/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "scheduler.h" #include "base/arena_allocator.h" #include "builder.h" #include "codegen_test_utils.h" #include "common_compiler_test.h" #include "load_store_analysis.h" #include "nodes.h" #include "optimizing_unit_test.h" #include "pc_relative_fixups_x86.h" #include "register_allocator.h" #ifdef ART_ENABLE_CODEGEN_arm64 #include "scheduler_arm64.h" #endif #ifdef ART_ENABLE_CODEGEN_arm #include "scheduler_arm.h" #endif namespace art { // Return all combinations of ISA and code generator that are executable on // hardware, or on simulator, and that we'd like to test. static ::std::vector GetTargetConfigs() { ::std::vector v; ::std::vector test_config_candidates = { #ifdef ART_ENABLE_CODEGEN_arm // TODO: Should't this be `kThumb2` instead of `kArm` here? CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32), #endif #ifdef ART_ENABLE_CODEGEN_arm64 CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64), #endif #ifdef ART_ENABLE_CODEGEN_x86 CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86), #endif #ifdef ART_ENABLE_CODEGEN_x86_64 CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64), #endif }; for (const CodegenTargetConfig& test_config : test_config_candidates) { if (CanExecute(test_config.GetInstructionSet())) { v.push_back(test_config); } } return v; } class SchedulerTest : public OptimizingUnitTest { public: SchedulerTest() : graph_(CreateGraph()) { } // Build scheduling graph, and run target specific scheduling on it. void TestBuildDependencyGraphAndSchedule(HScheduler* scheduler) { HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_); HBasicBlock* block1 = new (GetAllocator()) HBasicBlock(graph_); graph_->AddBlock(entry); graph_->AddBlock(block1); graph_->SetEntryBlock(entry); // entry: // array ParameterValue // c1 IntConstant // c2 IntConstant // block1: // add1 Add [c1, c2] // add2 Add [add1, c2] // mul Mul [add1, add2] // div_check DivZeroCheck [add2] (env: add2, mul) // div Div [add1, div_check] // array_get1 ArrayGet [array, add1] // array_set1 ArraySet [array, add1, add2] // array_get2 ArrayGet [array, add1] // array_set2 ArraySet [array, add1, add2] HInstruction* array = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference); HInstruction* c1 = graph_->GetIntConstant(1); HInstruction* c2 = graph_->GetIntConstant(10); HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, c1, c2); HInstruction* add2 = new (GetAllocator()) HAdd(DataType::Type::kInt32, add1, c2); HInstruction* mul = new (GetAllocator()) HMul(DataType::Type::kInt32, add1, add2); HInstruction* div_check = new (GetAllocator()) HDivZeroCheck(add2, 0); HInstruction* div = new (GetAllocator()) HDiv(DataType::Type::kInt32, add1, div_check, 0); HInstruction* array_get1 = new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0); HInstruction* array_set1 = new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0); HInstruction* array_get2 = new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0); HInstruction* array_set2 = new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0); DCHECK(div_check->CanThrow()); entry->AddInstruction(array); HInstruction* block_instructions[] = {add1, add2, mul, div_check, div, array_get1, array_set1, array_get2, array_set2}; for (HInstruction* instr : block_instructions) { block1->AddInstruction(instr); } HEnvironment* environment = new (GetAllocator()) HEnvironment(GetAllocator(), 2, graph_->GetArtMethod(), 0, div_check); div_check->SetRawEnvironment(environment); environment->SetRawEnvAt(0, add2); add2->AddEnvUseAt(div_check->GetEnvironment(), 0); environment->SetRawEnvAt(1, mul); mul->AddEnvUseAt(div_check->GetEnvironment(), 1); TestSchedulingGraph scheduling_graph(GetScopedAllocator()); // Instructions must be inserted in reverse order into the scheduling graph. for (HInstruction* instr : ReverseRange(block_instructions)) { scheduling_graph.AddNode(instr); } // Should not have dependencies cross basic blocks. ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, c1)); ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add2, c2)); // Define-use dependency. ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(add2, add1)); ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, add2)); ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div_check, add2)); ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(div_check, add1)); ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div, div_check)); ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add1)); ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add2)); // Read and write dependencies ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, array_get1)); ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_get2)); ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_get2, array_set1)); // Unnecessary dependency is not stored, we rely on transitive dependencies. // The array_set2 -> array_get2 -> array_set1 dependencies are tested above. ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_set1)); // Env dependency. ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(div_check, mul)); ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(mul, div_check)); // CanThrow. ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, div_check)); // Exercise the code path of target specific scheduler and SchedulingLatencyVisitor. scheduler->Schedule(graph_); } void CompileWithRandomSchedulerAndRun(const std::vector& data, bool has_result, int expected) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { HGraph* graph = CreateCFG(data); // Schedule the graph randomly. HInstructionScheduling scheduling(graph, target_config.GetInstructionSet()); scheduling.Run(/*only_optimize_loop_blocks*/ false, /*schedule_randomly*/ true); std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); RunCode(target_config, *compiler_options, graph, [](HGraph* graph_arg) { RemoveSuspendChecks(graph_arg); }, has_result, expected); } } void TestDependencyGraphOnAliasingArrayAccesses(HScheduler* scheduler) { HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_); graph_->AddBlock(entry); graph_->SetEntryBlock(entry); graph_->BuildDominatorTree(); HInstruction* arr = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference); HInstruction* i = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kInt32); HInstruction* j = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kInt32); HInstruction* object = new (GetAllocator()) HParameterValue(graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference); HInstruction* c0 = graph_->GetIntConstant(0); HInstruction* c1 = graph_->GetIntConstant(1); HInstruction* add0 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c0); HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c1); HInstruction* sub0 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c0); HInstruction* sub1 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c1); HInstruction* arr_set_0 = new (GetAllocator()) HArraySet(arr, c0, c0, DataType::Type::kInt32, 0); HInstruction* arr_set_1 = new (GetAllocator()) HArraySet(arr, c1, c0, DataType::Type::kInt32, 0); HInstruction* arr_set_i = new (GetAllocator()) HArraySet(arr, i, c0, DataType::Type::kInt32, 0); HInstruction* arr_set_add0 = new (GetAllocator()) HArraySet(arr, add0, c0, DataType::Type::kInt32, 0); HInstruction* arr_set_add1 = new (GetAllocator()) HArraySet(arr, add1, c0, DataType::Type::kInt32, 0); HInstruction* arr_set_sub0 = new (GetAllocator()) HArraySet(arr, sub0, c0, DataType::Type::kInt32, 0); HInstruction* arr_set_sub1 = new (GetAllocator()) HArraySet(arr, sub1, c0, DataType::Type::kInt32, 0); HInstruction* arr_set_j = new (GetAllocator()) HArraySet(arr, j, c0, DataType::Type::kInt32, 0); HInstanceFieldSet* set_field10 = new (GetAllocator()) HInstanceFieldSet(object, c1, nullptr, DataType::Type::kInt32, MemberOffset(10), false, kUnknownFieldIndex, kUnknownClassDefIndex, graph_->GetDexFile(), 0); HInstruction* block_instructions[] = {arr, i, j, object, add0, add1, sub0, sub1, arr_set_0, arr_set_1, arr_set_i, arr_set_add0, arr_set_add1, arr_set_sub0, arr_set_sub1, arr_set_j, set_field10}; for (HInstruction* instr : block_instructions) { entry->AddInstruction(instr); } HeapLocationCollector heap_location_collector(graph_, GetScopedAllocator()); heap_location_collector.VisitBasicBlock(entry); heap_location_collector.BuildAliasingMatrix(); TestSchedulingGraph scheduling_graph(GetScopedAllocator(), &heap_location_collector); for (HInstruction* instr : ReverseRange(block_instructions)) { // Build scheduling graph with memory access aliasing information // from LSA/heap_location_collector. scheduling_graph.AddNode(instr); } // LSA/HeapLocationCollector should see those ArraySet instructions. ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 9U); ASSERT_TRUE(heap_location_collector.HasHeapStores()); // Test queries on HeapLocationCollector's aliasing matrix after load store analysis. // HeapLocationCollector and SchedulingGraph should report consistent relationships. size_t loc1 = HeapLocationCollector::kHeapLocationNotFound; size_t loc2 = HeapLocationCollector::kHeapLocationNotFound; // Test side effect dependency: array[0] and array[1] loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0); loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_1); ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2)); ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_1, arr_set_0)); // Test side effect dependency based on LSA analysis: array[i] and array[j] loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_j); ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2)); // Unnecessary dependency is not stored, we rely on transitive dependencies. // The arr_set_j -> arr_set_sub0 -> arr_set_add0 -> arr_set_i dependencies are tested below. ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i)); // Test side effect dependency based on LSA analysis: array[i] and array[i+0] loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add0); ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2)); ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_add0, arr_set_i)); // Test side effect dependency based on LSA analysis: array[i] and array[i-0] loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub0); ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2)); // Unnecessary dependency is not stored, we rely on transitive dependencies. ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_i)); // Instead, we rely on arr_set_sub0 -> arr_set_add0 -> arr_set_i, the latter is tested above. ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_add0)); // Test side effect dependency based on LSA analysis: array[i] and array[i+1] loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i); loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add1); ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2)); ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_add1, arr_set_i)); // Test side effect dependency based on LSA analysis: array[i+1] and array[i-1] loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_add1); loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub1); ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2)); ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub1, arr_set_add1)); // Test side effect dependency based on LSA analysis: array[j] and all others array accesses ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub0)); ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add1)); ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub1)); // Unnecessary dependencies are not stored, we rely on transitive dependencies. ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i)); ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add0)); // Test that ArraySet and FieldSet should not have side effect dependency ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_i, set_field10)); ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, set_field10)); // Exercise target specific scheduler and SchedulingLatencyVisitor. scheduler->Schedule(graph_); } class TestSchedulingGraph : public SchedulingGraph { public: explicit TestSchedulingGraph(ScopedArenaAllocator* allocator, const HeapLocationCollector *heap_location_collector = nullptr) : SchedulingGraph(allocator, heap_location_collector) {} bool HasImmediateDataDependency(const HInstruction* instruction, const HInstruction* other_instruction) const { const SchedulingNode* node = GetNode(instruction); const SchedulingNode* other = GetNode(other_instruction); if (node == nullptr || other == nullptr) { // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their // corresponding SchedulingNode in the graph, and tell whether there is a dependency. // Otherwise there is no dependency from SchedulingGraph's perspective, for example, // instruction and other_instruction are in different basic blocks. return false; } return node->HasDataDependency(other); } bool HasImmediateOtherDependency(const HInstruction* instruction, const HInstruction* other_instruction) const { const SchedulingNode* node = GetNode(instruction); const SchedulingNode* other = GetNode(other_instruction); if (node == nullptr || other == nullptr) { // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their // corresponding SchedulingNode in the graph, and tell whether there is a dependency. // Otherwise there is no dependency from SchedulingGraph's perspective, for example, // instruction and other_instruction are in different basic blocks. return false; } return node->HasOtherDependency(other); } }; HGraph* graph_; }; #if defined(ART_ENABLE_CODEGEN_arm64) TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM64) { CriticalPathSchedulingNodeSelector critical_path_selector; arm64::HSchedulerARM64 scheduler(&critical_path_selector); TestBuildDependencyGraphAndSchedule(&scheduler); } TEST_F(SchedulerTest, ArrayAccessAliasingARM64) { CriticalPathSchedulingNodeSelector critical_path_selector; arm64::HSchedulerARM64 scheduler(&critical_path_selector); TestDependencyGraphOnAliasingArrayAccesses(&scheduler); } #endif #if defined(ART_ENABLE_CODEGEN_arm) TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM) { CriticalPathSchedulingNodeSelector critical_path_selector; arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr); arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor); TestBuildDependencyGraphAndSchedule(&scheduler); } TEST_F(SchedulerTest, ArrayAccessAliasingARM) { CriticalPathSchedulingNodeSelector critical_path_selector; arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr); arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor); TestDependencyGraphOnAliasingArrayAccesses(&scheduler); } #endif TEST_F(SchedulerTest, RandomScheduling) { // // Java source: crafted code to make sure (random) scheduling should get correct result. // // int result = 0; // float fr = 10.0f; // for (int i = 1; i < 10; i++) { // fr ++; // int t1 = result >> i; // int t2 = result * i; // result = result + t1 - t2; // fr = fr / i; // result += (int)fr; // } // return result; // const std::vector data = SIX_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 << 12 | 2 << 8, // const/4 v2, #int 0 Instruction::CONST_HIGH16 | 0 << 8, 0x4120, // const/high16 v0, #float 10.0 // #41200000 Instruction::CONST_4 | 1 << 12 | 1 << 8, // const/4 v1, #int 1 Instruction::CONST_16 | 5 << 8, 0x000a, // const/16 v5, #int 10 Instruction::IF_GE | 5 << 12 | 1 << 8, 0x0014, // if-ge v1, v5, 001a // +0014 Instruction::CONST_HIGH16 | 5 << 8, 0x3f80, // const/high16 v5, #float 1.0 // #3f800000 Instruction::ADD_FLOAT_2ADDR | 5 << 12 | 0 << 8, // add-float/2addr v0, v5 Instruction::SHR_INT | 3 << 8, 1 << 8 | 2 , // shr-int v3, v2, v1 Instruction::MUL_INT | 4 << 8, 1 << 8 | 2, // mul-int v4, v2, v1 Instruction::ADD_INT | 5 << 8, 3 << 8 | 2, // add-int v5, v2, v3 Instruction::SUB_INT | 2 << 8, 4 << 8 | 5, // sub-int v2, v5, v4 Instruction::INT_TO_FLOAT | 1 << 12 | 5 << 8, // int-to-float v5, v1 Instruction::DIV_FLOAT_2ADDR | 5 << 12 | 0 << 8, // div-float/2addr v0, v5 Instruction::FLOAT_TO_INT | 0 << 12 | 5 << 8, // float-to-int v5, v0 Instruction::ADD_INT_2ADDR | 5 << 12 | 2 << 8, // add-int/2addr v2, v5 Instruction::ADD_INT_LIT8 | 1 << 8, 1 << 8 | 1, // add-int/lit8 v1, v1, #int 1 // #01 Instruction::GOTO | 0xeb << 8, // goto 0004 // -0015 Instruction::RETURN | 2 << 8); // return v2 constexpr int kNumberOfRuns = 10; for (int i = 0; i < kNumberOfRuns; ++i) { CompileWithRandomSchedulerAndRun(data, true, 138774); } } } // namespace art