/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "descriptors_names.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "base/macros.h" #include "dex/utf-inl.h" namespace art { using android::base::StringAppendF; void AppendPrettyDescriptor(const char* descriptor, std::string* result) { // Count the number of '['s to get the dimensionality. const char* c = descriptor; size_t dim = 0; while (*c == '[') { dim++; c++; } // Reference or primitive? if (*c == 'L') { // "[[La/b/C;" -> "a.b.C[][]". c++; // Skip the 'L'. } else { // "[[B" -> "byte[][]". // To make life easier, we make primitives look like unqualified // reference types. switch (*c) { case 'B': c = "byte;"; break; case 'C': c = "char;"; break; case 'D': c = "double;"; break; case 'F': c = "float;"; break; case 'I': c = "int;"; break; case 'J': c = "long;"; break; case 'S': c = "short;"; break; case 'Z': c = "boolean;"; break; case 'V': c = "void;"; break; // Used when decoding return types. default: result->append(descriptor); return; } } // At this point, 'c' is a string of the form "fully/qualified/Type;" // or "primitive;". Rewrite the type with '.' instead of '/': const char* p = c; while (*p != ';') { char ch = *p++; if (ch == '/') { ch = '.'; } result->push_back(ch); } // ...and replace the semicolon with 'dim' "[]" pairs: for (size_t i = 0; i < dim; ++i) { result->append("[]"); } } std::string PrettyDescriptor(const char* descriptor) { std::string result; AppendPrettyDescriptor(descriptor, &result); return result; } std::string GetJniShortName(const std::string& class_descriptor, const std::string& method) { // Remove the leading 'L' and trailing ';'... std::string class_name(class_descriptor); CHECK_EQ(class_name[0], 'L') << class_name; CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name; class_name.erase(0, 1); class_name.erase(class_name.size() - 1, 1); std::string short_name; short_name += "Java_"; short_name += MangleForJni(class_name); short_name += "_"; short_name += MangleForJni(method); return short_name; } // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules. std::string MangleForJni(const std::string& s) { std::string result; size_t char_count = CountModifiedUtf8Chars(s.c_str()); const char* cp = &s[0]; for (size_t i = 0; i < char_count; ++i) { uint32_t ch = GetUtf16FromUtf8(&cp); if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) { result.push_back(ch); } else if (ch == '.' || ch == '/') { result += "_"; } else if (ch == '_') { result += "_1"; } else if (ch == ';') { result += "_2"; } else if (ch == '[') { result += "_3"; } else { const uint16_t leading = GetLeadingUtf16Char(ch); const uint32_t trailing = GetTrailingUtf16Char(ch); StringAppendF(&result, "_0%04x", leading); if (trailing != 0) { StringAppendF(&result, "_0%04x", trailing); } } } return result; } std::string DotToDescriptor(const char* class_name) { std::string descriptor(class_name); std::replace(descriptor.begin(), descriptor.end(), '.', '/'); if (descriptor.length() > 0 && descriptor[0] != '[') { descriptor = "L" + descriptor + ";"; } return descriptor; } std::string DescriptorToDot(const char* descriptor) { size_t length = strlen(descriptor); if (length > 1) { if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { // Descriptors have the leading 'L' and trailing ';' stripped. std::string result(descriptor + 1, length - 2); std::replace(result.begin(), result.end(), '/', '.'); return result; } else { // For arrays the 'L' and ';' remain intact. std::string result(descriptor); std::replace(result.begin(), result.end(), '/', '.'); return result; } } // Do nothing for non-class/array descriptors. return descriptor; } std::string DescriptorToName(const char* descriptor) { size_t length = strlen(descriptor); if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { std::string result(descriptor + 1, length - 2); return result; } return descriptor; } // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii. static constexpr uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = { 0x00000000, // 00..1f low control characters; nothing valid 0x03ff2011, // 20..3f space, digits and symbols; valid: ' ', '0'..'9', '$', '-' 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_' 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z' }; // Helper for IsValidPartOfMemberNameUtf8(); do not call directly. COLD_ATTR static bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) { /* * It's a multibyte encoded character. Decode it and analyze. We * accept anything that isn't: * - an improperly encoded low value * - an improper surrogate pair * - an encoded '\0' * - a C1 control character U+0080..U+009f * - a format character U+200b..U+200f, U+2028..U+202e * - a special character U+fff0..U+ffff * Prior to DEX format version 040, we also excluded some of the Unicode * space characters: * - U+00a0, U+2000..U+200a, U+202f * This is all specified in the dex format document. */ const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr); const uint16_t leading = GetLeadingUtf16Char(pair); // We have a surrogate pair resulting from a valid 4 byte UTF sequence. // No further checks are necessary because 4 byte sequences span code // points [U+10000, U+1FFFFF], which are valid codepoints in a dex // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of // the surrogate halves are valid and well formed in this instance. if (GetTrailingUtf16Char(pair) != 0) { return true; } // We've encountered a one, two or three byte UTF-8 sequence. The // three byte UTF-8 sequence could be one half of a surrogate pair. switch (leading >> 8) { case 0x00: // It's in the range that has C1 control characters. return (leading >= 0x00a0); case 0xd8: case 0xd9: case 0xda: case 0xdb: { // We found a three byte sequence encoding one half of a surrogate. // Look for the other half. const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr); const uint16_t trailing = GetLeadingUtf16Char(pair2); return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff); } case 0xdc: case 0xdd: case 0xde: case 0xdf: // It's a trailing surrogate, which is not valid at this point. return false; case 0x20: case 0xff: // It's in the range that has format characters and specials. switch (leading & 0xfff8) { case 0x2008: return (leading <= 0x200a); case 0x2028: return (leading == 0x202f); case 0xfff0: case 0xfff8: return false; } return true; default: return true; } UNREACHABLE(); } /* Return whether the pointed-at modified-UTF-8 encoded character is * valid as part of a member name, updating the pointer to point past * the consumed character. This will consume two encoded UTF-16 code * points if the character is encoded as a surrogate pair. Also, if * this function returns false, then the given pointer may only have * been partially advanced. */ ALWAYS_INLINE static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) { uint8_t c = (uint8_t) **pUtf8Ptr; if (LIKELY(c <= 0x7f)) { // It's low-ascii, so check the table. uint32_t wordIdx = c >> 5; uint32_t bitIdx = c & 0x1f; (*pUtf8Ptr)++; return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0; } // It's a multibyte encoded character. Call a non-inline function // for the heavy lifting. return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr); } bool IsValidMemberName(const char* s) { bool angle_name = false; switch (*s) { case '\0': // The empty string is not a valid name. return false; case '<': angle_name = true; s++; break; } while (true) { switch (*s) { case '\0': return !angle_name; case '>': return angle_name && s[1] == '\0'; } if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } } } enum ClassNameType { kName, kDescriptor }; template static bool IsValidClassName(const char* s) { int arrayCount = 0; while (*s == '[') { arrayCount++; s++; } if (arrayCount > 255) { // Arrays may have no more than 255 dimensions. return false; } ClassNameType type = kType; if (type != kDescriptor && arrayCount != 0) { /* * If we're looking at an array of some sort, then it doesn't * matter if what is being asked for is a class name; the * format looks the same as a type descriptor in that case, so * treat it as such. */ type = kDescriptor; } if (type == kDescriptor) { /* * We are looking for a descriptor. Either validate it as a * single-character primitive type, or continue on to check the * embedded class name (bracketed by "L" and ";"). */ switch (*(s++)) { case 'B': case 'C': case 'D': case 'F': case 'I': case 'J': case 'S': case 'Z': // These are all single-character descriptors for primitive types. return (*s == '\0'); case 'V': // Non-array void is valid, but you can't have an array of void. return (arrayCount == 0) && (*s == '\0'); case 'L': // Class name: Break out and continue below. break; default: // Oddball descriptor character. return false; } } /* * We just consumed the 'L' that introduces a class name as part * of a type descriptor, or we are looking for an unadorned class * name. */ bool sepOrFirst = true; // first character or just encountered a separator. for (;;) { uint8_t c = (uint8_t) *s; switch (c) { case '\0': /* * Premature end for a type descriptor, but valid for * a class name as long as we haven't encountered an * empty component (including the degenerate case of * the empty string ""). */ return (type == kName) && !sepOrFirst; case ';': /* * Invalid character for a class name, but the * legitimate end of a type descriptor. In the latter * case, make sure that this is the end of the string * and that it doesn't end with an empty component * (including the degenerate case of "L;"). */ return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0'); case '/': case '.': if (c != kSeparator) { // The wrong separator character. return false; } if (sepOrFirst) { // Separator at start or two separators in a row. return false; } sepOrFirst = true; s++; break; default: if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } sepOrFirst = false; break; } } } bool IsValidBinaryClassName(const char* s) { return IsValidClassName(s); } bool IsValidJniClassName(const char* s) { return IsValidClassName(s); } bool IsValidDescriptor(const char* s) { return IsValidClassName(s); } std::string PrettyDescriptor(Primitive::Type type) { return PrettyDescriptor(Primitive::Descriptor(type)); } } // namespace art