 6; // Maximum number of instructions to be created as a result of full unrolling. static constexpr uint32_t kScalarHeuristicFullyUnrolledMaxInstrThreshold = 35; bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* analysis_info) const override { return analysis_info->HasLongTypeInstructions() || IsLoopTooBig(analysis_info, kScalarHeuristicMaxBodySizeInstr, kScalarHeuristicMaxBodySizeBlocks); } uint32_t GetScalarUnrollingFactor(const LoopAnalysisInfo* analysis_info) const override { int64_t trip_count = analysis_info->GetTripCount(); // Unroll only loops with known trip count. if (trip_count == LoopAnalysisInfo::kUnknownTripCount) { return LoopAnalysisInfo::kNoUnrollingFactor; } uint32_t desired_unrolling_factor = kScalarMaxUnrollFactor; if (trip_count < desired_unrolling_factor || trip_count % desired_unrolling_factor != 0) { return LoopAnalysisInfo::kNoUnrollingFactor; } return desired_unrolling_factor; } bool IsLoopPeelingEnabled() const override { return true; } bool IsFullUnrollingBeneficial(LoopAnalysisInfo* analysis_info) const override { int64_t trip_count = analysis_info->GetTripCount(); // We assume that trip count is known. DCHECK_NE(trip_count, LoopAnalysisInfo::kUnknownTripCount); size_t instr_num = analysis_info->GetNumberOfInstructions(); return (trip_count * instr_num < kScalarHeuristicFullyUnrolledMaxInstrThreshold); } protected: bool IsLoopTooBig(LoopAnalysisInfo* loop_analysis_info, size_t instr_threshold, size_t bb_threshold) const { size_t instr_num = loop_analysis_info->GetNumberOfInstructions(); size_t bb_num = loop_analysis_info->GetNumberOfBasicBlocks(); return (instr_num >= instr_threshold || bb_num >= bb_threshold); } }; // Custom implementation of loop helper for arm64 target. Enables heuristics for scalar loop // peeling and unrolling and supports SIMD loop unrolling. class Arm64LoopHelper : public ArchDefaultLoopHelper { public: // SIMD loop unrolling parameters and heuristics. // // Maximum possible unrolling factor. static constexpr uint32_t kArm64SimdMaxUnrollFactor = 8; // Loop's maximum instruction count. Loops with higher count will not be unrolled. static constexpr uint32_t kArm64SimdHeuristicMaxBodySizeInstr = 50; // Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled. static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeInstr = 40; // Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled. static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeBlocks = 8; bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* loop_analysis_info) const override { return IsLoopTooBig(loop_analysis_info, kArm64ScalarHeuristicMaxBodySizeInstr, kArm64ScalarHeuristicMaxBodySizeBlocks); } uint32_t GetSIMDUnrollingFactor(HBasicBlock* block, int64_t trip_count, uint32_t max_peel, uint32_t vector_length) const override { // Don't unroll with insufficient iterations. // TODO: Unroll loops with unknown trip count. DCHECK_NE(vector_length, 0u); if (trip_count < (2 * vector_length + max_peel)) { return LoopAnalysisInfo::kNoUnrollingFactor; } // Don't unroll for large loop body size. uint32_t instruction_count = block->GetInstructions().CountSize(); if (instruction_count >= kArm64SimdHeuristicMaxBodySizeInstr) { return LoopAnalysisInfo::kNoUnrollingFactor; } // Find a beneficial unroll factor with the following restrictions: // - At least one iteration of the transformed loop should be executed. // - The loop body shouldn't be "too big" (heuristic). uint32_t uf1 = kArm64SimdHeuristicMaxBodySizeInstr / instruction_count; uint32_t uf2 = (trip_count - max_peel) / vector_length; uint32_t unroll_factor = TruncToPowerOfTwo(std::min({uf1, uf2, kArm64SimdMaxUnrollFactor})); DCHECK_GE(unroll_factor, 1u); return unroll_factor; } }; // Custom implementation of loop helper for X86_64 target. Enables heuristics for scalar loop // peeling and unrolling and supports SIMD loop unrolling. class X86_64LoopHelper : public ArchDefaultLoopHelper { // mapping of machine instruction count for most used IR instructions // Few IRs generate different number of instructions based on input and result type. // We checked top java apps, benchmarks and used the most generated instruction count. uint32_t GetMachineInstructionCount(HInstruction* inst) const { switch (inst->GetKind()) { case HInstruction::InstructionKind::kAbs: return 3; case HInstruction::InstructionKind::kAdd: return 1; case HInstruction::InstructionKind::kAnd: return 1; case HInstruction::InstructionKind::kArrayLength: return 1; case HInstruction::InstructionKind::kArrayGet: return 1; case HInstruction::InstructionKind::kArraySet: return 1; case HInstruction::InstructionKind::kBoundsCheck: return 2; case HInstruction::InstructionKind::kCheckCast: return 9; case HInstruction::InstructionKind::kDiv: return 8; case HInstruction::InstructionKind::kDivZeroCheck: return 2; case HInstruction::InstructionKind::kEqual: return 3; case HInstruction::InstructionKind::kGreaterThan: return 3; case HInstruction::InstructionKind::kGreaterThanOrEqual: return 3; case HInstruction::InstructionKind::kIf: return 2; case HInstruction::InstructionKind::kInstanceFieldGet: return 2; case HInstruction::InstructionKind::kInstanceFieldSet: return 1; case HInstruction::InstructionKind::kLessThan: return 3; case HInstruction::InstructionKind::kLessThanOrEqual: return 3; case HInstruction::InstructionKind::kMax: return 2; case HInstruction::InstructionKind::kMin: return 2; case HInstruction::InstructionKind::kMul: return 1; case HInstruction::InstructionKind::kNotEqual: return 3; case HInstruction::InstructionKind::kOr: return 1; case HInstruction::InstructionKind::kRem: return 11; case HInstruction::InstructionKind::kSelect: return 2; case HInstruction::InstructionKind::kShl: return 1; case HInstruction::InstructionKind::kShr: return 1; case HInstruction::InstructionKind::kSub: return 1; case HInstruction::InstructionKind::kTypeConversion: return 1; case HInstruction::InstructionKind::kUShr: return 1; case HInstruction::InstructionKind::kVecReplicateScalar: return 2; case HInstruction::InstructionKind::kVecExtractScalar: return 1; case HInstruction::InstructionKind::kVecReduce: return 4; case HInstruction::InstructionKind::kVecNeg: return 2; case HInstruction::InstructionKind::kVecAbs: return 4; case HInstruction::InstructionKind::kVecNot: return 3; case HInstruction::InstructionKind::kVecAdd: return 1; case HInstruction::InstructionKind::kVecSub: return 1; case HInstruction::InstructionKind::kVecMul: return 1; case HInstruction::InstructionKind::kVecDiv: return 1; case HInstruction::InstructionKind::kVecMax: return 1; case HInstruction::InstructionKind::kVecMin: return 1; case HInstruction::InstructionKind::kVecOr: return 1; case HInstruction::InstructionKind::kVecXor: return 1; case HInstruction::InstructionKind::kVecShl: return 1; case HInstruction::InstructionKind::kVecShr: return 1; case HInstruction::InstructionKind::kVecLoad: return 1; case HInstruction::InstructionKind::kVecStore: return 1; case HInstruction::InstructionKind::kXor: return 1; default: return 1; } } // Maximum possible unrolling factor. static constexpr uint32_t kX86_64MaxUnrollFactor = 2; // pow(2,2) = 4 // According to IntelĀ® 64 and IA-32 Architectures Optimization Reference Manual, // avoid excessive loop unrolling to ensure LSD (loop stream decoder) is operating efficiently. // This variable takes care that unrolled loop instructions should not exceed LSD size. // For Intel Atom processors (silvermont & goldmont), LSD size is 28 // TODO - identify architecture and LSD size at runtime static constexpr uint32_t kX86_64UnrolledMaxBodySizeInstr = 28; // Loop's maximum basic block count. Loops with higher count will not be partial // unrolled (unknown iterations). static constexpr uint32_t kX86_64UnknownIterMaxBodySizeBlocks = 2; uint32_t GetUnrollingFactor(HLoopInformation* loop_info, HBasicBlock* header) const; public: uint32_t GetSIMDUnrollingFactor(HBasicBlock* block, int64_t trip_count, uint32_t max_peel, uint32_t vector_length) const override { DCHECK_NE(vector_length, 0u); HLoopInformation* loop_info = block->GetLoopInformation(); DCHECK(loop_info); HBasicBlock* header = loop_info->GetHeader(); DCHECK(header); uint32_t unroll_factor = 0; if ((trip_count == 0) || (trip_count == LoopAnalysisInfo::kUnknownTripCount)) { // Don't unroll for large loop body size. unroll_factor = GetUnrollingFactor(loop_info, header); if (unroll_factor <= 1) { return LoopAnalysisInfo::kNoUnrollingFactor; } } else { // Don't unroll with insufficient iterations. if (trip_count < (2 * vector_length + max_peel)) { return LoopAnalysisInfo::kNoUnrollingFactor; } // Don't unroll for large loop body size. uint32_t unroll_cnt = GetUnrollingFactor(loop_info, header); if (unroll_cnt <= 1) { return LoopAnalysisInfo::kNoUnrollingFactor; } // Find a beneficial unroll factor with the following restrictions: // - At least one iteration of the transformed loop should be executed. // - The loop body shouldn't be "too big" (heuristic). uint32_t uf2 = (trip_count - max_peel) / vector_length; unroll_factor = TruncToPowerOfTwo(std::min(uf2, unroll_cnt)); DCHECK_GE(unroll_factor, 1u); } return unroll_factor; } }; uint32_t X86_64LoopHelper::GetUnrollingFactor(HLoopInformation* loop_info, HBasicBlock* header) const { uint32_t num_inst = 0, num_inst_header = 0, num_inst_loop_body = 0; for (HBlocksInLoopIterator it(*loop_info); !it.Done(); it.Advance()) { HBasicBlock* block = it.Current(); DCHECK(block); num_inst = 0; for (HInstructionIterator it1(block->GetInstructions()); !it1.Done(); it1.Advance()) { HInstruction* inst = it1.Current(); DCHECK(inst); // SuspendCheck inside loop is handled with Goto. // Ignoring SuspendCheck & Goto as partially unrolled loop body will have only one Goto. // Instruction count for Goto is being handled during unroll factor calculation below. if (inst->IsSuspendCheck() || inst->IsGoto()) { continue; } num_inst += GetMachineInstructionCount(inst); } if (block == header) { num_inst_header = num_inst; } else { num_inst_loop_body += num_inst; } } // Calculate actual unroll factor. uint32_t unrolling_factor = kX86_64MaxUnrollFactor; uint32_t unrolling_inst = kX86_64UnrolledMaxBodySizeInstr; // "-3" for one Goto instruction. uint32_t desired_size = unrolling_inst - num_inst_header - 3; if (desired_size < (2 * num_inst_loop_body)) { return 1; } while (unrolling_factor > 0) { if ((desired_size >> unrolling_factor) >= num_inst_loop_body) { break; } unrolling_factor--; } return (1 << unrolling_factor); } ArchNoOptsLoopHelper* ArchNoOptsLoopHelper::Create(InstructionSet isa, ArenaAllocator* allocator) { switch (isa) { case InstructionSet::kArm64: { return new (allocator) Arm64LoopHelper; } case InstructionSet::kX86_64: { return new (allocator) X86_64LoopHelper; } default: { return new (allocator) ArchDefaultLoopHelper; } } } } // namespace art