/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "profile_compilation_info.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "android-base/file.h" #include "base/arena_allocator.h" #include "base/dumpable.h" #include "base/file_utils.h" #include "base/logging.h" // For VLOG. #include "base/malloc_arena_pool.h" #include "base/os.h" #include "base/safe_map.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "base/zip_archive.h" #include "dex/dex_file_loader.h" namespace art { const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' }; // Last profile version: merge profiles directly from the file without creating // profile_compilation_info object. All the profile line headers are now placed together // before corresponding method_encodings and class_ids. const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '1', '0', '\0' }; const uint8_t ProfileCompilationInfo::kProfileVersionForBootImage[] = { '0', '1', '2', '\0' }; static_assert(sizeof(ProfileCompilationInfo::kProfileVersion) == 4, "Invalid profile version size"); static_assert(sizeof(ProfileCompilationInfo::kProfileVersionForBootImage) == 4, "Invalid profile version size"); // The name of the profile entry in the dex metadata file. // DO NOT CHANGE THIS! (it's similar to classes.dex in the apk files). const char ProfileCompilationInfo::kDexMetadataProfileEntry[] = "primary.prof"; // A synthetic annotations that can be used to denote that no annotation should // be associated with the profile samples. We use the empty string for the package name // because that's an invalid package name and should never occur in practice. const ProfileCompilationInfo::ProfileSampleAnnotation ProfileCompilationInfo::ProfileSampleAnnotation::kNone = ProfileCompilationInfo::ProfileSampleAnnotation(""); static constexpr char kSampleMetadataSeparator = ':'; static constexpr uint16_t kMaxDexFileKeyLength = PATH_MAX; // Debug flag to ignore checksums when testing if a method or a class is present in the profile. // Used to facilitate testing profile guided compilation across a large number of apps // using the same test profile. static constexpr bool kDebugIgnoreChecksum = false; static constexpr uint8_t kIsMissingTypesEncoding = 6; static constexpr uint8_t kIsMegamorphicEncoding = 7; static_assert(sizeof(ProfileCompilationInfo::kIndividualInlineCacheSize) == sizeof(uint8_t), "InlineCache::kIndividualInlineCacheSize does not have the expect type size"); static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMegamorphicEncoding, "InlineCache::kIndividualInlineCacheSize is larger than expected"); static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMissingTypesEncoding, "InlineCache::kIndividualInlineCacheSize is larger than expected"); static constexpr uint32_t kSizeWarningThresholdBytes = 500000U; static constexpr uint32_t kSizeErrorThresholdBytes = 1500000U; static constexpr uint32_t kSizeWarningThresholdBootBytes = 25000000U; static constexpr uint32_t kSizeErrorThresholdBootBytes = 100000000U; static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) { return kDebugIgnoreChecksum || dex_file_checksum == checksum; } ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool, bool for_boot_image) : default_arena_pool_(), allocator_(custom_arena_pool), info_(allocator_.Adapter(kArenaAllocProfile)), profile_key_map_(std::less(), allocator_.Adapter(kArenaAllocProfile)) { memcpy(version_, for_boot_image ? kProfileVersionForBootImage : kProfileVersion, kProfileVersionSize); } ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool) : ProfileCompilationInfo(custom_arena_pool, /*for_boot_image=*/ false) { } ProfileCompilationInfo::ProfileCompilationInfo() : ProfileCompilationInfo(/*for_boot_image=*/ false) { } ProfileCompilationInfo::ProfileCompilationInfo(bool for_boot_image) : ProfileCompilationInfo(&default_arena_pool_, for_boot_image) { } ProfileCompilationInfo::~ProfileCompilationInfo() { VLOG(profiler) << Dumpable(allocator_.GetMemStats()); ClearData(); } void ProfileCompilationInfo::DexPcData::AddClass(uint16_t dex_profile_idx, const dex::TypeIndex& type_idx) { if (is_megamorphic || is_missing_types) { return; } // Perform an explicit lookup for the type instead of directly emplacing the // element. We do this because emplace() allocates the node before doing the // lookup and if it then finds an identical element, it shall deallocate the // node. For Arena allocations, that's essentially a leak. ClassReference ref(dex_profile_idx, type_idx); auto it = classes.find(ref); if (it != classes.end()) { // The type index exists. return; } // Check if the adding the type will cause the cache to become megamorphic. if (classes.size() + 1 >= ProfileCompilationInfo::kIndividualInlineCacheSize) { is_megamorphic = true; classes.clear(); return; } // The type does not exist and the inline cache will not be megamorphic. classes.insert(ref); } // Transform the actual dex location into a key used to index the dex file in the profile. // See ProfileCompilationInfo#GetProfileDexFileBaseKey as well. std::string ProfileCompilationInfo::GetProfileDexFileAugmentedKey( const std::string& dex_location, const ProfileSampleAnnotation& annotation) { std::string base_key = GetProfileDexFileBaseKey(dex_location); return annotation == ProfileSampleAnnotation::kNone ? base_key : base_key + kSampleMetadataSeparator + annotation.GetOriginPackageName();; } // Transform the actual dex location into a base profile key (represented as relative paths). // Note: this is OK because we don't store profiles of different apps into the same file. // Apps with split apks don't cause trouble because each split has a different name and will not // collide with other entries. std::string ProfileCompilationInfo::GetProfileDexFileBaseKey(const std::string& dex_location) { DCHECK(!dex_location.empty()); size_t last_sep_index = dex_location.find_last_of('/'); if (last_sep_index == std::string::npos) { return dex_location; } else { DCHECK(last_sep_index < dex_location.size()); return dex_location.substr(last_sep_index + 1); } } std::string ProfileCompilationInfo::GetBaseKeyFromAugmentedKey( const std::string& profile_key) { size_t pos = profile_key.rfind(kSampleMetadataSeparator); return (pos == std::string::npos) ? profile_key : profile_key.substr(0, pos); } std::string ProfileCompilationInfo::MigrateAnnotationInfo( const std::string& base_key, const std::string& augmented_key) { size_t pos = augmented_key.rfind(kSampleMetadataSeparator); return (pos == std::string::npos) ? base_key : base_key + augmented_key.substr(pos); } ProfileCompilationInfo::ProfileSampleAnnotation ProfileCompilationInfo::GetAnnotationFromKey( const std::string& augmented_key) { size_t pos = augmented_key.rfind(kSampleMetadataSeparator); return (pos == std::string::npos) ? ProfileSampleAnnotation::kNone : ProfileSampleAnnotation(augmented_key.substr(pos + 1)); } bool ProfileCompilationInfo::AddMethods(const std::vector& methods, MethodHotness::Flag flags, const ProfileSampleAnnotation& annotation) { for (const ProfileMethodInfo& method : methods) { if (!AddMethod(method, flags, annotation)) { return false; } } return true; } bool ProfileCompilationInfo::MergeWith(const std::string& filename) { std::string error; #ifdef _WIN32 int flags = O_RDONLY; #else int flags = O_RDONLY | O_NOFOLLOW | O_CLOEXEC; #endif ScopedFlock profile_file = LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error); if (profile_file.get() == nullptr) { LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; return false; } int fd = profile_file->Fd(); ProfileLoadStatus status = LoadInternal(fd, &error); if (status == kProfileLoadSuccess) { return true; } LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error; return false; } bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) { ScopedTrace trace(__PRETTY_FUNCTION__); std::string error; if (!IsEmpty()) { return false; } #ifdef _WIN32 int flags = O_RDWR; #else int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC; #endif // There's no need to fsync profile data right away. We get many chances // to write it again in case something goes wrong. We can rely on a simple // close(), no sync, and let to the kernel decide when to write to disk. ScopedFlock profile_file = LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error); if (profile_file.get() == nullptr) { LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; return false; } int fd = profile_file->Fd(); ProfileLoadStatus status = LoadInternal(fd, &error); if (status == kProfileLoadSuccess) { return true; } if (clear_if_invalid && ((status == kProfileLoadVersionMismatch) || (status == kProfileLoadBadData))) { LOG(WARNING) << "Clearing bad or obsolete profile data from file " << filename << ": " << error; if (profile_file->ClearContent()) { return true; } else { PLOG(WARNING) << "Could not clear profile file: " << filename; return false; } } LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error; return false; } bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) { ScopedTrace trace(__PRETTY_FUNCTION__); std::string error; #ifdef _WIN32 int flags = O_WRONLY; #else int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC; #endif // There's no need to fsync profile data right away. We get many chances // to write it again in case something goes wrong. We can rely on a simple // close(), no sync, and let to the kernel decide when to write to disk. ScopedFlock profile_file = LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error); if (profile_file.get() == nullptr) { LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; return false; } int fd = profile_file->Fd(); // We need to clear the data because we don't support appending to the profiles yet. if (!profile_file->ClearContent()) { PLOG(WARNING) << "Could not clear profile file: " << filename; return false; } // This doesn't need locking because we are trying to lock the file for exclusive // access and fail immediately if we can't. bool result = Save(fd); if (result) { int64_t size = OS::GetFileSizeBytes(filename.c_str()); if (size != -1) { VLOG(profiler) << "Successfully saved profile info to " << filename << " Size: " << size; if (bytes_written != nullptr) { *bytes_written = static_cast(size); } } } else { VLOG(profiler) << "Failed to save profile info to " << filename; } return result; } // Returns true if all the bytes were successfully written to the file descriptor. static bool WriteBuffer(int fd, const uint8_t* buffer, size_t byte_count) { while (byte_count > 0) { int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count)); if (bytes_written == -1) { return false; } byte_count -= bytes_written; // Reduce the number of remaining bytes. buffer += bytes_written; // Move the buffer forward. } return true; } // Add the string bytes to the buffer. static void AddStringToBuffer(std::vector* buffer, const std::string& value) { buffer->insert(buffer->end(), value.begin(), value.end()); } // Insert each byte, from low to high into the buffer. template static void AddUintToBuffer(std::vector* buffer, T value) { for (size_t i = 0; i < sizeof(T); i++) { buffer->push_back((value >> (i * kBitsPerByte)) & 0xff); } } static constexpr size_t kLineHeaderSize = 2 * sizeof(uint16_t) + // class_set.size + dex_location.size 3 * sizeof(uint32_t); // method_map.size + checksum + num_method_ids /** * Serialization format: * [profile_header, zipped[[profile_line_header1, profile_line_header2...],[profile_line_data1, * profile_line_data2...]] * profile_header: * magic,version,number_of_dex_files,uncompressed_size_of_zipped_data,compressed_data_size * profile_line_header: * profile_key,number_of_classes,methods_region_size,dex_location_checksum,num_method_ids * profile_line_data: * method_encoding_1,method_encoding_2...,class_id1,class_id2...,method_flags bitmap, * The method_encoding is: * method_id,number_of_inline_caches,inline_cache1,inline_cache2... * The inline_cache is: * dex_pc,[M|dex_map_size], dex_profile_index,class_id1,class_id2...,dex_profile_index2,... * dex_map_size is the number of dex_indeces that follows. * Classes are grouped per their dex files and the line * `dex_profile_index,class_id1,class_id2...,dex_profile_index2,...` encodes the * mapping from `dex_profile_index` to the set of classes `class_id1,class_id2...` * M stands for megamorphic or missing types and it's encoded as either * the byte kIsMegamorphicEncoding or kIsMissingTypesEncoding. * When present, there will be no class ids following. **/ bool ProfileCompilationInfo::Save(int fd) { uint64_t start = NanoTime(); ScopedTrace trace(__PRETTY_FUNCTION__); DCHECK_GE(fd, 0); // Use a vector wrapper to avoid keeping track of offsets when we add elements. std::vector buffer; if (!WriteBuffer(fd, kProfileMagic, sizeof(kProfileMagic))) { return false; } if (!WriteBuffer(fd, version_, sizeof(version_))) { return false; } DCHECK_LE(info_.size(), MaxProfileIndex()); WriteProfileIndex(&buffer, static_cast(info_.size())); uint32_t required_capacity = 0; for (const DexFileData* dex_data_ptr : info_) { const DexFileData& dex_data = *dex_data_ptr; uint32_t methods_region_size = GetMethodsRegionSize(dex_data); required_capacity += kLineHeaderSize + dex_data.profile_key.size() + sizeof(uint16_t) * dex_data.class_set.size() + methods_region_size + dex_data.bitmap_storage.size(); } // Allow large profiles for non target builds for the case where we are merging many profiles // to generate a boot image profile. VLOG(profiler) << "Required capacity: " << required_capacity << " bytes."; if (required_capacity > GetSizeErrorThresholdBytes()) { LOG(ERROR) << "Profile data size exceeds " << GetSizeErrorThresholdBytes() << " bytes. Profile will not be written to disk." << " It requires " << required_capacity << " bytes."; return false; } AddUintToBuffer(&buffer, required_capacity); if (!WriteBuffer(fd, buffer.data(), buffer.size())) { return false; } // Make sure that the buffer has enough capacity to avoid repeated resizings // while we add data. buffer.reserve(required_capacity); buffer.clear(); // Dex files must be written in the order of their profile index. This // avoids writing the index in the output file and simplifies the parsing logic. // Write profile line headers. for (const DexFileData* dex_data_ptr : info_) { const DexFileData& dex_data = *dex_data_ptr; if (dex_data.profile_key.size() >= kMaxDexFileKeyLength) { LOG(WARNING) << "DexFileKey exceeds allocated limit"; return false; } uint32_t methods_region_size = GetMethodsRegionSize(dex_data); DCHECK_LE(dex_data.profile_key.size(), std::numeric_limits::max()); DCHECK_LE(dex_data.class_set.size(), std::numeric_limits::max()); // Write profile line header. AddUintToBuffer(&buffer, static_cast(dex_data.profile_key.size())); AddUintToBuffer(&buffer, static_cast(dex_data.class_set.size())); AddUintToBuffer(&buffer, methods_region_size); // uint32_t AddUintToBuffer(&buffer, dex_data.checksum); // uint32_t AddUintToBuffer(&buffer, dex_data.num_method_ids); // uint32_t AddStringToBuffer(&buffer, dex_data.profile_key); } for (const DexFileData* dex_data_ptr : info_) { const DexFileData& dex_data = *dex_data_ptr; // Note that we allow dex files without any methods or classes, so that // inline caches can refer valid dex files. uint16_t last_method_index = 0; for (const auto& method_it : dex_data.method_map) { // Store the difference between the method indices. The SafeMap is ordered by // method_id, so the difference will always be non negative. DCHECK_GE(method_it.first, last_method_index); uint16_t diff_with_last_method_index = method_it.first - last_method_index; last_method_index = method_it.first; AddUintToBuffer(&buffer, diff_with_last_method_index); AddInlineCacheToBuffer(&buffer, method_it.second); } uint16_t last_class_index = 0; for (const auto& class_id : dex_data.class_set) { // Store the difference between the class indices. The set is ordered by // class_id, so the difference will always be non negative. DCHECK_GE(class_id.index_, last_class_index); uint16_t diff_with_last_class_index = class_id.index_ - last_class_index; last_class_index = class_id.index_; AddUintToBuffer(&buffer, diff_with_last_class_index); } buffer.insert(buffer.end(), dex_data.bitmap_storage.begin(), dex_data.bitmap_storage.end()); } uint32_t output_size = 0; std::unique_ptr compressed_buffer = DeflateBuffer(buffer.data(), required_capacity, &output_size); if (output_size > GetSizeWarningThresholdBytes()) { LOG(WARNING) << "Profile data size exceeds " << GetSizeWarningThresholdBytes() << " It has " << output_size << " bytes"; } buffer.clear(); AddUintToBuffer(&buffer, output_size); if (!WriteBuffer(fd, buffer.data(), buffer.size())) { return false; } if (!WriteBuffer(fd, compressed_buffer.get(), output_size)) { return false; } uint64_t total_time = NanoTime() - start; VLOG(profiler) << "Compressed from " << std::to_string(required_capacity) << " to " << std::to_string(output_size); VLOG(profiler) << "Time to save profile: " << std::to_string(total_time); return true; } void ProfileCompilationInfo::AddInlineCacheToBuffer(std::vector* buffer, const InlineCacheMap& inline_cache_map) { // Add inline cache map size. AddUintToBuffer(buffer, static_cast(inline_cache_map.size())); if (inline_cache_map.size() == 0) { return; } for (const auto& inline_cache_it : inline_cache_map) { uint16_t dex_pc = inline_cache_it.first; const DexPcData dex_pc_data = inline_cache_it.second; const ClassSet& classes = dex_pc_data.classes; // Add the dex pc. AddUintToBuffer(buffer, dex_pc); // Add the megamorphic/missing_types encoding if needed and continue. // In either cases we don't add any classes to the profiles and so there's // no point to continue. // TODO(calin): in case we miss types there is still value to add the // rest of the classes. They can be added without bumping the profile version. if (dex_pc_data.is_missing_types) { DCHECK(!dex_pc_data.is_megamorphic); // at this point the megamorphic flag should not be set. DCHECK_EQ(classes.size(), 0u); AddUintToBuffer(buffer, kIsMissingTypesEncoding); continue; } else if (dex_pc_data.is_megamorphic) { DCHECK_EQ(classes.size(), 0u); AddUintToBuffer(buffer, kIsMegamorphicEncoding); continue; } DCHECK_LT(classes.size(), ProfileCompilationInfo::kIndividualInlineCacheSize); DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes"; SafeMap> dex_to_classes_map; // Group the classes by dex. We expect that most of the classes will come from // the same dex, so this will be more efficient than encoding the dex index // for each class reference. GroupClassesByDex(classes, &dex_to_classes_map); // Add the dex map size. AddUintToBuffer(buffer, static_cast(dex_to_classes_map.size())); for (const auto& dex_it : dex_to_classes_map) { ProfileIndexType dex_profile_index = dex_it.first; const std::vector& dex_classes = dex_it.second; // Add the dex profile index. WriteProfileIndex(buffer, dex_profile_index); // Add the the number of classes for each dex profile index. AddUintToBuffer(buffer, static_cast(dex_classes.size())); for (size_t i = 0; i < dex_classes.size(); i++) { // Add the type index of the classes. AddUintToBuffer(buffer, dex_classes[i].index_); } } } } uint32_t ProfileCompilationInfo::GetMethodsRegionSize(const DexFileData& dex_data) { // ((uint16_t)method index + (uint16_t)inline cache size) * number of methods uint32_t size = 2 * sizeof(uint16_t) * dex_data.method_map.size(); for (const auto& method_it : dex_data.method_map) { const InlineCacheMap& inline_cache = method_it.second; size += sizeof(uint16_t) * inline_cache.size(); // dex_pc for (const auto& inline_cache_it : inline_cache) { const ClassSet& classes = inline_cache_it.second.classes; SafeMap> dex_to_classes_map; GroupClassesByDex(classes, &dex_to_classes_map); size += sizeof(uint8_t); // dex_to_classes_map size for (const auto& dex_it : dex_to_classes_map) { size += SizeOfProfileIndexType(); // dex profile index size += sizeof(uint8_t); // number of classes const std::vector& dex_classes = dex_it.second; size += sizeof(uint16_t) * dex_classes.size(); // the actual classes } } } return size; } void ProfileCompilationInfo::GroupClassesByDex( const ClassSet& classes, /*out*/SafeMap>* dex_to_classes_map) { for (const auto& classes_it : classes) { auto dex_it = dex_to_classes_map->FindOrAdd(classes_it.dex_profile_index); dex_it->second.push_back(classes_it.type_index); } } ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData( const std::string& profile_key, uint32_t checksum, uint32_t num_method_ids) { const auto profile_index_it = profile_key_map_.FindOrAdd(profile_key, profile_key_map_.size()); if (profile_key_map_.size() > MaxProfileIndex()) { // Allow only a limited number dex files to be profiled. This allows us to save bytes // when encoding. For regular profiles this 2^8, and for boot profiles is 2^16 // (well above what we expect for normal applications). if (kIsDebugBuild) { LOG(ERROR) << "Exceeded the maximum number of dex file. Something went wrong"; } profile_key_map_.erase(profile_key); return nullptr; } ProfileIndexType profile_index = profile_index_it->second; if (info_.size() <= profile_index) { // This is a new addition. Add it to the info_ array. DexFileData* dex_file_data = new (&allocator_) DexFileData( &allocator_, profile_key, checksum, profile_index, num_method_ids, IsForBootImage()); info_.push_back(dex_file_data); } DexFileData* result = info_[profile_index]; // Check that the checksum matches. // This may different if for example the dex file was updated and we had a record of the old one. if (result->checksum != checksum) { LOG(WARNING) << "Checksum mismatch for dex " << profile_key; return nullptr; } // DCHECK that profile info map key is consistent with the one stored in the dex file data. // This should always be the case since since the cache map is managed by ProfileCompilationInfo. DCHECK_EQ(profile_key, result->profile_key); DCHECK_EQ(profile_index, result->profile_index); if (num_method_ids != result->num_method_ids) { // This should not happen... added to help investigating b/65812889. LOG(ERROR) << "num_method_ids mismatch for dex " << profile_key << ", expected=" << num_method_ids << ", actual=" << result->num_method_ids; return nullptr; } return result; } const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData( const std::string& profile_key, uint32_t checksum, bool verify_checksum) const { const auto profile_index_it = profile_key_map_.find(profile_key); if (profile_index_it == profile_key_map_.end()) { return nullptr; } ProfileIndexType profile_index = profile_index_it->second; const DexFileData* result = info_[profile_index]; if (verify_checksum && !ChecksumMatch(result->checksum, checksum)) { return nullptr; } DCHECK_EQ(profile_key, result->profile_key); DCHECK_EQ(profile_index, result->profile_index); return result; } const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexDataUsingAnnotations( const DexFile* dex_file, const ProfileSampleAnnotation& annotation) const { if (annotation == ProfileSampleAnnotation::kNone) { std::string profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation()); for (const DexFileData* dex_data : info_) { if (profile_key == GetBaseKeyFromAugmentedKey(dex_data->profile_key)) { if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) { return nullptr; } return dex_data; } } } else { std::string profile_key = GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation); return FindDexData(profile_key, dex_file->GetLocationChecksum()); } return nullptr; } void ProfileCompilationInfo::FindAllDexData( const DexFile* dex_file, /*out*/ std::vector* result) const { std::string profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation()); for (const DexFileData* dex_data : info_) { if (profile_key == GetBaseKeyFromAugmentedKey(dex_data->profile_key)) { if (ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) { result->push_back(dex_data); } } } } bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi, MethodHotness::Flag flags, const ProfileSampleAnnotation& annotation) { DexFileData* const data = GetOrAddDexFileData(pmi.ref.dex_file, annotation); if (data == nullptr) { // checksum mismatch return false; } if (!data->AddMethod(flags, pmi.ref.index)) { return false; } if ((flags & MethodHotness::kFlagHot) == 0) { // The method is not hot, do not add inline caches. return true; } // Add inline caches. Do this only for regular profiles. The boot image profiles don't use // them and they take up useless space. if (IsForBootImage()) { return true; // early success return. } InlineCacheMap* inline_cache = data->FindOrAddHotMethod(pmi.ref.index); DCHECK(inline_cache != nullptr); for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) { if (cache.is_missing_types) { FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes(); continue; } for (const TypeReference& class_ref : cache.classes) { DexFileData* class_dex_data = GetOrAddDexFileData(class_ref.dex_file, annotation); if (class_dex_data == nullptr) { // checksum mismatch return false; } DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc); if (dex_pc_data->is_missing_types) { // Don't bother adding classes if we are missing types. break; } dex_pc_data->AddClass(class_dex_data->profile_index, class_ref.TypeIndex()); } } return true; } #define READ_UINT(type, buffer, dest, error) \ do { \ if (!(buffer).ReadUintAndAdvance(&(dest))) { \ *(error) = "Could not read "#dest; \ return false; \ } \ } \ while (false) bool ProfileCompilationInfo::ReadInlineCache( SafeBuffer& buffer, ProfileIndexType number_of_dex_files, const SafeMap& dex_profile_index_remap, /*out*/ InlineCacheMap* inline_cache, /*out*/ std::string* error) { uint16_t inline_cache_size; READ_UINT(uint16_t, buffer, inline_cache_size, error); for (; inline_cache_size > 0; inline_cache_size--) { uint16_t dex_pc; uint8_t dex_to_classes_map_size; READ_UINT(uint16_t, buffer, dex_pc, error); READ_UINT(uint8_t, buffer, dex_to_classes_map_size, error); DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc); if (dex_to_classes_map_size == kIsMissingTypesEncoding) { dex_pc_data->SetIsMissingTypes(); continue; } if (dex_to_classes_map_size == kIsMegamorphicEncoding) { dex_pc_data->SetIsMegamorphic(); continue; } for (; dex_to_classes_map_size > 0; dex_to_classes_map_size--) { ProfileIndexType dex_profile_index; uint8_t dex_classes_size; if (!ReadProfileIndex(buffer, &dex_profile_index)) { *error = "Cannot read profile index"; return false; } READ_UINT(uint8_t, buffer, dex_classes_size, error); if (dex_profile_index >= number_of_dex_files) { *error = "dex_profile_index out of bounds "; *error += std::to_string(dex_profile_index) + " " + std::to_string(number_of_dex_files); return false; } for (; dex_classes_size > 0; dex_classes_size--) { uint16_t type_index; READ_UINT(uint16_t, buffer, type_index, error); auto it = dex_profile_index_remap.find(dex_profile_index); if (it == dex_profile_index_remap.end()) { // If we don't have an index that's because the dex file was filtered out when loading. // Set missing types on the dex pc data. dex_pc_data->SetIsMissingTypes(); } else { dex_pc_data->AddClass(it->second, dex::TypeIndex(type_index)); } } } } return true; } bool ProfileCompilationInfo::ReadMethods( SafeBuffer& buffer, ProfileIndexType number_of_dex_files, const ProfileLineHeader& line_header, const SafeMap& dex_profile_index_remap, /*out*/std::string* error) { uint32_t unread_bytes_before_operation = buffer.CountUnreadBytes(); if (unread_bytes_before_operation < line_header.method_region_size_bytes) { *error += "Profile EOF reached prematurely for ReadMethod"; return false; } size_t expected_unread_bytes_after_operation = buffer.CountUnreadBytes() - line_header.method_region_size_bytes; uint16_t last_method_index = 0; while (buffer.CountUnreadBytes() > expected_unread_bytes_after_operation) { DexFileData* const data = GetOrAddDexFileData(line_header.profile_key, line_header.checksum, line_header.num_method_ids); uint16_t diff_with_last_method_index; READ_UINT(uint16_t, buffer, diff_with_last_method_index, error); uint16_t method_index = last_method_index + diff_with_last_method_index; last_method_index = method_index; InlineCacheMap* inline_cache = data->FindOrAddHotMethod(method_index); if (inline_cache == nullptr) { return false; } if (!ReadInlineCache(buffer, number_of_dex_files, dex_profile_index_remap, inline_cache, error)) { return false; } } uint32_t total_bytes_read = unread_bytes_before_operation - buffer.CountUnreadBytes(); if (total_bytes_read != line_header.method_region_size_bytes) { *error += "Profile data inconsistent for ReadMethods"; return false; } return true; } bool ProfileCompilationInfo::ReadClasses(SafeBuffer& buffer, const ProfileLineHeader& line_header, /*out*/std::string* error) { size_t unread_bytes_before_op = buffer.CountUnreadBytes(); if (unread_bytes_before_op < line_header.class_set_size) { *error += "Profile EOF reached prematurely for ReadClasses"; return false; } uint16_t last_class_index = 0; for (uint16_t i = 0; i < line_header.class_set_size; i++) { uint16_t diff_with_last_class_index; READ_UINT(uint16_t, buffer, diff_with_last_class_index, error); uint16_t type_index = last_class_index + diff_with_last_class_index; last_class_index = type_index; DexFileData* const data = GetOrAddDexFileData(line_header.profile_key, line_header.checksum, line_header.num_method_ids); if (data == nullptr) { return false; } data->class_set.insert(dex::TypeIndex(type_index)); } size_t total_bytes_read = unread_bytes_before_op - buffer.CountUnreadBytes(); uint32_t expected_bytes_read = line_header.class_set_size * sizeof(uint16_t); if (total_bytes_read != expected_bytes_read) { *error += "Profile data inconsistent for ReadClasses"; return false; } return true; } // Tests for EOF by trying to read 1 byte from the descriptor. // Returns: // 0 if the descriptor is at the EOF, // -1 if there was an IO error // 1 if the descriptor has more content to read static int testEOF(int fd) { uint8_t buffer[1]; return TEMP_FAILURE_RETRY(read(fd, buffer, 1)); } // Reads an uint value previously written with AddUintToBuffer. template bool ProfileCompilationInfo::SafeBuffer::ReadUintAndAdvance(/*out*/T* value) { static_assert(std::is_unsigned::value, "Type is not unsigned"); if (ptr_current_ + sizeof(T) > ptr_end_) { return false; } *value = 0; for (size_t i = 0; i < sizeof(T); i++) { *value += ptr_current_[i] << (i * kBitsPerByte); } ptr_current_ += sizeof(T); return true; } bool ProfileCompilationInfo::SafeBuffer::CompareAndAdvance(const uint8_t* data, size_t data_size) { if (ptr_current_ + data_size > ptr_end_) { return false; } if (memcmp(ptr_current_, data, data_size) == 0) { ptr_current_ += data_size; return true; } return false; } ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::SafeBuffer::Fill( ProfileSource& source, const std::string& debug_stage, /*out*/ std::string* error) { size_t byte_count = (ptr_end_ - ptr_current_) * sizeof(*ptr_current_); uint8_t* buffer = ptr_current_; return source.Read(buffer, byte_count, debug_stage, error); } size_t ProfileCompilationInfo::SafeBuffer::CountUnreadBytes() { return (ptr_end_ - ptr_current_) * sizeof(*ptr_current_); } const uint8_t* ProfileCompilationInfo::SafeBuffer::GetCurrentPtr() { return ptr_current_; } void ProfileCompilationInfo::SafeBuffer::Advance(size_t data_size) { ptr_current_ += data_size; } ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadProfileHeader( ProfileSource& source, /*out*/ProfileIndexType* number_of_dex_files, /*out*/uint32_t* uncompressed_data_size, /*out*/uint32_t* compressed_data_size, /*out*/std::string* error) { // Read magic and version const size_t kMagicVersionSize = sizeof(kProfileMagic) + kProfileVersionSize; SafeBuffer safe_buffer_version(kMagicVersionSize); ProfileLoadStatus status = safe_buffer_version.Fill(source, "ReadProfileHeaderVersion", error); if (status != kProfileLoadSuccess) { return status; } if (!safe_buffer_version.CompareAndAdvance(kProfileMagic, sizeof(kProfileMagic))) { *error = "Profile missing magic"; return kProfileLoadVersionMismatch; } if (safe_buffer_version.CountUnreadBytes() < kProfileVersionSize) { *error = "Cannot read profile version"; return kProfileLoadBadData; } memcpy(version_, safe_buffer_version.GetCurrentPtr(), kProfileVersionSize); if ((memcmp(version_, kProfileVersion, kProfileVersionSize) != 0) && (memcmp(version_, kProfileVersionForBootImage, kProfileVersionSize) != 0)) { *error = "Profile version mismatch"; return kProfileLoadVersionMismatch; } const size_t kProfileHeaderDataSize = SizeOfProfileIndexType() + // number of dex files sizeof(uint32_t) + // size of uncompressed profile data sizeof(uint32_t); // size of compressed profile data SafeBuffer safe_buffer_header_data(kProfileHeaderDataSize); status = safe_buffer_header_data.Fill(source, "ReadProfileHeaderData", error); if (status != kProfileLoadSuccess) { return status; } if (!ReadProfileIndex(safe_buffer_header_data, number_of_dex_files)) { *error = "Cannot read the number of dex files"; return kProfileLoadBadData; } if (!safe_buffer_header_data.ReadUintAndAdvance(uncompressed_data_size)) { *error = "Cannot read the size of uncompressed data"; return kProfileLoadBadData; } if (!safe_buffer_header_data.ReadUintAndAdvance(compressed_data_size)) { *error = "Cannot read the size of compressed data"; return kProfileLoadBadData; } return kProfileLoadSuccess; } bool ProfileCompilationInfo::ReadProfileLineHeaderElements(SafeBuffer& buffer, /*out*/uint16_t* profile_key_size, /*out*/ProfileLineHeader* line_header, /*out*/std::string* error) { READ_UINT(uint16_t, buffer, *profile_key_size, error); READ_UINT(uint16_t, buffer, line_header->class_set_size, error); READ_UINT(uint32_t, buffer, line_header->method_region_size_bytes, error); READ_UINT(uint32_t, buffer, line_header->checksum, error); READ_UINT(uint32_t, buffer, line_header->num_method_ids, error); return true; } ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadProfileLineHeader( SafeBuffer& buffer, /*out*/ProfileLineHeader* line_header, /*out*/std::string* error) { if (buffer.CountUnreadBytes() < kLineHeaderSize) { *error += "Profile EOF reached prematurely for ReadProfileLineHeader"; return kProfileLoadBadData; } uint16_t profile_key_size; if (!ReadProfileLineHeaderElements(buffer, &profile_key_size, line_header, error)) { return kProfileLoadBadData; } if (profile_key_size == 0 || profile_key_size > kMaxDexFileKeyLength) { *error = "ProfileKey has an invalid size: " + std::to_string(static_cast(profile_key_size)); return kProfileLoadBadData; } if (buffer.CountUnreadBytes() < profile_key_size) { *error += "Profile EOF reached prematurely for ReadProfileHeaderDexLocation"; return kProfileLoadBadData; } const uint8_t* base_ptr = buffer.GetCurrentPtr(); line_header->profile_key.assign( reinterpret_cast(base_ptr), profile_key_size); buffer.Advance(profile_key_size); return kProfileLoadSuccess; } ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadProfileLine( SafeBuffer& buffer, ProfileIndexType number_of_dex_files, const ProfileLineHeader& line_header, const SafeMap& dex_profile_index_remap, bool merge_classes, /*out*/std::string* error) { DexFileData* data = GetOrAddDexFileData(line_header.profile_key, line_header.checksum, line_header.num_method_ids); if (data == nullptr) { *error = "Error when reading profile file line header: checksum mismatch for " + line_header.profile_key; return kProfileLoadBadData; } if (!ReadMethods(buffer, number_of_dex_files, line_header, dex_profile_index_remap, error)) { return kProfileLoadBadData; } if (merge_classes) { if (!ReadClasses(buffer, line_header, error)) { return kProfileLoadBadData; } } // Read method bitmap. const size_t bytes = data->bitmap_storage.size(); if (buffer.CountUnreadBytes() < bytes) { *error += "Profile EOF reached prematurely for ReadProfileHeaderDexLocation"; return kProfileLoadBadData; } const uint8_t* base_ptr = buffer.GetCurrentPtr(); std::copy_n(base_ptr, bytes, data->bitmap_storage.data()); buffer.Advance(bytes); return kProfileLoadSuccess; } // TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and // return a unique pointer to a ProfileCompilationInfo upon success. bool ProfileCompilationInfo::Load( int fd, bool merge_classes, const ProfileLoadFilterFn& filter_fn) { std::string error; ProfileLoadStatus status = LoadInternal(fd, &error, merge_classes, filter_fn); if (status == kProfileLoadSuccess) { return true; } else { LOG(WARNING) << "Error when reading profile: " << error; return false; } } bool ProfileCompilationInfo::VerifyProfileData(const std::vector& dex_files) { std::unordered_map key_to_dex_file; for (const DexFile* dex_file : dex_files) { key_to_dex_file.emplace(GetProfileDexFileBaseKey(dex_file->GetLocation()), dex_file); } for (const DexFileData* dex_data : info_) { // We need to remove any annotation from the key during verification. const auto it = key_to_dex_file.find(GetBaseKeyFromAugmentedKey(dex_data->profile_key)); if (it == key_to_dex_file.end()) { // It is okay if profile contains data for additional dex files. continue; } const DexFile* dex_file = it->second; const std::string& dex_location = dex_file->GetLocation(); if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) { LOG(ERROR) << "Dex checksum mismatch while verifying profile " << "dex location " << dex_location << " (checksum=" << dex_file->GetLocationChecksum() << ", profile checksum=" << dex_data->checksum; return false; } if (dex_data->num_method_ids != dex_file->NumMethodIds()) { LOG(ERROR) << "Number of method ids in dex file and profile don't match." << "dex location " << dex_location << " NumMethodId in DexFile" << dex_file->NumMethodIds() << ", NumMethodId in profile" << dex_data->num_method_ids; return false; } // Verify method_encoding. for (const auto& method_it : dex_data->method_map) { size_t method_id = (size_t)(method_it.first); if (method_id >= dex_file->NumMethodIds()) { LOG(ERROR) << "Invalid method id in profile file. dex location=" << dex_location << " method_id=" << method_id << " NumMethodIds=" << dex_file->NumMethodIds(); return false; } // Verify class indices of inline caches. const InlineCacheMap &inline_cache_map = method_it.second; for (const auto& inline_cache_it : inline_cache_map) { const DexPcData dex_pc_data = inline_cache_it.second; if (dex_pc_data.is_missing_types || dex_pc_data.is_megamorphic) { // No class indices to verify. continue; } const ClassSet &classes = dex_pc_data.classes; SafeMap> dex_to_classes_map; // Group the classes by dex. We expect that most of the classes will come from // the same dex, so this will be more efficient than encoding the dex index // for each class reference. GroupClassesByDex(classes, &dex_to_classes_map); for (const auto &dex_it : dex_to_classes_map) { ProfileIndexType dex_profile_index = dex_it.first; const auto dex_file_inline_cache_it = key_to_dex_file.find( info_[dex_profile_index]->profile_key); if (dex_file_inline_cache_it == key_to_dex_file.end()) { // It is okay if profile contains data for additional dex files. continue; } const DexFile *dex_file_for_inline_cache_check = dex_file_inline_cache_it->second; const std::vector &dex_classes = dex_it.second; for (size_t i = 0; i < dex_classes.size(); i++) { if (dex_classes[i].index_ >= dex_file_for_inline_cache_check->NumTypeIds()) { LOG(ERROR) << "Invalid inline cache in profile file. dex location=" << dex_location << " method_id=" << method_id << " dex_profile_index=" << static_cast(dex_profile_index) << " type_index=" << dex_classes[i].index_ << " NumTypeIds=" << dex_file_for_inline_cache_check->NumTypeIds(); return false; } } } } } // Verify class_ids. for (const auto& class_id : dex_data->class_set) { if (class_id.index_ >= dex_file->NumTypeIds()) { LOG(ERROR) << "Invalid class id in profile file. dex_file location " << dex_location << " class_id=" << class_id.index_ << " NumClassIds=" << dex_file->NumClassDefs(); return false; } } } return true; } ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::OpenSource( int32_t fd, /*out*/ std::unique_ptr* source, /*out*/ std::string* error) { if (IsProfileFile(fd)) { source->reset(ProfileSource::Create(fd)); return kProfileLoadSuccess; } else { std::unique_ptr zip_archive( ZipArchive::OpenFromFd(DupCloexec(fd), "profile", error)); if (zip_archive.get() == nullptr) { *error = "Could not open the profile zip archive"; return kProfileLoadBadData; } std::unique_ptr zip_entry(zip_archive->Find(kDexMetadataProfileEntry, error)); if (zip_entry == nullptr) { // Allow archives without the profile entry. In this case, create an empty profile. // This gives more flexible when ure-using archives that may miss the entry. // (e.g. dex metadata files) LOG(WARNING) << "Could not find entry " << kDexMetadataProfileEntry << " in the zip archive. Creating an empty profile."; source->reset(ProfileSource::Create(MemMap::Invalid())); return kProfileLoadSuccess; } if (zip_entry->GetUncompressedLength() == 0) { *error = "Empty profile entry in the zip archive."; return kProfileLoadBadData; } // TODO(calin) pass along file names to assist with debugging. MemMap map = zip_entry->MapDirectlyOrExtract( kDexMetadataProfileEntry, "profile file", error, alignof(ProfileSource)); if (map.IsValid()) { source->reset(ProfileSource::Create(std::move(map))); return kProfileLoadSuccess; } else { return kProfileLoadBadData; } } } ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ProfileSource::Read( uint8_t* buffer, size_t byte_count, const std::string& debug_stage, std::string* error) { if (IsMemMap()) { if (mem_map_cur_ + byte_count > mem_map_.Size()) { return kProfileLoadBadData; } for (size_t i = 0; i < byte_count; i++) { buffer[i] = *(mem_map_.Begin() + mem_map_cur_); mem_map_cur_++; } } else { while (byte_count > 0) { int bytes_read = TEMP_FAILURE_RETRY(read(fd_, buffer, byte_count));; if (bytes_read == 0) { *error += "Profile EOF reached prematurely for " + debug_stage; return kProfileLoadBadData; } else if (bytes_read < 0) { *error += "Profile IO error for " + debug_stage + strerror(errno); return kProfileLoadIOError; } byte_count -= bytes_read; buffer += bytes_read; } } return kProfileLoadSuccess; } bool ProfileCompilationInfo::ProfileSource::HasConsumedAllData() const { return IsMemMap() ? (!mem_map_.IsValid() || mem_map_cur_ == mem_map_.Size()) : (testEOF(fd_) == 0); } bool ProfileCompilationInfo::ProfileSource::HasEmptyContent() const { if (IsMemMap()) { return !mem_map_.IsValid() || mem_map_.Size() == 0; } else { struct stat stat_buffer; if (fstat(fd_, &stat_buffer) != 0) { return false; } return stat_buffer.st_size == 0; } } // TODO(calin): fail fast if the dex checksums don't match. ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::LoadInternal( int32_t fd, std::string* error, bool merge_classes, const ProfileLoadFilterFn& filter_fn) { ScopedTrace trace(__PRETTY_FUNCTION__); DCHECK_GE(fd, 0); std::unique_ptr source; ProfileLoadStatus status = OpenSource(fd, &source, error); if (status != kProfileLoadSuccess) { return status; } // We allow empty profile files. // Profiles may be created by ActivityManager or installd before we manage to // process them in the runtime or profman. if (source->HasEmptyContent()) { return kProfileLoadSuccess; } // Read profile header: magic + version + number_of_dex_files. ProfileIndexType number_of_dex_files; uint32_t uncompressed_data_size; uint32_t compressed_data_size; status = ReadProfileHeader(*source, &number_of_dex_files, &uncompressed_data_size, &compressed_data_size, error); if (status != kProfileLoadSuccess) { return status; } // Allow large profiles for non target builds for the case where we are merging many profiles // to generate a boot image profile. if (uncompressed_data_size > GetSizeErrorThresholdBytes()) { LOG(ERROR) << "Profile data size exceeds " << GetSizeErrorThresholdBytes() << " bytes. It has " << uncompressed_data_size << " bytes."; return kProfileLoadBadData; } if (uncompressed_data_size > GetSizeWarningThresholdBytes()) { LOG(WARNING) << "Profile data size exceeds " << GetSizeWarningThresholdBytes() << " bytes. It has " << uncompressed_data_size << " bytes."; } std::unique_ptr compressed_data(new uint8_t[compressed_data_size]); status = source->Read(compressed_data.get(), compressed_data_size, "ReadContent", error); if (status != kProfileLoadSuccess) { *error += "Unable to read compressed profile data"; return status; } if (!source->HasConsumedAllData()) { *error += "Unexpected data in the profile file."; return kProfileLoadBadData; } SafeBuffer uncompressed_data(uncompressed_data_size); int ret = InflateBuffer(compressed_data.get(), compressed_data_size, uncompressed_data_size, uncompressed_data.Get()); if (ret != Z_STREAM_END) { *error += "Error reading uncompressed profile data"; return kProfileLoadBadData; } std::vector profile_line_headers; // Read profile line headers. for (ProfileIndexType k = 0; k < number_of_dex_files; k++) { ProfileLineHeader line_header; // First, read the line header to get the amount of data we need to read. status = ReadProfileLineHeader(uncompressed_data, &line_header, error); if (status != kProfileLoadSuccess) { return status; } profile_line_headers.push_back(line_header); } SafeMap dex_profile_index_remap; if (!RemapProfileIndex(profile_line_headers, filter_fn, &dex_profile_index_remap)) { return kProfileLoadBadData; } for (ProfileIndexType k = 0; k < number_of_dex_files; k++) { if (!filter_fn(profile_line_headers[k].profile_key, profile_line_headers[k].checksum)) { // We have to skip the line. Advanced the current pointer of the buffer. size_t profile_line_size = profile_line_headers[k].class_set_size * sizeof(uint16_t) + profile_line_headers[k].method_region_size_bytes + DexFileData::ComputeBitmapStorage(IsForBootImage(), profile_line_headers[k].num_method_ids); uncompressed_data.Advance(profile_line_size); } else { // Now read the actual profile line. status = ReadProfileLine(uncompressed_data, number_of_dex_files, profile_line_headers[k], dex_profile_index_remap, merge_classes, error); if (status != kProfileLoadSuccess) { return status; } } } // Check that we read everything and that profiles don't contain junk data. if (uncompressed_data.CountUnreadBytes() > 0) { *error = "Unexpected content in the profile file: " + std::to_string(uncompressed_data.CountUnreadBytes()) + " extra bytes"; return kProfileLoadBadData; } else { return kProfileLoadSuccess; } } bool ProfileCompilationInfo::RemapProfileIndex( const std::vector& profile_line_headers, const ProfileLoadFilterFn& filter_fn, /*out*/SafeMap* dex_profile_index_remap) { // First verify that all checksums match. This will avoid adding garbage to // the current profile info. // Note that the number of elements should be very small, so this should not // be a performance issue. for (const ProfileLineHeader& other_profile_line_header : profile_line_headers) { if (!filter_fn(other_profile_line_header.profile_key, other_profile_line_header.checksum)) { continue; } // verify_checksum is false because we want to differentiate between a missing dex data and // a mismatched checksum. const DexFileData* dex_data = FindDexData(other_profile_line_header.profile_key, /* checksum= */ 0u, /* verify_checksum= */ false); if ((dex_data != nullptr) && (dex_data->checksum != other_profile_line_header.checksum)) { LOG(WARNING) << "Checksum mismatch for dex " << other_profile_line_header.profile_key; return false; } } // All checksums match. Import the data. uint32_t num_dex_files = static_cast(profile_line_headers.size()); for (uint32_t i = 0; i < num_dex_files; i++) { if (!filter_fn(profile_line_headers[i].profile_key, profile_line_headers[i].checksum)) { continue; } const DexFileData* dex_data = GetOrAddDexFileData(profile_line_headers[i].profile_key, profile_line_headers[i].checksum, profile_line_headers[i].num_method_ids); if (dex_data == nullptr) { return false; // Could happen if we exceed the number of allowed dex files. } dex_profile_index_remap->Put(i, dex_data->profile_index); } return true; } std::unique_ptr ProfileCompilationInfo::DeflateBuffer(const uint8_t* in_buffer, uint32_t in_size, uint32_t* compressed_data_size) { z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; int ret = deflateInit(&strm, 1); if (ret != Z_OK) { return nullptr; } uint32_t out_size = deflateBound(&strm, in_size); std::unique_ptr compressed_buffer(new uint8_t[out_size]); strm.avail_in = in_size; strm.next_in = const_cast(in_buffer); strm.avail_out = out_size; strm.next_out = &compressed_buffer[0]; ret = deflate(&strm, Z_FINISH); if (ret == Z_STREAM_ERROR) { return nullptr; } *compressed_data_size = out_size - strm.avail_out; deflateEnd(&strm); return compressed_buffer; } int ProfileCompilationInfo::InflateBuffer(const uint8_t* in_buffer, uint32_t in_size, uint32_t expected_uncompressed_data_size, uint8_t* out_buffer) { z_stream strm; /* allocate inflate state */ strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = in_size; strm.next_in = const_cast(in_buffer); strm.avail_out = expected_uncompressed_data_size; strm.next_out = out_buffer; int ret; inflateInit(&strm); ret = inflate(&strm, Z_NO_FLUSH); if (strm.avail_in != 0 || strm.avail_out != 0) { return Z_DATA_ERROR; } inflateEnd(&strm); return ret; } bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other, bool merge_classes) { if (!SameVersion(other)) { LOG(WARNING) << "Cannot merge different profile versions"; return false; } // First verify that all checksums match. This will avoid adding garbage to // the current profile info. // Note that the number of elements should be very small, so this should not // be a performance issue. for (const DexFileData* other_dex_data : other.info_) { // verify_checksum is false because we want to differentiate between a missing dex data and // a mismatched checksum. const DexFileData* dex_data = FindDexData(other_dex_data->profile_key, /* checksum= */ 0u, /* verify_checksum= */ false); if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) { LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key; return false; } } // All checksums match. Import the data. // The other profile might have a different indexing of dex files. // That is because each dex files gets a 'dex_profile_index' on a first come first served basis. // That means that the order in with the methods are added to the profile matters for the // actual indices. // The reason we cannot rely on the actual multidex index is that a single profile may store // data from multiple splits. This means that a profile may contain a classes2.dex from split-A // and one from split-B. // First, build a mapping from other_dex_profile_index to this_dex_profile_index. // This will make sure that the ClassReferences will point to the correct dex file. SafeMap dex_profile_index_remap; for (const DexFileData* other_dex_data : other.info_) { const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key, other_dex_data->checksum, other_dex_data->num_method_ids); if (dex_data == nullptr) { return false; // Could happen if we exceed the number of allowed dex files. } dex_profile_index_remap.Put(other_dex_data->profile_index, dex_data->profile_index); } // Merge the actual profile data. for (const DexFileData* other_dex_data : other.info_) { DexFileData* dex_data = const_cast(FindDexData(other_dex_data->profile_key, other_dex_data->checksum)); DCHECK(dex_data != nullptr); // Merge the classes. if (merge_classes) { dex_data->class_set.insert(other_dex_data->class_set.begin(), other_dex_data->class_set.end()); } // Merge the methods and the inline caches. for (const auto& other_method_it : other_dex_data->method_map) { uint16_t other_method_index = other_method_it.first; InlineCacheMap* inline_cache = dex_data->FindOrAddHotMethod(other_method_index); if (inline_cache == nullptr) { return false; } const auto& other_inline_cache = other_method_it.second; for (const auto& other_ic_it : other_inline_cache) { uint16_t other_dex_pc = other_ic_it.first; const ClassSet& other_class_set = other_ic_it.second.classes; DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc); if (other_ic_it.second.is_missing_types) { dex_pc_data->SetIsMissingTypes(); } else if (other_ic_it.second.is_megamorphic) { dex_pc_data->SetIsMegamorphic(); } else { for (const auto& class_it : other_class_set) { dex_pc_data->AddClass(dex_profile_index_remap.Get( class_it.dex_profile_index), class_it.type_index); } } } } // Merge the method bitmaps. dex_data->MergeBitmap(*other_dex_data); } return true; } ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness( const MethodReference& method_ref, const ProfileSampleAnnotation& annotation) const { const DexFileData* dex_data = FindDexDataUsingAnnotations(method_ref.dex_file, annotation); return dex_data != nullptr ? dex_data->GetHotnessInfo(method_ref.index) : MethodHotness(); } std::unique_ptr ProfileCompilationInfo::GetHotMethodInfo(const MethodReference& method_ref, const ProfileSampleAnnotation& annotation) const { MethodHotness hotness(GetMethodHotness(method_ref, annotation)); if (!hotness.IsHot()) { return nullptr; } const InlineCacheMap* inline_caches = hotness.GetInlineCacheMap(); DCHECK(inline_caches != nullptr); std::unique_ptr pmi(new OfflineProfileMethodInfo(inline_caches)); pmi->dex_references.resize(info_.size()); for (const DexFileData* dex_data : info_) { pmi->dex_references[dex_data->profile_index].profile_key = dex_data->profile_key; pmi->dex_references[dex_data->profile_index].dex_checksum = dex_data->checksum; pmi->dex_references[dex_data->profile_index].num_method_ids = dex_data->num_method_ids; } return pmi; } bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file, dex::TypeIndex type_idx, const ProfileSampleAnnotation& annotation) const { const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation); return (dex_data != nullptr) && dex_data->ContainsClass(type_idx); } uint32_t ProfileCompilationInfo::GetNumberOfMethods() const { uint32_t total = 0; for (const DexFileData* dex_data : info_) { total += dex_data->method_map.size(); } return total; } uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const { uint32_t total = 0; for (const DexFileData* dex_data : info_) { total += dex_data->class_set.size(); } return total; } std::string ProfileCompilationInfo::DumpInfo(const std::vector& dex_files, bool print_full_dex_location) const { std::ostringstream os; os << "ProfileInfo ["; for (size_t k = 0; k < kProfileVersionSize - 1; k++) { // Iterate to 'kProfileVersionSize - 1' because the version_ ends with '\0' // which we don't want to print. os << static_cast(version_[k]); } os << "]\n"; if (info_.empty()) { os << "-empty-"; return os.str(); } const std::string kFirstDexFileKeySubstitute = "!classes.dex"; for (const DexFileData* dex_data : info_) { os << "\n"; if (print_full_dex_location) { os << dex_data->profile_key; } else { // Replace the (empty) multidex suffix of the first key with a substitute for easier reading. std::string multidex_suffix = DexFileLoader::GetMultiDexSuffix( GetBaseKeyFromAugmentedKey(dex_data->profile_key)); os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix); } os << " [index=" << static_cast(dex_data->profile_index) << "]"; os << " [checksum=" << std::hex << dex_data->checksum << "]" << std::dec; const DexFile* dex_file = nullptr; for (const DexFile* current : dex_files) { if (GetBaseKeyFromAugmentedKey(dex_data->profile_key) == current->GetLocation() && dex_data->checksum == current->GetLocationChecksum()) { dex_file = current; } } os << "\n\thot methods: "; for (const auto& method_it : dex_data->method_map) { if (dex_file != nullptr) { os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true); } else { os << method_it.first; } os << "["; for (const auto& inline_cache_it : method_it.second) { os << "{" << std::hex << inline_cache_it.first << std::dec << ":"; if (inline_cache_it.second.is_missing_types) { os << "MT"; } else if (inline_cache_it.second.is_megamorphic) { os << "MM"; } else { for (const ClassReference& class_ref : inline_cache_it.second.classes) { os << "(" << static_cast(class_ref.dex_profile_index) << "," << class_ref.type_index.index_ << ")"; } } os << "}"; } os << "], "; } bool startup = true; while (true) { os << "\n\t" << (startup ? "startup methods: " : "post startup methods: "); for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) { MethodHotness hotness_info(dex_data->GetHotnessInfo(method_idx)); if (startup ? hotness_info.IsStartup() : hotness_info.IsPostStartup()) { if (dex_file != nullptr) { os << "\n\t\t" << dex_file->PrettyMethod(method_idx, true); } else { os << method_idx << ", "; } } } if (startup == false) { break; } startup = false; } os << "\n\tclasses: "; for (const auto class_it : dex_data->class_set) { if (dex_file != nullptr) { os << "\n\t\t" << dex_file->PrettyType(class_it); } else { os << class_it.index_ << ","; } } } return os.str(); } bool ProfileCompilationInfo::GetClassesAndMethods( const DexFile& dex_file, /*out*/std::set* class_set, /*out*/std::set* hot_method_set, /*out*/std::set* startup_method_set, /*out*/std::set* post_startup_method_method_set, const ProfileSampleAnnotation& annotation) const { std::set ret; const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation); if (dex_data == nullptr) { return false; } for (const auto& it : dex_data->method_map) { hot_method_set->insert(it.first); } for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) { MethodHotness hotness = dex_data->GetHotnessInfo(method_idx); if (hotness.IsStartup()) { startup_method_set->insert(method_idx); } if (hotness.IsPostStartup()) { post_startup_method_method_set->insert(method_idx); } } for (const dex::TypeIndex& type_index : dex_data->class_set) { class_set->insert(type_index); } return true; } bool ProfileCompilationInfo::SameVersion(const ProfileCompilationInfo& other) const { return memcmp(version_, other.version_, kProfileVersionSize) == 0; } bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) { // No need to compare profile_key_map_. That's only a cache for fast search. // All the information is already in the info_ vector. if (!SameVersion(other)) { return false; } if (info_.size() != other.info_.size()) { return false; } for (size_t i = 0; i < info_.size(); i++) { const DexFileData& dex_data = *info_[i]; const DexFileData& other_dex_data = *other.info_[i]; if (!(dex_data == other_dex_data)) { return false; } } return true; } // Naive implementation to generate a random profile file suitable for testing. bool ProfileCompilationInfo::GenerateTestProfile(int fd, uint16_t number_of_dex_files, uint16_t method_percentage, uint16_t class_percentage, uint32_t random_seed) { const std::string base_dex_location = "base.apk"; ProfileCompilationInfo info; // The limits are defined by the dex specification. const uint16_t max_method = std::numeric_limits::max(); const uint16_t max_classes = std::numeric_limits::max(); uint16_t number_of_methods = max_method * method_percentage / 100; uint16_t number_of_classes = max_classes * class_percentage / 100; std::srand(random_seed); // Make sure we generate more samples with a low index value. // This makes it more likely to hit valid method/class indices in small apps. const uint16_t kFavorFirstN = 10000; const uint16_t kFavorSplit = 2; for (uint16_t i = 0; i < number_of_dex_files; i++) { std::string dex_location = DexFileLoader::GetMultiDexLocation(i, base_dex_location.c_str()); std::string profile_key = info.GetProfileDexFileBaseKey(dex_location); DexFileData* const data = info.GetOrAddDexFileData(profile_key, /*checksum=*/ 0, max_method); for (uint16_t m = 0; m < number_of_methods; m++) { uint16_t method_idx = rand() % max_method; if (m < (number_of_methods / kFavorSplit)) { method_idx %= kFavorFirstN; } // Alternate between startup and post startup. uint32_t flags = MethodHotness::kFlagHot; flags |= ((m & 1) != 0) ? MethodHotness::kFlagPostStartup : MethodHotness::kFlagStartup; data->AddMethod(static_cast(flags), method_idx); } for (uint16_t c = 0; c < number_of_classes; c++) { uint16_t type_idx = rand() % max_classes; if (c < (number_of_classes / kFavorSplit)) { type_idx %= kFavorFirstN; } data->class_set.insert(dex::TypeIndex(type_idx)); } } return info.Save(fd); } // Naive implementation to generate a random profile file suitable for testing. // Description of random selection: // * Select a random starting point S. // * For every index i, add (S+i) % (N - total number of methods/classes) to profile with the // probably of 1/(N - i - number of methods/classes needed to add in profile). bool ProfileCompilationInfo::GenerateTestProfile( int fd, std::vector>& dex_files, uint16_t method_percentage, uint16_t class_percentage, uint32_t random_seed) { ProfileCompilationInfo info; std::default_random_engine rng(random_seed); auto create_shuffled_range = [&rng](uint32_t take, uint32_t out_of) { CHECK_LE(take, out_of); std::vector vec(out_of); std::iota(vec.begin(), vec.end(), 0u); std::shuffle(vec.begin(), vec.end(), rng); vec.erase(vec.begin() + take, vec.end()); std::sort(vec.begin(), vec.end()); return vec; }; for (std::unique_ptr& dex_file : dex_files) { const std::string& profile_key = dex_file->GetLocation(); uint32_t checksum = dex_file->GetLocationChecksum(); uint32_t number_of_classes = dex_file->NumClassDefs(); uint32_t classes_required_in_profile = (number_of_classes * class_percentage) / 100; DexFileData* const data = info.GetOrAddDexFileData( profile_key, checksum, dex_file->NumMethodIds()); for (uint32_t class_index : create_shuffled_range(classes_required_in_profile, number_of_classes)) { data->class_set.insert(dex_file->GetClassDef(class_index).class_idx_); } uint32_t number_of_methods = dex_file->NumMethodIds(); uint32_t methods_required_in_profile = (number_of_methods * method_percentage) / 100; for (uint32_t method_index : create_shuffled_range(methods_required_in_profile, number_of_methods)) { // Alternate between startup and post startup. uint32_t flags = MethodHotness::kFlagHot; flags |= ((method_index & 1) != 0) ? MethodHotness::kFlagPostStartup : MethodHotness::kFlagStartup; data->AddMethod(static_cast(flags), method_index); } } return info.Save(fd); } bool ProfileCompilationInfo::OfflineProfileMethodInfo::operator==( const OfflineProfileMethodInfo& other) const { if (inline_caches->size() != other.inline_caches->size()) { return false; } // We can't use a simple equality test because we need to match the dex files // of the inline caches which might have different profile indexes. for (const auto& inline_cache_it : *inline_caches) { uint16_t dex_pc = inline_cache_it.first; const DexPcData dex_pc_data = inline_cache_it.second; const auto& other_it = other.inline_caches->find(dex_pc); if (other_it == other.inline_caches->end()) { return false; } const DexPcData& other_dex_pc_data = other_it->second; if (dex_pc_data.is_megamorphic != other_dex_pc_data.is_megamorphic || dex_pc_data.is_missing_types != other_dex_pc_data.is_missing_types) { return false; } for (const ClassReference& class_ref : dex_pc_data.classes) { bool found = false; for (const ClassReference& other_class_ref : other_dex_pc_data.classes) { CHECK_LE(class_ref.dex_profile_index, dex_references.size()); CHECK_LE(other_class_ref.dex_profile_index, other.dex_references.size()); const DexReference& dex_ref = dex_references[class_ref.dex_profile_index]; const DexReference& other_dex_ref = other.dex_references[other_class_ref.dex_profile_index]; if (class_ref.type_index == other_class_ref.type_index && dex_ref == other_dex_ref) { found = true; break; } } if (!found) { return false; } } } return true; } bool ProfileCompilationInfo::OfflineProfileMethodInfo::operator==( const std::vector& runtime_caches) const { if (inline_caches->size() != runtime_caches.size()) { return false; } for (const auto& inline_cache_it : *inline_caches) { uint16_t dex_pc = inline_cache_it.first; const DexPcData dex_pc_data = inline_cache_it.second; // Find the corresponding inline cahce. const ProfileMethodInfo::ProfileInlineCache* runtime_cache = nullptr; for (const ProfileMethodInfo::ProfileInlineCache& pic : runtime_caches) { if (pic.dex_pc == dex_pc) { runtime_cache = &pic; break; } } // If not found, returnb false. if (runtime_cache == nullptr) { return false; } // Check that the inline cache properties match up. if (dex_pc_data.is_missing_types) { if (!runtime_cache->is_missing_types) { return false; } else { // If the inline cache is megamorphic do not check the classes (they don't matter). continue; } } if (dex_pc_data.is_megamorphic) { if (runtime_cache->classes.size() < ProfileCompilationInfo::kIndividualInlineCacheSize) { return false; } else { // If the inline cache is megamorphic do not check the classes (they don't matter). continue; } } if (dex_pc_data.classes.size() != runtime_cache->classes.size()) { return false; } // Verify that all classes matches. for (const ClassReference& class_ref : dex_pc_data.classes) { bool found = false; const DexReference& dex_ref = dex_references[class_ref.dex_profile_index]; for (const TypeReference& type_ref : runtime_cache->classes) { if (class_ref.type_index == type_ref.TypeIndex() && dex_ref.MatchesDex(type_ref.dex_file)) { found = true; break; } } if (!found) { return false; } } } // If we didn't fail until now, then the two inline caches are equal. return true; } bool ProfileCompilationInfo::IsEmpty() const { DCHECK_EQ(info_.empty(), profile_key_map_.empty()); return info_.empty(); } ProfileCompilationInfo::InlineCacheMap* ProfileCompilationInfo::DexFileData::FindOrAddHotMethod(uint16_t method_index) { if (method_index >= num_method_ids) { LOG(ERROR) << "Invalid method index " << method_index << ". num_method_ids=" << num_method_ids; return nullptr; } return &(method_map.FindOrAdd( method_index, InlineCacheMap(std::less(), allocator_->Adapter(kArenaAllocProfile)))->second); } // Mark a method as executed at least once. bool ProfileCompilationInfo::DexFileData::AddMethod(MethodHotness::Flag flags, size_t index) { if (index >= num_method_ids) { LOG(ERROR) << "Invalid method index " << index << ". num_method_ids=" << num_method_ids; return false; } SetMethodHotness(index, flags); if ((flags & MethodHotness::kFlagHot) != 0) { ProfileCompilationInfo::InlineCacheMap* result = FindOrAddHotMethod(index); DCHECK(result != nullptr); } return true; } void ProfileCompilationInfo::DexFileData::SetMethodHotness(size_t index, MethodHotness::Flag flags) { DCHECK_LT(index, num_method_ids); uint32_t lastFlag = is_for_boot_image ? MethodHotness::kFlagLastBoot : MethodHotness::kFlagLastRegular; for (uint32_t flag = MethodHotness::kFlagFirst; flag <= lastFlag; flag = flag << 1) { if (flag == MethodHotness::kFlagHot) { // There's no bit for hotness in the bitmap. // We store the hotness by recording the method in the method list. continue; } if ((flags & flag) != 0) { method_bitmap.StoreBit(MethodFlagBitmapIndex( static_cast(flag), index), /*value=*/ true); } } } ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::DexFileData::GetHotnessInfo( uint32_t dex_method_index) const { MethodHotness ret; uint32_t lastFlag = is_for_boot_image ? MethodHotness::kFlagLastBoot : MethodHotness::kFlagLastRegular; for (uint32_t flag = MethodHotness::kFlagFirst; flag <= lastFlag; flag = flag << 1) { if (flag == MethodHotness::kFlagHot) { continue; } if (method_bitmap.LoadBit(MethodFlagBitmapIndex( static_cast(flag), dex_method_index))) { ret.AddFlag(static_cast(flag)); } } auto it = method_map.find(dex_method_index); if (it != method_map.end()) { ret.SetInlineCacheMap(&it->second); ret.AddFlag(MethodHotness::kFlagHot); } return ret; } // To simplify the implementation we use the MethodHotness flag values as indexes into the internal // bitmap representation. As such, they should never change unless the profile version is updated // and the implementation changed accordingly. static_assert(ProfileCompilationInfo::MethodHotness::kFlagFirst == 1 << 0); static_assert(ProfileCompilationInfo::MethodHotness::kFlagHot == 1 << 0); static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartup == 1 << 1); static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostStartup == 1 << 2); static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastRegular == 1 << 2); static_assert(ProfileCompilationInfo::MethodHotness::kFlag32bit == 1 << 3); static_assert(ProfileCompilationInfo::MethodHotness::kFlag64bit == 1 << 4); static_assert(ProfileCompilationInfo::MethodHotness::kFlagSensitiveThread == 1 << 5); static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmStartup == 1 << 6); static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmPostStartup == 1 << 7); static_assert(ProfileCompilationInfo::MethodHotness::kFlagBoot == 1 << 8); static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostBoot == 1 << 9); static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupBin == 1 << 10); static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupMaxBin == 1 << 15); static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastBoot == 1 << 15); size_t ProfileCompilationInfo::DexFileData::MethodFlagBitmapIndex( MethodHotness::Flag flag, size_t method_index) const { DCHECK_LT(method_index, num_method_ids); // The format is [startup bitmap][post startup bitmap][AmStartup][...] // This compresses better than ([startup bit][post startup bit])* return method_index + FlagBitmapIndex(flag) * num_method_ids; } size_t ProfileCompilationInfo::DexFileData::FlagBitmapIndex(MethodHotness::Flag flag) { DCHECK(flag != MethodHotness::kFlagHot); DCHECK(IsPowerOfTwo(static_cast(flag))); // We arrange the method flags in order, starting with the startup flag. // The kFlagHot is not encoded in the bitmap and thus not expected as an // argument here. Since all the other flags start at 1 we have to subtract // one for the power of 2. return WhichPowerOf2(static_cast(flag)) - 1; } ProfileCompilationInfo::DexPcData* ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) { return &(inline_cache->FindOrAdd(dex_pc, DexPcData(&allocator_))->second); } HashSet ProfileCompilationInfo::GetClassDescriptors( const std::vector& dex_files, const ProfileSampleAnnotation& annotation) { HashSet ret; for (const DexFile* dex_file : dex_files) { const DexFileData* data = FindDexDataUsingAnnotations(dex_file, annotation); if (data != nullptr) { for (dex::TypeIndex type_idx : data->class_set) { if (!dex_file->IsTypeIndexValid(type_idx)) { // Something went bad. The profile is probably corrupted. Abort and return an emtpy set. LOG(WARNING) << "Corrupted profile: invalid type index " << type_idx.index_ << " in dex " << dex_file->GetLocation(); return HashSet(); } const dex::TypeId& type_id = dex_file->GetTypeId(type_idx); ret.insert(dex_file->GetTypeDescriptor(type_id)); } } else { VLOG(compiler) << "Failed to find profile data for " << dex_file->GetLocation(); } } return ret; } bool ProfileCompilationInfo::IsProfileFile(int fd) { // First check if it's an empty file as we allow empty profile files. // Profiles may be created by ActivityManager or installd before we manage to // process them in the runtime or profman. struct stat stat_buffer; if (fstat(fd, &stat_buffer) != 0) { return false; } if (stat_buffer.st_size == 0) { return true; } // The files is not empty. Check if it contains the profile magic. size_t byte_count = sizeof(kProfileMagic); uint8_t buffer[sizeof(kProfileMagic)]; if (!android::base::ReadFully(fd, buffer, byte_count)) { return false; } // Reset the offset to prepare the file for reading. off_t rc = TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)); if (rc == static_cast(-1)) { PLOG(ERROR) << "Failed to reset the offset"; return false; } return memcmp(buffer, kProfileMagic, byte_count) == 0; } bool ProfileCompilationInfo::UpdateProfileKeys( const std::vector>& dex_files) { for (const std::unique_ptr& dex_file : dex_files) { for (DexFileData* dex_data : info_) { if (dex_data->checksum == dex_file->GetLocationChecksum() && dex_data->num_method_ids == dex_file->NumMethodIds()) { std::string new_profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation()); std::string dex_data_base_key = GetBaseKeyFromAugmentedKey(dex_data->profile_key); if (dex_data_base_key != new_profile_key) { if (profile_key_map_.find(new_profile_key) != profile_key_map_.end()) { // We can't update the key if the new key belongs to a different dex file. LOG(ERROR) << "Cannot update profile key to " << new_profile_key << " because the new key belongs to another dex file."; return false; } profile_key_map_.erase(dex_data->profile_key); // Retain the annotation (if any) during the renaming by re-attaching the info // form the old key. profile_key_map_.Put(MigrateAnnotationInfo(new_profile_key, dex_data->profile_key), dex_data->profile_index); dex_data->profile_key = new_profile_key; } } } } return true; } bool ProfileCompilationInfo::ProfileFilterFnAcceptAll( const std::string& dex_location ATTRIBUTE_UNUSED, uint32_t checksum ATTRIBUTE_UNUSED) { return true; } void ProfileCompilationInfo::ClearData() { for (DexFileData* data : info_) { delete data; } info_.clear(); profile_key_map_.clear(); } void ProfileCompilationInfo::ClearDataAndAdjustVersion(bool for_boot_image) { ClearData(); memcpy(version_, for_boot_image ? kProfileVersionForBootImage : kProfileVersion, kProfileVersionSize); } bool ProfileCompilationInfo::IsForBootImage() const { return memcmp(version_, kProfileVersionForBootImage, sizeof(kProfileVersionForBootImage)) == 0; } const uint8_t* ProfileCompilationInfo::GetVersion() const { return version_; } bool ProfileCompilationInfo::DexFileData::ContainsClass(const dex::TypeIndex type_index) const { return class_set.find(type_index) != class_set.end(); } size_t ProfileCompilationInfo::GetSizeWarningThresholdBytes() const { return IsForBootImage() ? kSizeWarningThresholdBootBytes : kSizeWarningThresholdBytes; } size_t ProfileCompilationInfo::GetSizeErrorThresholdBytes() const { return IsForBootImage() ? kSizeErrorThresholdBootBytes : kSizeErrorThresholdBytes; } std::ostream& operator<<(std::ostream& stream, const ProfileCompilationInfo::DexReference& dex_ref) { stream << "[profile_key=" << dex_ref.profile_key << ",dex_checksum=" << std::hex << dex_ref.dex_checksum << std::dec << ",num_method_ids=" << dex_ref.num_method_ids << "]"; return stream; } bool ProfileCompilationInfo::ProfileSampleAnnotation::operator==( const ProfileSampleAnnotation& other) const { return origin_package_name_ == other.origin_package_name_; } void ProfileCompilationInfo::WriteProfileIndex( std::vector* buffer, ProfileIndexType value) const { if (IsForBootImage()) { AddUintToBuffer(buffer, value); } else { AddUintToBuffer(buffer, static_cast(value)); } } bool ProfileCompilationInfo::ReadProfileIndex( SafeBuffer& safe_buffer, ProfileIndexType* value) const { if (IsForBootImage()) { return safe_buffer.ReadUintAndAdvance(value); } else { ProfileIndexTypeRegular out; bool result = safe_buffer.ReadUintAndAdvance(&out); *value = out; return result; } } ProfileCompilationInfo::ProfileIndexType ProfileCompilationInfo::MaxProfileIndex() const { return IsForBootImage() ? std::numeric_limits::max() : std::numeric_limits::max(); } uint32_t ProfileCompilationInfo::SizeOfProfileIndexType() const { return IsForBootImage() ? sizeof(ProfileIndexType) : sizeof(ProfileIndexTypeRegular); } FlattenProfileData::FlattenProfileData() : max_aggregation_for_methods_(0), max_aggregation_for_classes_(0) { } FlattenProfileData::ItemMetadata::ItemMetadata() : flags_(0) { } FlattenProfileData::ItemMetadata::ItemMetadata(const ItemMetadata& other) : flags_(other.flags_), annotations_(other.annotations_) { } std::unique_ptr ProfileCompilationInfo::ExtractProfileData( const std::vector>& dex_files) const { std::unique_ptr result(new FlattenProfileData()); auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); }; // Iterate through all the dex files, find the methods/classes associated with each of them, // and add them to the flatten result. for (const std::unique_ptr& dex_file : dex_files) { // Find all the dex data for the given dex file. // We may have multiple dex data if the methods or classes were added using // different annotations. std::vector all_dex_data; FindAllDexData(dex_file.get(), &all_dex_data); for (const DexFileData* dex_data : all_dex_data) { // Extract the annotation from the key as we want to store it in the flatten result. ProfileSampleAnnotation annotation = GetAnnotationFromKey(dex_data->profile_key); // Check which methods from the current dex files are in the profile. for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) { MethodHotness hotness = dex_data->GetHotnessInfo(method_idx); if (!hotness.IsInProfile()) { // Not in the profile, continue. continue; } // The method is in the profile, create metadata item for it and added to the result. MethodReference ref(dex_file.get(), method_idx); FlattenProfileData::ItemMetadata& metadata = result->method_metadata_.GetOrCreate(ref, create_metadata_fn); metadata.flags_ |= hotness.flags_; metadata.annotations_.push_back(annotation); // Update the max aggregation counter for methods. // This is essentially a cache, to avoid traversing all the methods just to find out // this value. result->max_aggregation_for_methods_ = std::max( result->max_aggregation_for_methods_, static_cast(metadata.annotations_.size())); } // Check which classes from the current dex files are in the profile. for (const dex::TypeIndex& type_index : dex_data->class_set) { TypeReference ref(dex_file.get(), type_index); FlattenProfileData::ItemMetadata& metadata = result->class_metadata_.GetOrCreate(ref, create_metadata_fn); metadata.annotations_.push_back(annotation); // Update the max aggregation counter for classes. result->max_aggregation_for_classes_ = std::max( result->max_aggregation_for_classes_, static_cast(metadata.annotations_.size())); } } } return result; } void FlattenProfileData::MergeData(const FlattenProfileData& other) { auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); }; for (const auto& it : other.method_metadata_) { const MethodReference& otherRef = it.first; const FlattenProfileData::ItemMetadata otherData = it.second; const std::list& other_annotations = otherData.GetAnnotations(); FlattenProfileData::ItemMetadata& metadata = method_metadata_.GetOrCreate(otherRef, create_metadata_fn); metadata.flags_ |= otherData.GetFlags(); metadata.annotations_.insert( metadata.annotations_.end(), other_annotations.begin(), other_annotations.end()); max_aggregation_for_methods_ = std::max( max_aggregation_for_methods_, static_cast(metadata.annotations_.size())); } for (const auto& it : other.class_metadata_) { const TypeReference& otherRef = it.first; const FlattenProfileData::ItemMetadata otherData = it.second; const std::list& other_annotations = otherData.GetAnnotations(); FlattenProfileData::ItemMetadata& metadata = class_metadata_.GetOrCreate(otherRef, create_metadata_fn); metadata.flags_ |= otherData.GetFlags(); metadata.annotations_.insert( metadata.annotations_.end(), other_annotations.begin(), other_annotations.end()); max_aggregation_for_classes_ = std::max( max_aggregation_for_classes_, static_cast(metadata.annotations_.size())); } } } // namespace art