/* Copyright (C) 2016 The Android Open Source Project * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This file implements interfaces from the file jvmti.h. This implementation * is licensed under the same terms as the file jvmti.h. The * copyright and license information for the file jvmti.h follows. * * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "ti_redefine.h" #include #include #include #include #include #include #include #include #include #include "alloc_manager.h" #include "android-base/macros.h" #include "android-base/thread_annotations.h" #include "art_field-inl.h" #include "art_field.h" #include "art_jvmti.h" #include "art_method-inl.h" #include "art_method.h" #include "base/array_ref.h" #include "base/casts.h" #include "base/enums.h" #include "base/globals.h" #include "base/iteration_range.h" #include "base/length_prefixed_array.h" #include "base/locks.h" #include "base/stl_util.h" #include "base/utils.h" #include "class_linker-inl.h" #include "class_linker.h" #include "class_root-inl.h" #include "class_status.h" #include "debugger.h" #include "dex/art_dex_file_loader.h" #include "dex/class_accessor-inl.h" #include "dex/class_accessor.h" #include "dex/dex_file.h" #include "dex/dex_file_loader.h" #include "dex/dex_file_types.h" #include "dex/primitive.h" #include "dex/signature-inl.h" #include "dex/signature.h" #include "events-inl.h" #include "events.h" #include "gc/allocation_listener.h" #include "gc/heap.h" #include "gc/heap-inl.h" #include "gc/heap-visit-objects-inl.h" #include "handle.h" #include "handle_scope.h" #include "instrumentation.h" #include "intern_table.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jni/jni_env_ext-inl.h" #include "jni/jni_id_manager.h" #include "jvmti.h" #include "jvmti_allocator.h" #include "linear_alloc.h" #include "mirror/array-alloc-inl.h" #include "mirror/array.h" #include "mirror/class-alloc-inl.h" #include "mirror/class-inl.h" #include "mirror/class-refvisitor-inl.h" #include "mirror/class.h" #include "mirror/class_ext-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/dex_cache.h" #include "mirror/executable-inl.h" #include "mirror/field-inl.h" #include "mirror/field.h" #include "mirror/method.h" #include "mirror/method_handle_impl-inl.h" #include "mirror/object.h" #include "mirror/object_array-alloc-inl.h" #include "mirror/object_array-inl.h" #include "mirror/object_array.h" #include "mirror/string.h" #include "mirror/var_handle.h" #include "nativehelper/scoped_local_ref.h" #include "non_debuggable_classes.h" #include "obj_ptr.h" #include "object_lock.h" #include "reflective_value_visitor.h" #include "runtime.h" #include "runtime_globals.h" #include "scoped_thread_state_change.h" #include "stack.h" #include "thread.h" #include "thread_list.h" #include "ti_breakpoint.h" #include "ti_class_definition.h" #include "ti_class_loader.h" #include "ti_heap.h" #include "ti_logging.h" #include "ti_thread.h" #include "transform.h" #include "verifier/class_verifier.h" #include "verifier/verifier_enums.h" #include "well_known_classes.h" #include "write_barrier.h" namespace openjdkjvmti { // Debug check to force us to directly check we saw all methods and fields exactly once directly. // Normally we don't need to do this since if any are missing the count will be different constexpr bool kCheckAllMethodsSeenOnce = art::kIsDebugBuild; using android::base::StringPrintf; // A helper that fills in a classes obsolete_methods_ and obsolete_dex_caches_ classExt fields as // they are created. This ensures that we can always call any method of an obsolete ArtMethod object // almost as soon as they are created since the GetObsoleteDexCache method will succeed. class ObsoleteMap { public: art::ArtMethod* FindObsoleteVersion(art::ArtMethod* original) const REQUIRES(art::Locks::mutator_lock_, art::Roles::uninterruptible_) { auto method_pair = id_map_.find(original); if (method_pair != id_map_.end()) { art::ArtMethod* res = obsolete_methods_->GetElementPtrSize( method_pair->second, art::kRuntimePointerSize); DCHECK(res != nullptr); return res; } else { return nullptr; } } void RecordObsolete(art::ArtMethod* original, art::ArtMethod* obsolete) REQUIRES(art::Locks::mutator_lock_, art::Roles::uninterruptible_) { DCHECK(original != nullptr); DCHECK(obsolete != nullptr); int32_t slot = next_free_slot_++; DCHECK_LT(slot, obsolete_methods_->GetLength()); DCHECK(nullptr == obsolete_methods_->GetElementPtrSize(slot, art::kRuntimePointerSize)); DCHECK(nullptr == obsolete_dex_caches_->Get(slot)); obsolete_methods_->SetElementPtrSize(slot, obsolete, art::kRuntimePointerSize); obsolete_dex_caches_->Set(slot, original_dex_cache_); id_map_.insert({original, slot}); } ObsoleteMap(art::ObjPtr obsolete_methods, art::ObjPtr> obsolete_dex_caches, art::ObjPtr original_dex_cache) : next_free_slot_(0), obsolete_methods_(obsolete_methods), obsolete_dex_caches_(obsolete_dex_caches), original_dex_cache_(original_dex_cache) { // Figure out where the first unused slot in the obsolete_methods_ array is. while (obsolete_methods_->GetElementPtrSize( next_free_slot_, art::kRuntimePointerSize) != nullptr) { DCHECK(obsolete_dex_caches_->Get(next_free_slot_) != nullptr); next_free_slot_++; } // Check that the same slot in obsolete_dex_caches_ is free. DCHECK(obsolete_dex_caches_->Get(next_free_slot_) == nullptr); } struct ObsoleteMethodPair { art::ArtMethod* old_method; art::ArtMethod* obsolete_method; }; class ObsoleteMapIter { public: using iterator_category = std::forward_iterator_tag; using value_type = ObsoleteMethodPair; using difference_type = ptrdiff_t; using pointer = void; // Unsupported. using reference = void; // Unsupported. ObsoleteMethodPair operator*() const REQUIRES(art::Locks::mutator_lock_, art::Roles::uninterruptible_) { art::ArtMethod* obsolete = map_->obsolete_methods_->GetElementPtrSize( iter_->second, art::kRuntimePointerSize); DCHECK(obsolete != nullptr); return { iter_->first, obsolete }; } bool operator==(ObsoleteMapIter other) const { return map_ == other.map_ && iter_ == other.iter_; } bool operator!=(ObsoleteMapIter other) const { return !(*this == other); } ObsoleteMapIter operator++(int) { ObsoleteMapIter retval = *this; ++(*this); return retval; } ObsoleteMapIter operator++() { ++iter_; return *this; } private: ObsoleteMapIter(const ObsoleteMap* map, std::unordered_map::const_iterator iter) : map_(map), iter_(iter) {} const ObsoleteMap* map_; std::unordered_map::const_iterator iter_; friend class ObsoleteMap; }; ObsoleteMapIter end() const { return ObsoleteMapIter(this, id_map_.cend()); } ObsoleteMapIter begin() const { return ObsoleteMapIter(this, id_map_.cbegin()); } private: int32_t next_free_slot_; std::unordered_map id_map_; // Pointers to the fields in mirror::ClassExt. These can be held as ObjPtr since this is only used // when we have an exclusive mutator_lock_ (i.e. all threads are suspended). art::ObjPtr obsolete_methods_; art::ObjPtr> obsolete_dex_caches_; art::ObjPtr original_dex_cache_; }; // This visitor walks thread stacks and allocates and sets up the obsolete methods. It also does // some basic soundness checks that the obsolete method is valid. class ObsoleteMethodStackVisitor : public art::StackVisitor { protected: ObsoleteMethodStackVisitor( art::Thread* thread, art::LinearAlloc* allocator, const std::unordered_set& obsoleted_methods, ObsoleteMap* obsolete_maps) : StackVisitor(thread, /*context=*/nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), allocator_(allocator), obsoleted_methods_(obsoleted_methods), obsolete_maps_(obsolete_maps) { } ~ObsoleteMethodStackVisitor() override {} public: // Returns true if we successfully installed obsolete methods on this thread, filling // obsolete_maps_ with the translations if needed. Returns false and fills error_msg if we fail. // The stack is cleaned up when we fail. static void UpdateObsoleteFrames( art::Thread* thread, art::LinearAlloc* allocator, const std::unordered_set& obsoleted_methods, ObsoleteMap* obsolete_maps) REQUIRES(art::Locks::mutator_lock_) { ObsoleteMethodStackVisitor visitor(thread, allocator, obsoleted_methods, obsolete_maps); visitor.WalkStack(); } bool VisitFrame() override REQUIRES(art::Locks::mutator_lock_) { art::ScopedAssertNoThreadSuspension snts("Fixing up the stack for obsolete methods."); art::ArtMethod* old_method = GetMethod(); if (obsoleted_methods_.find(old_method) != obsoleted_methods_.end()) { // We cannot ensure that the right dex file is used in inlined frames so we don't support // redefining them. DCHECK(!IsInInlinedFrame()) << "Inlined frames are not supported when using redefinition: " << old_method->PrettyMethod() << " is inlined into " << GetOuterMethod()->PrettyMethod(); art::ArtMethod* new_obsolete_method = obsolete_maps_->FindObsoleteVersion(old_method); if (new_obsolete_method == nullptr) { // Create a new Obsolete Method and put it in the list. art::Runtime* runtime = art::Runtime::Current(); art::ClassLinker* cl = runtime->GetClassLinker(); auto ptr_size = cl->GetImagePointerSize(); const size_t method_size = art::ArtMethod::Size(ptr_size); auto* method_storage = allocator_->Alloc(art::Thread::Current(), method_size); CHECK(method_storage != nullptr) << "Unable to allocate storage for obsolete version of '" << old_method->PrettyMethod() << "'"; new_obsolete_method = new (method_storage) art::ArtMethod(); new_obsolete_method->CopyFrom(old_method, ptr_size); DCHECK_EQ(new_obsolete_method->GetDeclaringClass(), old_method->GetDeclaringClass()); new_obsolete_method->SetIsObsolete(); new_obsolete_method->SetDontCompile(); cl->SetEntryPointsForObsoleteMethod(new_obsolete_method); obsolete_maps_->RecordObsolete(old_method, new_obsolete_method); } DCHECK(new_obsolete_method != nullptr); SetMethod(new_obsolete_method); } return true; } private: // The linear allocator we should use to make new methods. art::LinearAlloc* allocator_; // The set of all methods which could be obsoleted. const std::unordered_set& obsoleted_methods_; // A map from the original to the newly allocated obsolete method for frames on this thread. The // values in this map are added to the obsolete_methods_ (and obsolete_dex_caches_) fields of // the redefined classes ClassExt as it is filled. ObsoleteMap* obsolete_maps_; }; template jvmtiError Redefiner::IsModifiableClassGeneric(jvmtiEnv* env, jclass klass, jboolean* is_redefinable) { if (env == nullptr) { return ERR(INVALID_ENVIRONMENT); } art::Thread* self = art::Thread::Current(); art::ScopedObjectAccess soa(self); art::StackHandleScope<1> hs(self); art::ObjPtr obj(self->DecodeJObject(klass)); if (obj.IsNull() || !obj->IsClass()) { return ERR(INVALID_CLASS); } art::Handle h_klass(hs.NewHandle(obj->AsClass())); std::string err_unused; *is_redefinable = Redefiner::GetClassRedefinitionError(h_klass, &err_unused) != ERR(UNMODIFIABLE_CLASS) ? JNI_TRUE : JNI_FALSE; return OK; } jvmtiError Redefiner::IsStructurallyModifiableClass(jvmtiEnv* env, jclass klass, jboolean* is_redefinable) { return Redefiner::IsModifiableClassGeneric( env, klass, is_redefinable); } jvmtiError Redefiner::IsModifiableClass(jvmtiEnv* env, jclass klass, jboolean* is_redefinable) { return Redefiner::IsModifiableClassGeneric(env, klass, is_redefinable); } template jvmtiError Redefiner::GetClassRedefinitionError(jclass klass, /*out*/ std::string* error_msg) { art::Thread* self = art::Thread::Current(); art::ScopedObjectAccess soa(self); art::StackHandleScope<1> hs(self); art::ObjPtr obj(self->DecodeJObject(klass)); if (obj.IsNull() || !obj->IsClass()) { return ERR(INVALID_CLASS); } art::Handle h_klass(hs.NewHandle(obj->AsClass())); return Redefiner::GetClassRedefinitionError(h_klass, error_msg); } template jvmtiError Redefiner::GetClassRedefinitionError(art::Handle klass, /*out*/ std::string* error_msg) { art::Thread* self = art::Thread::Current(); if (!klass->IsResolved()) { // It's only a problem to try to retransform/redefine a unprepared class if it's happening on // the same thread as the class-linking process. If it's on another thread we will be able to // wait for the preparation to finish and continue from there. if (klass->GetLockOwnerThreadId() == self->GetThreadId()) { *error_msg = "Modification of class " + klass->PrettyClass() + " from within the classes ClassLoad callback is not supported to prevent deadlocks." + " Please use ClassFileLoadHook directly instead."; return ERR(INTERNAL); } else { LOG(WARNING) << klass->PrettyClass() << " is not yet resolved. Attempting to transform " << "it could cause arbitrary length waits as the class is being resolved."; } } if (klass->IsPrimitive()) { *error_msg = "Modification of primitive classes is not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsInterface()) { *error_msg = "Modification of Interface classes is currently not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsStringClass()) { *error_msg = "Modification of String class is not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsArrayClass()) { *error_msg = "Modification of Array classes is not supported"; return ERR(UNMODIFIABLE_CLASS); } else if (klass->IsProxyClass()) { *error_msg = "Modification of proxy classes is not supported"; return ERR(UNMODIFIABLE_CLASS); } for (jclass c : art::NonDebuggableClasses::GetNonDebuggableClasses()) { if (klass.Get() == self->DecodeJObject(c)->AsClass()) { *error_msg = "Class might have stack frames that cannot be made obsolete"; return ERR(UNMODIFIABLE_CLASS); } } if (kType == RedefinitionType::kStructural) { // Class initialization interacts really badly with structural redefinition since we need to // make the old class obsolete. We currently just blanket don't allow it. // TODO It might be nice to allow this at some point. if (klass->IsInitializing() && !klass->IsInitialized() && klass->GetClinitThreadId() == self->GetTid()) { // We are in the class-init running on this thread. *error_msg = "Modification of class " + klass->PrettyClass() + " during class" + " initialization is not allowed."; return ERR(INTERNAL); } if (!art::Runtime::Current()->GetClassLinker()->EnsureInitialized( self, klass, /*can_init_fields=*/true, /*can_init_parents=*/true)) { self->AssertPendingException(); *error_msg = "Class " + klass->PrettyClass() + " failed initialization. Structural" + " redefinition of erroneous classes is not allowed. Failure was: " + self->GetException()->Dump(); self->ClearException(); return ERR(INVALID_CLASS); } if (klass->IsMirrored()) { std::string pc(klass->PrettyClass()); *error_msg = StringPrintf("Class %s is a mirror class and cannot be structurally redefined.", pc.c_str()); return ERR(UNMODIFIABLE_CLASS); } // Check Thread specifically since it's not a root but too many things reach into it with Unsafe // too allow structural redefinition. if (klass->IsAssignableFrom( self->DecodeJObject(art::WellKnownClasses::java_lang_Thread)->AsClass())) { *error_msg = "java.lang.Thread has fields accessed using sun.misc.unsafe directly. It is not " "safe to structurally redefine it."; return ERR(UNMODIFIABLE_CLASS); } auto has_pointer_marker = [](art::ObjPtr k) REQUIRES_SHARED(art::Locks::mutator_lock_) { // Check for fields/methods which were returned before moving to index jni id type. // TODO We might want to rework how this is done. Once full redefinition is implemented we // will need to check any subtypes too. art::ObjPtr ext(k->GetExtData()); if (!ext.IsNull()) { if (ext->HasInstanceFieldPointerIdMarker() || ext->HasMethodPointerIdMarker() || ext->HasStaticFieldPointerIdMarker()) { return true; } } return false; }; if (has_pointer_marker(klass.Get())) { *error_msg = StringPrintf("%s has active pointer jni-ids and cannot be redefined structurally", klass->PrettyClass().c_str()); return ERR(UNMODIFIABLE_CLASS); } jvmtiError res = OK; art::ClassFuncVisitor cfv( [&](art::ObjPtr k) REQUIRES_SHARED(art::Locks::mutator_lock_) { // if there is any class 'K' that is a subtype (i.e. extends) klass and has pointer-jni-ids // we cannot structurally redefine the class 'k' since we would structurally redefine the // subtype. if (k->IsLoaded() && klass->IsAssignableFrom(k) && has_pointer_marker(k)) { *error_msg = StringPrintf( "%s has active pointer jni-ids from subtype %s and cannot be redefined structurally", klass->PrettyClass().c_str(), k->PrettyClass().c_str()); res = ERR(UNMODIFIABLE_CLASS); return false; } return true; }); art::Runtime::Current()->GetClassLinker()->VisitClasses(&cfv); return res; } return OK; } template jvmtiError Redefiner::GetClassRedefinitionError( art::Handle klass, /*out*/ std::string* error_msg); template jvmtiError Redefiner::GetClassRedefinitionError( art::Handle klass, /*out*/ std::string* error_msg); // Moves dex data to an anonymous, read-only mmap'd region. art::MemMap Redefiner::MoveDataToMemMap(const std::string& original_location, art::ArrayRef data, std::string* error_msg) { art::MemMap map = art::MemMap::MapAnonymous( StringPrintf("%s-transformed", original_location.c_str()).c_str(), data.size(), PROT_READ|PROT_WRITE, /*low_4gb=*/ false, error_msg); if (LIKELY(map.IsValid())) { memcpy(map.Begin(), data.data(), data.size()); // Make the dex files mmap read only. This matches how other DexFiles are mmaped and prevents // programs from corrupting it. map.Protect(PROT_READ); } return map; } Redefiner::ClassRedefinition::ClassRedefinition( Redefiner* driver, jclass klass, const art::DexFile* redefined_dex_file, const char* class_sig, art::ArrayRef orig_dex_file) : driver_(driver), klass_(klass), dex_file_(redefined_dex_file), class_sig_(class_sig), original_dex_file_(orig_dex_file) { GetMirrorClass()->MonitorEnter(driver_->self_); } Redefiner::ClassRedefinition::~ClassRedefinition() { if (driver_ != nullptr) { GetMirrorClass()->MonitorExit(driver_->self_); } } template jvmtiError Redefiner::RedefineClassesGeneric(jvmtiEnv* jenv, jint class_count, const jvmtiClassDefinition* definitions) { art::Runtime* runtime = art::Runtime::Current(); art::Thread* self = art::Thread::Current(); ArtJvmTiEnv* env = ArtJvmTiEnv::AsArtJvmTiEnv(jenv); if (env == nullptr) { JVMTI_LOG(WARNING, env) << "FAILURE TO REDEFINE env was null!"; return ERR(INVALID_ENVIRONMENT); } else if (class_count < 0) { JVMTI_LOG(WARNING, env) << "FAILURE TO REDEFINE class_count was less then 0"; return ERR(ILLEGAL_ARGUMENT); } else if (class_count == 0) { // We don't actually need to do anything. Just return OK. return OK; } else if (definitions == nullptr) { JVMTI_LOG(WARNING, env) << "FAILURE TO REDEFINE null definitions!"; return ERR(NULL_POINTER); } std::string error_msg; std::vector def_vector; def_vector.reserve(class_count); for (jint i = 0; i < class_count; i++) { jvmtiError res = Redefiner::GetClassRedefinitionError( definitions[i].klass, &error_msg); if (res != OK) { JVMTI_LOG(WARNING, env) << "FAILURE TO REDEFINE " << error_msg; return res; } ArtClassDefinition def; res = def.Init(self, definitions[i]); if (res != OK) { JVMTI_LOG(WARNING, env) << "FAILURE TO REDEFINE bad definition " << i; return res; } def_vector.push_back(std::move(def)); } // Call all the transformation events. Transformer::RetransformClassesDirect(self, &def_vector); if (kType == RedefinitionType::kStructural) { Transformer::RetransformClassesDirect(self, &def_vector); } jvmtiError res = RedefineClassesDirect(env, runtime, self, def_vector, kType, &error_msg); if (res != OK) { JVMTI_LOG(WARNING, env) << "FAILURE TO REDEFINE " << error_msg; } return res; } jvmtiError Redefiner::StructurallyRedefineClasses(jvmtiEnv* jenv, jint class_count, const jvmtiClassDefinition* definitions) { ArtJvmTiEnv* art_env = ArtJvmTiEnv::AsArtJvmTiEnv(jenv); if (art_env == nullptr) { return ERR(INVALID_ENVIRONMENT); } else if (art_env->capabilities.can_redefine_classes != 1) { return ERR(MUST_POSSESS_CAPABILITY); } return RedefineClassesGeneric(jenv, class_count, definitions); } jvmtiError Redefiner::RedefineClasses(jvmtiEnv* jenv, jint class_count, const jvmtiClassDefinition* definitions) { return RedefineClassesGeneric(jenv, class_count, definitions); } jvmtiError Redefiner::StructurallyRedefineClassDirect(jvmtiEnv* env, jclass klass, const unsigned char* data, jint data_size) { if (env == nullptr) { return ERR(INVALID_ENVIRONMENT); } else if (ArtJvmTiEnv::AsArtJvmTiEnv(env)->capabilities.can_redefine_classes != 1) { JVMTI_LOG(INFO, env) << "Does not have can_redefine_classes cap!"; return ERR(MUST_POSSESS_CAPABILITY); } std::vector acds; ArtClassDefinition acd; jvmtiError err = acd.Init( art::Thread::Current(), jvmtiClassDefinition{ .klass = klass, .class_byte_count = data_size, .class_bytes = data }); if (err != OK) { return err; } acds.push_back(std::move(acd)); std::string err_msg; err = RedefineClassesDirect(ArtJvmTiEnv::AsArtJvmTiEnv(env), art::Runtime::Current(), art::Thread::Current(), acds, RedefinitionType::kStructural, &err_msg); if (err != OK) { JVMTI_LOG(WARNING, env) << "Failed structural redefinition: " << err_msg; } return err; } jvmtiError Redefiner::RedefineClassesDirect(ArtJvmTiEnv* env, art::Runtime* runtime, art::Thread* self, const std::vector& definitions, RedefinitionType type, std::string* error_msg) { DCHECK(env != nullptr); if (definitions.size() == 0) { // We don't actually need to do anything. Just return OK. return OK; } // We need to fiddle with the verification class flags. To do this we need to make sure there are // no concurrent redefinitions of the same class at the same time. For simplicity and because // this is not expected to be a common occurrence we will just wrap the whole thing in a TOP-level // lock. // Stop JIT for the duration of this redefine since the JIT might concurrently compile a method we // are going to redefine. // TODO We should prevent user-code suspensions to make sure this isn't held for too long. art::jit::ScopedJitSuspend suspend_jit; // Get shared mutator lock so we can lock all the classes. art::ScopedObjectAccess soa(self); Redefiner r(env, runtime, self, type, error_msg); for (const ArtClassDefinition& def : definitions) { // Only try to transform classes that have been modified. if (def.IsModified()) { jvmtiError res = r.AddRedefinition(env, def); if (res != OK) { return res; } } } return r.Run(); } jvmtiError Redefiner::AddRedefinition(ArtJvmTiEnv* env, const ArtClassDefinition& def) { std::string original_dex_location; jvmtiError ret = OK; if ((ret = GetClassLocation(env, def.GetClass(), &original_dex_location))) { *error_msg_ = "Unable to get original dex file location!"; return ret; } char* generic_ptr_unused = nullptr; char* signature_ptr = nullptr; if ((ret = env->GetClassSignature(def.GetClass(), &signature_ptr, &generic_ptr_unused)) != OK) { *error_msg_ = "Unable to get class signature!"; return ret; } JvmtiUniquePtr generic_unique_ptr(MakeJvmtiUniquePtr(env, generic_ptr_unused)); JvmtiUniquePtr signature_unique_ptr(MakeJvmtiUniquePtr(env, signature_ptr)); art::MemMap map = MoveDataToMemMap(original_dex_location, def.GetDexData(), error_msg_); std::ostringstream os; if (!map.IsValid()) { os << "Failed to create anonymous mmap for modified dex file of class " << def.GetName() << "in dex file " << original_dex_location << " because: " << *error_msg_; *error_msg_ = os.str(); return ERR(OUT_OF_MEMORY); } if (map.Size() < sizeof(art::DexFile::Header)) { *error_msg_ = "Could not read dex file header because dex_data was too short"; return ERR(INVALID_CLASS_FORMAT); } std::string name = map.GetName(); uint32_t checksum = reinterpret_cast(map.Begin())->checksum_; const art::ArtDexFileLoader dex_file_loader; std::unique_ptr dex_file(dex_file_loader.Open(name, checksum, std::move(map), /*verify=*/true, /*verify_checksum=*/true, error_msg_)); if (dex_file.get() == nullptr) { os << "Unable to load modified dex file for " << def.GetName() << ": " << *error_msg_; *error_msg_ = os.str(); return ERR(INVALID_CLASS_FORMAT); } redefinitions_.push_back( Redefiner::ClassRedefinition(this, def.GetClass(), dex_file.release(), signature_ptr, def.GetNewOriginalDexFile())); return OK; } art::ObjPtr Redefiner::ClassRedefinition::GetMirrorClass() { return driver_->self_->DecodeJObject(klass_)->AsClass(); } art::ObjPtr Redefiner::ClassRedefinition::GetClassLoader() { return GetMirrorClass()->GetClassLoader(); } art::mirror::DexCache* Redefiner::ClassRedefinition::CreateNewDexCache( art::Handle loader) { art::StackHandleScope<2> hs(driver_->self_); art::ClassLinker* cl = driver_->runtime_->GetClassLinker(); art::Handle cache(hs.NewHandle( art::ObjPtr::DownCast( art::GetClassRoot(cl)->AllocObject(driver_->self_)))); if (cache.IsNull()) { driver_->self_->AssertPendingOOMException(); return nullptr; } art::Handle location(hs.NewHandle( cl->GetInternTable()->InternStrong(dex_file_->GetLocation().c_str()))); if (location.IsNull()) { driver_->self_->AssertPendingOOMException(); return nullptr; } art::WriterMutexLock mu(driver_->self_, *art::Locks::dex_lock_); art::mirror::DexCache::InitializeDexCache(driver_->self_, cache.Get(), location.Get(), dex_file_.get(), loader.IsNull() ? driver_->runtime_->GetLinearAlloc() : loader->GetAllocator(), art::kRuntimePointerSize); return cache.Get(); } void Redefiner::RecordFailure(jvmtiError result, const std::string& class_sig, const std::string& error_msg) { *error_msg_ = StringPrintf("Unable to perform redefinition of '%s': %s", class_sig.c_str(), error_msg.c_str()); result_ = result; } art::mirror::Object* Redefiner::ClassRedefinition::AllocateOrGetOriginalDexFile() { // If we have been specifically given a new set of bytes use that if (original_dex_file_.size() != 0) { return art::mirror::ByteArray::AllocateAndFill( driver_->self_, reinterpret_cast(original_dex_file_.data()), original_dex_file_.size()).Ptr(); } // See if we already have one set. art::ObjPtr ext(GetMirrorClass()->GetExtData()); if (!ext.IsNull()) { art::ObjPtr old_original_dex_file(ext->GetOriginalDexFile()); if (!old_original_dex_file.IsNull()) { // We do. Use it. return old_original_dex_file.Ptr(); } } // return the current dex_cache which has the dex file in it. art::ObjPtr current_dex_cache(GetMirrorClass()->GetDexCache()); // TODO Handle this or make it so it cannot happen. if (current_dex_cache->GetDexFile()->NumClassDefs() != 1) { LOG(WARNING) << "Current dex file has more than one class in it. Calling RetransformClasses " << "on this class might fail if no transformations are applied to it!"; } return current_dex_cache.Ptr(); } struct CallbackCtx { ObsoleteMap* obsolete_map; art::LinearAlloc* allocator; std::unordered_set obsolete_methods; explicit CallbackCtx(ObsoleteMap* map, art::LinearAlloc* alloc) : obsolete_map(map), allocator(alloc) {} }; void DoAllocateObsoleteMethodsCallback(art::Thread* t, void* vdata) NO_THREAD_SAFETY_ANALYSIS { CallbackCtx* data = reinterpret_cast(vdata); ObsoleteMethodStackVisitor::UpdateObsoleteFrames(t, data->allocator, data->obsolete_methods, data->obsolete_map); } // This creates any ArtMethod* structures needed for obsolete methods and ensures that the stack is // updated so they will be run. // TODO Rewrite so we can do this only once regardless of how many redefinitions there are. void Redefiner::ClassRedefinition::FindAndAllocateObsoleteMethods( art::ObjPtr art_klass) { DCHECK(!IsStructuralRedefinition()); art::ScopedAssertNoThreadSuspension ns("No thread suspension during thread stack walking"); art::ObjPtr ext = art_klass->GetExtData(); CHECK(ext->GetObsoleteMethods() != nullptr); art::ClassLinker* linker = driver_->runtime_->GetClassLinker(); // This holds pointers to the obsolete methods map fields which are updated as needed. ObsoleteMap map(ext->GetObsoleteMethods(), ext->GetObsoleteDexCaches(), art_klass->GetDexCache()); CallbackCtx ctx(&map, linker->GetAllocatorForClassLoader(art_klass->GetClassLoader())); // Add all the declared methods to the map for (auto& m : art_klass->GetDeclaredMethods(art::kRuntimePointerSize)) { if (m.IsIntrinsic()) { LOG(WARNING) << "Redefining intrinsic method " << m.PrettyMethod() << ". This may cause the " << "unexpected use of the original definition of " << m.PrettyMethod() << "in " << "methods that have already been compiled."; } // It is possible to simply filter out some methods where they cannot really become obsolete, // such as native methods and keep their original (possibly optimized) implementations. We don't // do this, however, since we would need to mark these functions (still in the classes // declared_methods array) as obsolete so we will find the correct dex file to get meta-data // from (for example about stack-frame size). Furthermore we would be unable to get some useful // error checking from the interpreter which ensure we don't try to start executing obsolete // methods. ctx.obsolete_methods.insert(&m); } { art::MutexLock mu(driver_->self_, *art::Locks::thread_list_lock_); art::ThreadList* list = art::Runtime::Current()->GetThreadList(); list->ForEach(DoAllocateObsoleteMethodsCallback, static_cast(&ctx)); // After we've done walking all threads' stacks and updating method pointers on them, // update JIT data structures (used by the stack walk above) to point to the new methods. art::jit::Jit* jit = art::Runtime::Current()->GetJit(); if (jit != nullptr) { for (const ObsoleteMap::ObsoleteMethodPair& it : *ctx.obsolete_map) { // Notify the JIT we are making this obsolete method. It will update the jit's internal // structures to keep track of the new obsolete method. jit->GetCodeCache()->MoveObsoleteMethod(it.old_method, it.obsolete_method); } } } } namespace { template struct SignatureType {}; template <> struct SignatureType { using type = std::string_view; }; template <> struct SignatureType { using type = art::Signature; }; template struct NameAndSignature { public: using SigType = typename SignatureType::type; NameAndSignature(const art::DexFile* dex_file, uint32_t id); NameAndSignature(const std::string_view& name, const SigType& sig) : name_(name), sig_(sig) {} bool operator==(const NameAndSignature& o) { return name_ == o.name_ && sig_ == o.sig_; } std::ostream& dump(std::ostream& os) const { return os << "'" << name_ << "' (sig: " << sig_ << ")"; } std::string ToString() const { std::ostringstream os; os << *this; return os.str(); } std::string_view name_; SigType sig_; }; template std::ostream& operator<<(std::ostream& os, const NameAndSignature& nas) { return nas.dump(os); } using FieldNameAndSignature = NameAndSignature; template <> FieldNameAndSignature::NameAndSignature(const art::DexFile* dex_file, uint32_t id) : FieldNameAndSignature(dex_file->GetFieldName(dex_file->GetFieldId(id)), dex_file->GetFieldTypeDescriptor(dex_file->GetFieldId(id))) {} using MethodNameAndSignature = NameAndSignature; template <> MethodNameAndSignature::NameAndSignature(const art::DexFile* dex_file, uint32_t id) : MethodNameAndSignature(dex_file->GetMethodName(dex_file->GetMethodId(id)), dex_file->GetMethodSignature(dex_file->GetMethodId(id))) {} } // namespace void Redefiner::ClassRedefinition::RecordNewMethodAdded() { DCHECK(driver_->IsStructuralRedefinition()); added_methods_ = true; } void Redefiner::ClassRedefinition::RecordNewFieldAdded() { DCHECK(driver_->IsStructuralRedefinition()); added_fields_ = true; } bool Redefiner::ClassRedefinition::CheckMethods() { art::StackHandleScope<1> hs(driver_->self_); art::Handle h_klass(hs.NewHandle(GetMirrorClass())); DCHECK_EQ(dex_file_->NumClassDefs(), 1u); // Make sure we have the same number of methods (or the same or greater if we're structural). art::ClassAccessor accessor(*dex_file_, dex_file_->GetClassDef(0)); uint32_t num_new_method = accessor.NumMethods(); uint32_t num_old_method = h_klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize).size(); const bool is_structural = driver_->IsStructuralRedefinition(); if (!is_structural && num_new_method != num_old_method) { bool bigger = num_new_method > num_old_method; RecordFailure(bigger ? ERR(UNSUPPORTED_REDEFINITION_METHOD_ADDED) : ERR(UNSUPPORTED_REDEFINITION_METHOD_DELETED), StringPrintf("Total number of declared methods changed from %d to %d", num_old_method, num_new_method)); return false; } // Skip all of the fields. We should have already checked this. // Check each of the methods. NB we don't need to specifically check for removals since the 2 dex // files have the same number of methods, which means there must be an equal amount of additions // and removals. We should have already checked the fields. const art::DexFile& old_dex_file = h_klass->GetDexFile(); art::ClassAccessor old_accessor(old_dex_file, *h_klass->GetClassDef()); // We need this to check for methods going missing in structural cases. std::vector seen_old_methods( (kCheckAllMethodsSeenOnce || is_structural) ? old_accessor.NumMethods() : 0, false); const auto old_methods = old_accessor.GetMethods(); for (const art::ClassAccessor::Method& new_method : accessor.GetMethods()) { // Get the data on the method we are searching for MethodNameAndSignature new_method_id(dex_file_.get(), new_method.GetIndex()); const auto old_iter = std::find_if(old_methods.cbegin(), old_methods.cend(), [&](const auto& current_old_method) { MethodNameAndSignature old_method_id(&old_dex_file, current_old_method.GetIndex()); return old_method_id == new_method_id; }); if (!new_method.IsStaticOrDirect()) { RecordHasVirtualMembers(); } if (old_iter == old_methods.cend()) { if (is_structural) { RecordNewMethodAdded(); } else { RecordFailure( ERR(UNSUPPORTED_REDEFINITION_METHOD_ADDED), StringPrintf("Unknown virtual method %s was added!", new_method_id.ToString().c_str())); return false; } } else if (new_method.GetAccessFlags() != old_iter->GetAccessFlags()) { RecordFailure( ERR(UNSUPPORTED_REDEFINITION_METHOD_MODIFIERS_CHANGED), StringPrintf("method %s had different access flags", new_method_id.ToString().c_str())); return false; } else if (kCheckAllMethodsSeenOnce || is_structural) { // We only need this if we are structural. size_t off = std::distance(old_methods.cbegin(), old_iter); DCHECK(!seen_old_methods[off]) << "field at " << off << "(" << MethodNameAndSignature(&old_dex_file, old_iter->GetIndex()) << ") already seen?"; seen_old_methods[off] = true; } } if ((kCheckAllMethodsSeenOnce || is_structural) && !std::all_of(seen_old_methods.cbegin(), seen_old_methods.cend(), [](auto x) { return x; })) { DCHECK(is_structural) << "We should have hit an earlier failure before getting here!"; auto first_fail = std::find_if(seen_old_methods.cbegin(), seen_old_methods.cend(), [](auto x) { return !x; }); auto off = std::distance(seen_old_methods.cbegin(), first_fail); auto fail = old_methods.cbegin(); std::advance(fail, off); RecordFailure( ERR(UNSUPPORTED_REDEFINITION_METHOD_DELETED), StringPrintf("Method %s missing!", MethodNameAndSignature(&old_dex_file, fail->GetIndex()).ToString().c_str())); return false; } return true; } bool Redefiner::ClassRedefinition::CheckFields() { art::StackHandleScope<1> hs(driver_->self_); art::Handle h_klass(hs.NewHandle(GetMirrorClass())); DCHECK_EQ(dex_file_->NumClassDefs(), 1u); art::ClassAccessor new_accessor(*dex_file_, dex_file_->GetClassDef(0)); const art::DexFile& old_dex_file = h_klass->GetDexFile(); art::ClassAccessor old_accessor(old_dex_file, *h_klass->GetClassDef()); // Instance and static fields can be differentiated by their flags so no need to check them // separately. std::vector seen_old_fields(old_accessor.NumFields(), false); const auto old_fields = old_accessor.GetFields(); for (const art::ClassAccessor::Field& new_field : new_accessor.GetFields()) { // Get the data on the method we are searching for FieldNameAndSignature new_field_id(dex_file_.get(), new_field.GetIndex()); const auto old_iter = std::find_if(old_fields.cbegin(), old_fields.cend(), [&](const auto& old_iter) { FieldNameAndSignature old_field_id(&old_dex_file, old_iter.GetIndex()); return old_field_id == new_field_id; }); if (!new_field.IsStatic()) { RecordHasVirtualMembers(); } if (old_iter == old_fields.cend()) { if (driver_->IsStructuralRedefinition()) { RecordNewFieldAdded(); } else { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED), StringPrintf("Unknown field %s added!", new_field_id.ToString().c_str())); return false; } } else if (new_field.GetAccessFlags() != old_iter->GetAccessFlags()) { RecordFailure( ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED), StringPrintf("Field %s had different access flags", new_field_id.ToString().c_str())); return false; } else { size_t off = std::distance(old_fields.cbegin(), old_iter); DCHECK(!seen_old_fields[off]) << "field at " << off << "(" << FieldNameAndSignature(&old_dex_file, old_iter->GetIndex()) << ") already seen?"; seen_old_fields[off] = true; } } if (!std::all_of(seen_old_fields.cbegin(), seen_old_fields.cend(), [](auto x) { return x; })) { auto first_fail = std::find_if(seen_old_fields.cbegin(), seen_old_fields.cend(), [](auto x) { return !x; }); auto off = std::distance(seen_old_fields.cbegin(), first_fail); auto fail = old_fields.cbegin(); std::advance(fail, off); RecordFailure( ERR(UNSUPPORTED_REDEFINITION_SCHEMA_CHANGED), StringPrintf("Field %s is missing!", FieldNameAndSignature(&old_dex_file, fail->GetIndex()).ToString().c_str())); return false; } return true; } bool Redefiner::ClassRedefinition::CheckClass() { art::StackHandleScope<1> hs(driver_->self_); // Easy check that only 1 class def is present. if (dex_file_->NumClassDefs() != 1) { RecordFailure(ERR(ILLEGAL_ARGUMENT), StringPrintf("Expected 1 class def in dex file but found %d", dex_file_->NumClassDefs())); return false; } // Get the ClassDef from the new DexFile. // Since the dex file has only a single class def the index is always 0. const art::dex::ClassDef& def = dex_file_->GetClassDef(0); // Get the class as it is now. art::Handle current_class(hs.NewHandle(GetMirrorClass())); // Check the access flags didn't change. if (def.GetJavaAccessFlags() != (current_class->GetAccessFlags() & art::kAccValidClassFlags)) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_CLASS_MODIFIERS_CHANGED), "Cannot change modifiers of class by redefinition"); return false; } // Check class name. // These should have been checked by the dexfile verifier on load. DCHECK_NE(def.class_idx_, art::dex::TypeIndex::Invalid()) << "Invalid type index"; const char* descriptor = dex_file_->StringByTypeIdx(def.class_idx_); DCHECK(descriptor != nullptr) << "Invalid dex file structure!"; if (!current_class->DescriptorEquals(descriptor)) { std::string storage; RecordFailure(ERR(NAMES_DONT_MATCH), StringPrintf("expected file to contain class called '%s' but found '%s'!", current_class->GetDescriptor(&storage), descriptor)); return false; } if (current_class->IsObjectClass()) { if (def.superclass_idx_ != art::dex::TypeIndex::Invalid()) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass added!"); return false; } } else { const char* super_descriptor = dex_file_->StringByTypeIdx(def.superclass_idx_); DCHECK(descriptor != nullptr) << "Invalid dex file structure!"; if (!current_class->GetSuperClass()->DescriptorEquals(super_descriptor)) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Superclass changed"); return false; } } const art::dex::TypeList* interfaces = dex_file_->GetInterfacesList(def); if (interfaces == nullptr) { if (current_class->NumDirectInterfaces() != 0) { // TODO Support this for kStructural. RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added"); return false; } } else { DCHECK(!current_class->IsProxyClass()); const art::dex::TypeList* current_interfaces = current_class->GetInterfaceTypeList(); if (current_interfaces == nullptr || current_interfaces->Size() != interfaces->Size()) { // TODO Support this for kStructural. RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces added or removed"); return false; } // The order of interfaces is (barely) meaningful so we error if it changes. const art::DexFile& orig_dex_file = current_class->GetDexFile(); for (uint32_t i = 0; i < interfaces->Size(); i++) { if (strcmp( dex_file_->StringByTypeIdx(interfaces->GetTypeItem(i).type_idx_), orig_dex_file.StringByTypeIdx(current_interfaces->GetTypeItem(i).type_idx_)) != 0) { RecordFailure(ERR(UNSUPPORTED_REDEFINITION_HIERARCHY_CHANGED), "Interfaces changed or re-ordered"); return false; } } } return true; } bool Redefiner::ClassRedefinition::CheckRedefinable() { std::string err; art::StackHandleScope<1> hs(driver_->self_); art::Handle h_klass(hs.NewHandle(GetMirrorClass())); jvmtiError res; if (driver_->type_ == RedefinitionType::kStructural && this->IsStructuralRedefinition()) { res = Redefiner::GetClassRedefinitionError(h_klass, &err); } else { res = Redefiner::GetClassRedefinitionError(h_klass, &err); } if (res != OK) { RecordFailure(res, err); return false; } else { return true; } } bool Redefiner::ClassRedefinition::CheckRedefinitionIsValid() { return CheckClass() && CheckFields() && CheckMethods() && CheckRedefinable(); } class RedefinitionDataIter; // A wrapper that lets us hold onto the arbitrary sized data needed for redefinitions in a // reasonable way. This adds no fields to the normal ObjectArray. By doing this we can avoid // having to deal with the fact that we need to hold an arbitrary number of references live. class RedefinitionDataHolder { public: enum DataSlot : int32_t { kSlotSourceClassLoader = 0, kSlotJavaDexFile = 1, kSlotNewDexFileCookie = 2, kSlotNewDexCache = 3, kSlotMirrorClass = 4, kSlotOrigDexFile = 5, kSlotOldObsoleteMethods = 6, kSlotOldDexCaches = 7, kSlotNewClassObject = 8, kSlotOldInstanceObjects = 9, kSlotNewInstanceObjects = 10, kSlotOldClasses = 11, kSlotNewClasses = 12, // Must be last one. kNumSlots = 13, }; // This needs to have a HandleScope passed in that is capable of creating a new Handle without // overflowing. Only one handle will be created. This object has a lifetime identical to that of // the passed in handle-scope. RedefinitionDataHolder(art::StackHandleScope<1>* hs, art::Runtime* runtime, art::Thread* self, std::vector* redefinitions) REQUIRES_SHARED(art::Locks::mutator_lock_) : arr_(hs->NewHandle(art::mirror::ObjectArray::Alloc( self, art::GetClassRoot>(runtime->GetClassLinker()), redefinitions->size() * kNumSlots))), redefinitions_(redefinitions), initialized_(redefinitions_->size(), false), actually_structural_(redefinitions_->size(), false), initial_structural_(redefinitions_->size(), false) {} bool IsNull() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return arr_.IsNull(); } art::ObjPtr GetSourceClassLoader(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr::DownCast( GetSlot(klass_index, kSlotSourceClassLoader)); } art::ObjPtr GetJavaDexFile(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return GetSlot(klass_index, kSlotJavaDexFile); } art::ObjPtr GetNewDexFileCookie(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr::DownCast( GetSlot(klass_index, kSlotNewDexFileCookie)); } art::ObjPtr GetNewDexCache(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr::DownCast(GetSlot(klass_index, kSlotNewDexCache)); } art::ObjPtr GetMirrorClass(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr::DownCast(GetSlot(klass_index, kSlotMirrorClass)); } art::ObjPtr GetOriginalDexFile(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr::DownCast(GetSlot(klass_index, kSlotOrigDexFile)); } art::ObjPtr GetOldObsoleteMethods(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr::DownCast( GetSlot(klass_index, kSlotOldObsoleteMethods)); } art::ObjPtr> GetOldDexCaches( jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr>::DownCast( GetSlot(klass_index, kSlotOldDexCaches)); } art::ObjPtr GetNewClassObject(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr::DownCast(GetSlot(klass_index, kSlotNewClassObject)); } art::ObjPtr> GetOldInstanceObjects( jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr>::DownCast( GetSlot(klass_index, kSlotOldInstanceObjects)); } art::ObjPtr> GetNewInstanceObjects( jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr>::DownCast( GetSlot(klass_index, kSlotNewInstanceObjects)); } art::ObjPtr> GetOldClasses(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr>::DownCast( GetSlot(klass_index, kSlotOldClasses)); } art::ObjPtr> GetNewClasses(jint klass_index) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return art::ObjPtr>::DownCast( GetSlot(klass_index, kSlotNewClasses)); } bool IsInitialized(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) { return initialized_[klass_index]; } bool IsActuallyStructural(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) { return actually_structural_[klass_index]; } bool IsInitialStructural(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) { return initial_structural_[klass_index]; } void SetSourceClassLoader(jint klass_index, art::ObjPtr loader) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotSourceClassLoader, loader); } void SetJavaDexFile(jint klass_index, art::ObjPtr dexfile) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotJavaDexFile, dexfile); } void SetNewDexFileCookie(jint klass_index, art::ObjPtr cookie) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotNewDexFileCookie, cookie); } void SetNewDexCache(jint klass_index, art::ObjPtr cache) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotNewDexCache, cache); } void SetMirrorClass(jint klass_index, art::ObjPtr klass) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotMirrorClass, klass); } void SetOriginalDexFile(jint klass_index, art::ObjPtr bytes) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOrigDexFile, bytes); } void SetOldObsoleteMethods(jint klass_index, art::ObjPtr methods) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOldObsoleteMethods, methods); } void SetOldDexCaches(jint klass_index, art::ObjPtr> caches) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOldDexCaches, caches); } void SetNewClassObject(jint klass_index, art::ObjPtr klass) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotNewClassObject, klass); } void SetOldInstanceObjects(jint klass_index, art::ObjPtr> objs) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOldInstanceObjects, objs); } void SetNewInstanceObjects(jint klass_index, art::ObjPtr> objs) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotNewInstanceObjects, objs); } void SetOldClasses(jint klass_index, art::ObjPtr> klasses) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotOldClasses, klasses); } void SetNewClasses(jint klass_index, art::ObjPtr> klasses) REQUIRES_SHARED(art::Locks::mutator_lock_) { SetSlot(klass_index, kSlotNewClasses, klasses); } void SetInitialized(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) { initialized_[klass_index] = true; } void SetActuallyStructural(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) { actually_structural_[klass_index] = true; } void SetInitialStructural(jint klass_index) REQUIRES_SHARED(art::Locks::mutator_lock_) { initial_structural_[klass_index] = true; } int32_t Length() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return arr_->GetLength() / kNumSlots; } std::vector* GetRedefinitions() REQUIRES_SHARED(art::Locks::mutator_lock_) { return redefinitions_; } bool operator==(const RedefinitionDataHolder& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return arr_.Get() == other.arr_.Get(); } bool operator!=(const RedefinitionDataHolder& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return !(*this == other); } RedefinitionDataIter begin() REQUIRES_SHARED(art::Locks::mutator_lock_); RedefinitionDataIter end() REQUIRES_SHARED(art::Locks::mutator_lock_); private: mutable art::Handle> arr_; std::vector* redefinitions_; // Used to mark a particular redefinition as fully initialized. std::vector initialized_; // Used to mark a redefinition as 'actually' structural. That is either the redefinition is // structural or a superclass is. std::vector actually_structural_; // Used to mark a redefinition as the initial structural redefinition. This redefinition will take // care of updating all of its subtypes. std::vector initial_structural_; art::ObjPtr GetSlot(jint klass_index, DataSlot slot) const REQUIRES_SHARED(art::Locks::mutator_lock_) { DCHECK_LT(klass_index, Length()); return arr_->Get((kNumSlots * klass_index) + slot); } void SetSlot(jint klass_index, DataSlot slot, art::ObjPtr obj) REQUIRES_SHARED(art::Locks::mutator_lock_) { DCHECK(!art::Runtime::Current()->IsActiveTransaction()); DCHECK_LT(klass_index, Length()); arr_->Set((kNumSlots * klass_index) + slot, obj); } DISALLOW_COPY_AND_ASSIGN(RedefinitionDataHolder); }; class RedefinitionDataIter { public: RedefinitionDataIter(int32_t idx, RedefinitionDataHolder& holder) : idx_(idx), holder_(holder) {} RedefinitionDataIter(const RedefinitionDataIter&) = default; RedefinitionDataIter(RedefinitionDataIter&&) = default; RedefinitionDataIter& operator=(const RedefinitionDataIter&) = default; RedefinitionDataIter& operator=(RedefinitionDataIter&&) = default; bool operator==(const RedefinitionDataIter& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return idx_ == other.idx_ && holder_ == other.holder_; } bool operator!=(const RedefinitionDataIter& other) const REQUIRES_SHARED(art::Locks::mutator_lock_) { return !(*this == other); } RedefinitionDataIter operator++() { // Value after modification. idx_++; return *this; } RedefinitionDataIter operator++(int) { RedefinitionDataIter temp = *this; idx_++; return temp; } RedefinitionDataIter operator+(ssize_t delta) const { RedefinitionDataIter temp = *this; temp += delta; return temp; } RedefinitionDataIter& operator+=(ssize_t delta) { idx_ += delta; return *this; } // Compat for STL iterators. RedefinitionDataIter& operator*() { return *this; } Redefiner::ClassRedefinition& GetRedefinition() REQUIRES_SHARED(art::Locks::mutator_lock_) { return (*holder_.GetRedefinitions())[idx_]; } RedefinitionDataHolder& GetHolder() { return holder_; } art::ObjPtr GetSourceClassLoader() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetSourceClassLoader(idx_); } art::ObjPtr GetJavaDexFile() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetJavaDexFile(idx_); } art::ObjPtr GetNewDexFileCookie() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetNewDexFileCookie(idx_); } art::ObjPtr GetNewDexCache() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetNewDexCache(idx_); } art::ObjPtr GetMirrorClass() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetMirrorClass(idx_); } art::ObjPtr GetOriginalDexFile() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOriginalDexFile(idx_); } art::ObjPtr GetOldObsoleteMethods() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOldObsoleteMethods(idx_); } art::ObjPtr> GetOldDexCaches() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOldDexCaches(idx_); } art::ObjPtr GetNewClassObject() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetNewClassObject(idx_); } art::ObjPtr> GetOldInstanceObjects() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOldInstanceObjects(idx_); } art::ObjPtr> GetNewInstanceObjects() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetNewInstanceObjects(idx_); } art::ObjPtr> GetOldClasses() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetOldClasses(idx_); } art::ObjPtr> GetNewClasses() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.GetNewClasses(idx_); } bool IsInitialized() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.IsInitialized(idx_); } bool IsActuallyStructural() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.IsActuallyStructural(idx_); } bool IsInitialStructural() const REQUIRES_SHARED(art::Locks::mutator_lock_) { return holder_.IsInitialStructural(idx_); } int32_t GetIndex() const { return idx_; } void SetSourceClassLoader(art::mirror::ClassLoader* loader) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetSourceClassLoader(idx_, loader); } void SetJavaDexFile(art::ObjPtr dexfile) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetJavaDexFile(idx_, dexfile); } void SetNewDexFileCookie(art::ObjPtr cookie) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetNewDexFileCookie(idx_, cookie); } void SetNewDexCache(art::ObjPtr cache) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetNewDexCache(idx_, cache); } void SetMirrorClass(art::ObjPtr klass) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetMirrorClass(idx_, klass); } void SetOriginalDexFile(art::ObjPtr bytes) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOriginalDexFile(idx_, bytes); } void SetOldObsoleteMethods(art::ObjPtr methods) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOldObsoleteMethods(idx_, methods); } void SetOldDexCaches(art::ObjPtr> caches) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOldDexCaches(idx_, caches); } void SetNewClassObject(art::ObjPtr klass) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetNewClassObject(idx_, klass); } void SetOldInstanceObjects(art::ObjPtr> objs) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOldInstanceObjects(idx_, objs); } void SetNewInstanceObjects(art::ObjPtr> objs) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetNewInstanceObjects(idx_, objs); } void SetOldClasses(art::ObjPtr> klasses) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetOldClasses(idx_, klasses); } void SetNewClasses(art::ObjPtr> klasses) REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetNewClasses(idx_, klasses); } void SetInitialized() REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetInitialized(idx_); } void SetActuallyStructural() REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetActuallyStructural(idx_); } void SetInitialStructural() REQUIRES_SHARED(art::Locks::mutator_lock_) { holder_.SetInitialStructural(idx_); } private: int32_t idx_; RedefinitionDataHolder& holder_; }; RedefinitionDataIter RedefinitionDataHolder::begin() { return RedefinitionDataIter(0, *this); } RedefinitionDataIter RedefinitionDataHolder::end() { return RedefinitionDataIter(Length(), *this); } bool Redefiner::ClassRedefinition::CheckVerification(const RedefinitionDataIter& iter) { DCHECK_EQ(dex_file_->NumClassDefs(), 1u); art::StackHandleScope<2> hs(driver_->self_); std::string error; // TODO Make verification log level lower art::verifier::FailureKind failure = art::verifier::ClassVerifier::VerifyClass(driver_->self_, dex_file_.get(), hs.NewHandle(iter.GetNewDexCache()), hs.NewHandle(GetClassLoader()), /*class_def=*/ dex_file_->GetClassDef(0), /*callbacks=*/ nullptr, /*allow_soft_failures=*/ true, /*log_level=*/ art::verifier::HardFailLogMode::kLogWarning, art::Runtime::Current()->GetTargetSdkVersion(), &error); switch (failure) { case art::verifier::FailureKind::kNoFailure: // TODO It is possible that by doing redefinition previous NO_COMPILE verification failures // were fixed. It would be nice to reflect this in the new implementations. return true; case art::verifier::FailureKind::kSoftFailure: case art::verifier::FailureKind::kAccessChecksFailure: // Soft failures might require interpreter on some methods. It won't prevent redefinition but // it does mean we need to run the verifier again and potentially update method flags after // performing the swap. needs_reverify_ = true; return true; case art::verifier::FailureKind::kHardFailure: { RecordFailure(ERR(FAILS_VERIFICATION), "Failed to verify class. Error was: " + error); return false; } } } // Looks through the previously allocated cookies to see if we need to update them with another new // dexfile. This is so that even if multiple classes with the same classloader are redefined at // once they are all added to the classloader. bool Redefiner::ClassRedefinition::AllocateAndRememberNewDexFileCookie( art::Handle source_class_loader, art::Handle dex_file_obj, /*out*/RedefinitionDataIter* cur_data) { art::StackHandleScope<2> hs(driver_->self_); art::MutableHandle old_cookie( hs.NewHandle(nullptr)); bool has_older_cookie = false; // See if we already have a cookie that a previous redefinition got from the same classloader. for (auto old_data = cur_data->GetHolder().begin(); old_data != *cur_data; ++old_data) { if (old_data.GetSourceClassLoader() == source_class_loader.Get()) { // Since every instance of this classloader should have the same cookie associated with it we // can stop looking here. has_older_cookie = true; old_cookie.Assign(old_data.GetNewDexFileCookie()); break; } } if (old_cookie.IsNull()) { // No older cookie. Get it directly from the dex_file_obj // We should not have seen this classloader elsewhere. CHECK(!has_older_cookie); old_cookie.Assign(ClassLoaderHelper::GetDexFileCookie(dex_file_obj)); } // Use the old cookie to generate the new one with the new DexFile* added in. art::Handle new_cookie(hs.NewHandle(ClassLoaderHelper::AllocateNewDexFileCookie(driver_->self_, old_cookie, dex_file_.get()))); // Make sure the allocation worked. if (new_cookie.IsNull()) { return false; } // Save the cookie. cur_data->SetNewDexFileCookie(new_cookie.Get()); // If there are other copies of this same classloader we need to make sure that we all have the // same cookie. if (has_older_cookie) { for (auto old_data = cur_data->GetHolder().begin(); old_data != *cur_data; ++old_data) { // We will let the GC take care of the cookie we allocated for this one. if (old_data.GetSourceClassLoader() == source_class_loader.Get()) { old_data.SetNewDexFileCookie(new_cookie.Get()); } } } return true; } bool CompareClasses(art::ObjPtr l, art::ObjPtr r) REQUIRES_SHARED(art::Locks::mutator_lock_) { auto parents = [](art::ObjPtr c) REQUIRES_SHARED(art::Locks::mutator_lock_) { uint32_t res = 0; while (!c->IsObjectClass()) { res++; c = c->GetSuperClass(); } return res; }; return parents(l.Ptr()) < parents(r.Ptr()); } bool Redefiner::ClassRedefinition::CollectAndCreateNewInstances( /*out*/ RedefinitionDataIter* cur_data) { if (!cur_data->IsInitialStructural()) { // An earlier structural redefinition already remade all the instances. return true; } art::gc::Heap* heap = driver_->runtime_->GetHeap(); art::VariableSizedHandleScope hs(driver_->self_); art::Handle old_klass(hs.NewHandle(cur_data->GetMirrorClass())); std::vector> old_instances; auto is_instance = [&](art::mirror::Object* obj) REQUIRES_SHARED(art::Locks::mutator_lock_) { return obj->InstanceOf(old_klass.Get()); }; heap->VisitObjects([&](art::mirror::Object* obj) REQUIRES_SHARED(art::Locks::mutator_lock_) { if (is_instance(obj)) { old_instances.push_back(hs.NewHandle(obj)); } }); VLOG(plugin) << "Collected " << old_instances.size() << " instances to recreate!"; art::Handle> old_classes_arr( hs.NewHandle(cur_data->GetOldClasses())); art::Handle> new_classes_arr( hs.NewHandle(cur_data->GetNewClasses())); DCHECK_EQ(old_classes_arr->GetLength(), new_classes_arr->GetLength()); DCHECK_GT(old_classes_arr->GetLength(), 0); art::Handle obj_array_class( hs.NewHandle(art::GetClassRoot>( driver_->runtime_->GetClassLinker()))); art::Handle> old_instances_arr( hs.NewHandle(art::mirror::ObjectArray::Alloc( driver_->self_, obj_array_class.Get(), old_instances.size()))); if (old_instances_arr.IsNull()) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate old_instance arrays!"); return false; } for (uint32_t i = 0; i < old_instances.size(); ++i) { old_instances_arr->Set(i, old_instances[i].Get()); } cur_data->SetOldInstanceObjects(old_instances_arr.Get()); art::Handle> new_instances_arr( hs.NewHandle(art::mirror::ObjectArray::Alloc( driver_->self_, obj_array_class.Get(), old_instances.size()))); if (new_instances_arr.IsNull()) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate new_instance arrays!"); return false; } for (auto pair : art::ZipCount(art::IterationRange(old_instances.begin(), old_instances.end()))) { art::Handle hinstance(pair.first); int32_t i = pair.second; auto iterator = art::ZipLeft(old_classes_arr.Iterate(), new_classes_arr.Iterate()); auto it = std::find_if(iterator.begin(), iterator.end(), [&](auto class_pair) REQUIRES_SHARED(art::Locks::mutator_lock_) { return class_pair.first == hinstance->GetClass(); }); DCHECK(it != iterator.end()) << "Unable to find class pair for " << hinstance->GetClass()->PrettyClass() << " (instance " << i << ")"; auto [_, new_type] = *it; // Make sure when allocating the new instance we don't add it's finalizer since we will directly // replace the old object in the finalizer reference. If we added it here to we would call // finalize twice. // NB If a type is changed from being non-finalizable to finalizable the finalizers on any // objects created before the redefine will never be called. This is (sort of) allowable by // the spec and greatly simplifies implementation. // TODO Make it so we will always call all finalizers, even if the object when it was created // wasn't finalizable. To do this we need to be careful of handling failure correctly and making // sure that objects aren't finalized multiple times and that instances of failed redefinitions // aren't finalized. art::ObjPtr new_instance( new_type->Alloc( driver_->self_, driver_->runtime_->GetHeap()->GetCurrentAllocator())); if (new_instance.IsNull()) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); std::string msg( StringPrintf("Could not allocate instance %d of %zu", i, old_instances.size())); RecordFailure(ERR(OUT_OF_MEMORY), msg); return false; } new_instances_arr->Set(i, new_instance); } cur_data->SetNewInstanceObjects(new_instances_arr.Get()); return true; } bool Redefiner::ClassRedefinition::FinishRemainingCommonAllocations( /*out*/RedefinitionDataIter* cur_data) { art::ScopedObjectAccessUnchecked soa(driver_->self_); art::StackHandleScope<2> hs(driver_->self_); cur_data->SetMirrorClass(GetMirrorClass()); // This shouldn't allocate art::Handle loader(hs.NewHandle(GetClassLoader())); // The bootclasspath is handled specially so it doesn't have a j.l.DexFile. if (!art::ClassLinker::IsBootClassLoader(soa, loader.Get())) { cur_data->SetSourceClassLoader(loader.Get()); art::Handle dex_file_obj(hs.NewHandle( ClassLoaderHelper::FindSourceDexFileObject(driver_->self_, loader))); cur_data->SetJavaDexFile(dex_file_obj.Get()); if (dex_file_obj == nullptr) { RecordFailure(ERR(INTERNAL), "Unable to find dex file!"); return false; } // Allocate the new dex file cookie. if (!AllocateAndRememberNewDexFileCookie(loader, dex_file_obj, cur_data)) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate dex file array for class loader"); return false; } } cur_data->SetNewDexCache(CreateNewDexCache(loader)); if (cur_data->GetNewDexCache() == nullptr) { driver_->self_->AssertPendingException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate DexCache"); return false; } // We won't always need to set this field. cur_data->SetOriginalDexFile(AllocateOrGetOriginalDexFile()); if (cur_data->GetOriginalDexFile() == nullptr) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate array for original dex file"); return false; } return true; } bool Redefiner::ClassRedefinition::FinishNewClassAllocations(RedefinitionDataHolder &holder, RedefinitionDataIter *cur_data) { if (cur_data->IsInitialized() || !cur_data->IsActuallyStructural()) { cur_data->SetInitialized(); return true; } art::VariableSizedHandleScope hs(driver_->self_); // If we weren't the lowest structural redef the superclass would have already initialized us. CHECK(IsStructuralRedefinition()); CHECK(cur_data->IsInitialStructural()) << "Should have already been initialized by supertype"; auto setup_single_redefinition = [this](RedefinitionDataIter* data, art::Handle super_class) REQUIRES_SHARED(art::Locks::mutator_lock_) -> art::ObjPtr { art::StackHandleScope<3> chs(driver_->self_); art::Handle nc( chs.NewHandle(AllocateNewClassObject(chs.NewHandle(data->GetMirrorClass()), super_class, chs.NewHandle(data->GetNewDexCache()), /*dex_class_def_index*/ 0))); if (nc.IsNull()) { return nullptr; } data->SetNewClassObject(nc.Get()); // We really want to be able to resolve to the new class-object using this dex-cache for // verification work. Since we haven't put it in the class-table yet we wll just manually add it // to the dex-cache. // TODO: We should maybe do this in a better spot. data->GetNewDexCache()->SetResolvedType(nc->GetDexTypeIndex(), nc.Get()); data->SetInitialized(); return nc.Get(); }; std::vector> old_types; { art::gc::Heap* heap = driver_->runtime_->GetHeap(); art::Handle old_klass(hs.NewHandle(cur_data->GetMirrorClass())); if (setup_single_redefinition(cur_data, hs.NewHandle(old_klass->GetSuperClass())).IsNull()) { return false; } auto is_subtype = [&](art::mirror::Object* obj) REQUIRES_SHARED(art::Locks::mutator_lock_) { // We've already waited for class defines to be finished and paused them. All classes should be // either resolved or error. We don't need to do anything with error classes, since they cannot // be accessed in any observable way. return obj->IsClass() && obj->AsClass()->IsResolved() && old_klass->IsAssignableFrom(obj->AsClass()); }; heap->VisitObjects([&](art::mirror::Object* obj) REQUIRES_SHARED(art::Locks::mutator_lock_) { if (is_subtype(obj)) { old_types.push_back(hs.NewHandle(obj->AsClass())); } }); DCHECK_GT(old_types.size(), 0u) << "Expected to find at least old_klass!"; VLOG(plugin) << "Found " << old_types.size() << " types that are/are subtypes of " << old_klass->PrettyClass(); } art::Handle cls_array_class( hs.NewHandle(art::GetClassRoot>( driver_->runtime_->GetClassLinker()))); art::Handle> old_classes_arr( hs.NewHandle(art::mirror::ObjectArray::Alloc( driver_->self_, cls_array_class.Get(), old_types.size()))); if (old_classes_arr.IsNull()) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate old_classes arrays!"); return false; } // Sort the old_types topologically. { art::ScopedAssertNoThreadSuspension sants("Sort classes"); // Sort them by the distance to the base-class. This ensures that any class occurs before any of // its subtypes. std::sort(old_types.begin(), old_types.end(), [](auto& l, auto& r) REQUIRES_SHARED(art::Locks::mutator_lock_) { return CompareClasses(l.Get(), r.Get()); }); } for (uint32_t i = 0; i < old_types.size(); ++i) { DCHECK(!old_types[i].IsNull()) << i; old_classes_arr->Set(i, old_types[i].Get()); } cur_data->SetOldClasses(old_classes_arr.Get()); DCHECK_GT(old_classes_arr->GetLength(), 0); art::Handle> new_classes_arr( hs.NewHandle(art::mirror::ObjectArray::Alloc( driver_->self_, cls_array_class.Get(), old_types.size()))); if (new_classes_arr.IsNull()) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate new_classes arrays!"); return false; } art::MutableHandle dch(hs.NewHandle(nullptr)); art::MutableHandle superclass(hs.NewHandle(nullptr)); for (size_t i = 0; i < old_types.size(); i++) { art::Handle& old_type = old_types[i]; if (old_type.Get() == cur_data->GetMirrorClass()) { CHECK_EQ(i, 0u) << "original class not at index 0. Bad sort!"; new_classes_arr->Set(i, cur_data->GetNewClassObject()); continue; } else { auto old_super = std::find_if(old_types.begin(), old_types.begin() + i, [&](art::Handle& v) REQUIRES_SHARED(art::Locks::mutator_lock_) { return v.Get() == old_type->GetSuperClass(); }); // Only the GetMirrorClass should not be in this list. CHECK(old_super != old_types.begin() + i) << "from first " << i << " could not find super of " << old_type->PrettyClass() << " expected to find " << old_type->GetSuperClass()->PrettyClass(); superclass.Assign(new_classes_arr->Get(std::distance(old_types.begin(), old_super))); auto new_redef = std::find_if( *cur_data + 1, holder.end(), [&](auto it) REQUIRES_SHARED(art::Locks::mutator_lock_) { return it.GetMirrorClass() == old_type.Get(); }); art::ObjPtr new_type; if (new_redef == holder.end()) { // We aren't also redefining this subclass. Just allocate a new class and continue. dch.Assign(old_type->GetDexCache()); new_type = AllocateNewClassObject(old_type, superclass, dch, old_type->GetDexClassDefIndex()); } else { // This subclass is also being redefined. We need to use its new dex-file to load the new // class. CHECK(new_redef.IsActuallyStructural()); CHECK(!new_redef.IsInitialStructural()); new_type = setup_single_redefinition(&new_redef, superclass); } if (new_type == nullptr) { VLOG(plugin) << "Failed to load new version of class " << old_type->PrettyClass() << " for structural redefinition!"; return false; } new_classes_arr->Set(i, new_type); } } cur_data->SetNewClasses(new_classes_arr.Get()); return true; } uint32_t Redefiner::ClassRedefinition::GetNewClassSize(art::ClassAccessor& accessor) { uint32_t num_8bit_static_fields = 0; uint32_t num_16bit_static_fields = 0; uint32_t num_32bit_static_fields = 0; uint32_t num_64bit_static_fields = 0; uint32_t num_ref_static_fields = 0; for (const art::ClassAccessor::Field& f : accessor.GetStaticFields()) { std::string_view desc(accessor.GetDexFile().GetFieldTypeDescriptor( accessor.GetDexFile().GetFieldId(f.GetIndex()))); if (desc[0] == 'L' || desc[0] == '[') { num_ref_static_fields++; } else if (desc == "Z" || desc == "B") { num_8bit_static_fields++; } else if (desc == "C" || desc == "S") { num_16bit_static_fields++; } else if (desc == "I" || desc == "F") { num_32bit_static_fields++; } else if (desc == "J" || desc == "D") { num_64bit_static_fields++; } else { LOG(FATAL) << "Unknown type descriptor! " << desc; } } return art::mirror::Class::ComputeClassSize(/*has_embedded_vtable=*/ false, /*num_vtable_entries=*/ 0, num_8bit_static_fields, num_16bit_static_fields, num_32bit_static_fields, num_64bit_static_fields, num_ref_static_fields, art::kRuntimePointerSize); } art::ObjPtr Redefiner::ClassRedefinition::AllocateNewClassObject(art::Handle cache) { art::StackHandleScope<2> hs(driver_->self_); art::Handle old_class(hs.NewHandle(GetMirrorClass())); art::Handle super_class(hs.NewHandle(old_class->GetSuperClass())); return AllocateNewClassObject(old_class, super_class, cache, /*dex_class_def_index*/0); } art::ObjPtr Redefiner::ClassRedefinition::AllocateNewClassObject( art::Handle old_class, art::Handle super_class, art::Handle cache, uint16_t dex_class_def_index) { // This is a stripped down DefineClass. We don't want to use DefineClass directly because it needs // to perform a lot of extra steps to tell the ClassTable and the jit and everything about a new // class. For now we will need to rely on our tests catching any issues caused by changes in how // class_linker sets up classes. // TODO Unify/move this into ClassLinker maybe. art::StackHandleScope<3> hs(driver_->self_); art::ClassLinker* linker = driver_->runtime_->GetClassLinker(); const art::DexFile* dex_file = cache->GetDexFile(); art::ClassAccessor accessor(*dex_file, dex_class_def_index); art::Handle new_class(hs.NewHandle(linker->AllocClass( driver_->self_, GetNewClassSize(accessor)))); if (new_class.IsNull()) { driver_->self_->AssertPendingOOMException(); RecordFailure( ERR(OUT_OF_MEMORY), "Unable to allocate class object for redefinition of " + old_class->PrettyClass()); driver_->self_->ClearException(); return nullptr; } new_class->SetDexCache(cache.Get()); linker->SetupClass(*dex_file, dex_file->GetClassDef(dex_class_def_index), new_class, old_class->GetClassLoader()); // Make sure we are ready for linking. The lock isn't really needed since this isn't visible to // other threads but the linker expects it. art::ObjectLock lock(driver_->self_, new_class); new_class->SetClinitThreadId(driver_->self_->GetTid()); // Make sure we have a valid empty iftable even if there are errors. new_class->SetIfTable(art::GetClassRoot(linker)->GetIfTable()); linker->LoadClass( driver_->self_, *dex_file, dex_file->GetClassDef(dex_class_def_index), new_class); // NB. We know the interfaces and supers didn't change! :) art::MutableHandle linked_class(hs.NewHandle(nullptr)); art::Handle> proxy_ifaces( hs.NewHandle>(nullptr)); // No changing hierarchy so everything is loaded. new_class->SetSuperClass(super_class.Get()); art::mirror::Class::SetStatus(new_class, art::ClassStatus::kLoaded, nullptr); if (!linker->LinkClass(driver_->self_, nullptr, new_class, proxy_ifaces, &linked_class)) { std::ostringstream oss; oss << "failed to link class due to " << (driver_->self_->IsExceptionPending() ? driver_->self_->GetException()->Dump() : " unknown"); RecordFailure(ERR(INTERNAL), oss.str()); driver_->self_->ClearException(); return nullptr; } // Everything is already resolved. art::ObjectLock objlock(driver_->self_, linked_class); // Mark the class as initialized. CHECK(old_class->IsResolved()) << "Attempting to redefine an unresolved class " << old_class->PrettyClass() << " status=" << old_class->GetStatus(); CHECK(linked_class->IsResolved()); if (old_class->WasVerificationAttempted()) { // Match verification-attempted flag linked_class->SetVerificationAttempted(); } if (old_class->ShouldSkipHiddenApiChecks()) { // Match skip hiddenapi flag linked_class->SetSkipHiddenApiChecks(); } if (old_class->IsInitialized()) { // We already verified the class earlier. No need to do it again. linker->ForceClassInitialized(driver_->self_, linked_class); } else if (old_class->GetStatus() > linked_class->GetStatus()) { // We want to match the old status. art::mirror::Class::SetStatus(linked_class, old_class->GetStatus(), driver_->self_); } // Make sure we have ext-data space for method & field ids. We won't know if we need them until // it's too late to create them. // TODO We might want to remove these arrays if they're not needed. if (!art::mirror::Class::EnsureInstanceFieldIds(linked_class) || !art::mirror::Class::EnsureStaticFieldIds(linked_class) || !art::mirror::Class::EnsureMethodIds(linked_class)) { driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure( ERR(OUT_OF_MEMORY), "Unable to allocate jni-id arrays for redefinition of " + old_class->PrettyClass()); return nullptr; } // Finish setting up methods. linked_class->VisitMethods([&](art::ArtMethod* m) REQUIRES_SHARED(art::Locks::mutator_lock_) { linker->SetEntryPointsToInterpreter(m); m->SetNotIntrinsic(); DCHECK(m->IsCopied() || m->GetDeclaringClass() == linked_class.Get()) << m->PrettyMethod() << " m->GetDeclaringClass(): " << m->GetDeclaringClass()->PrettyClass() << " != linked_class.Get(): " << linked_class->PrettyClass(); }, art::kRuntimePointerSize); if (art::kIsDebugBuild) { linked_class->VisitFields([&](art::ArtField* f) REQUIRES_SHARED(art::Locks::mutator_lock_) { DCHECK_EQ(f->GetDeclaringClass(), linked_class.Get()); }); } // Reset ClinitThreadId back to the thread that loaded the old class. This is needed if we are in // the middle of initializing a class. linked_class->SetClinitThreadId(old_class->GetClinitThreadId()); return linked_class.Get(); } void Redefiner::ClassRedefinition::UnregisterJvmtiBreakpoints() { BreakpointUtil::RemoveBreakpointsInClass(driver_->env_, GetMirrorClass().Ptr()); } void Redefiner::UnregisterAllBreakpoints() { for (Redefiner::ClassRedefinition& redef : redefinitions_) { redef.UnregisterJvmtiBreakpoints(); } } bool Redefiner::CheckAllRedefinitionAreValid() { for (Redefiner::ClassRedefinition& redef : redefinitions_) { if (!redef.CheckRedefinitionIsValid()) { return false; } } return true; } void Redefiner::RestoreObsoleteMethodMapsIfUnneeded(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { data.GetRedefinition().RestoreObsoleteMethodMapsIfUnneeded(&data); } } void Redefiner::MarkStructuralChanges(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { if (data.IsActuallyStructural()) { // A superclass was structural and it marked all subclasses already. No need to do anything. CHECK(!data.IsInitialStructural()); } else if (data.GetRedefinition().IsStructuralRedefinition()) { data.SetActuallyStructural(); data.SetInitialStructural(); // Go over all potential subtypes and mark any that are actually subclasses as structural. for (RedefinitionDataIter sub_data = data + 1; sub_data != holder.end(); ++sub_data) { if (sub_data.GetRedefinition().GetMirrorClass()->IsSubClass( data.GetRedefinition().GetMirrorClass())) { sub_data.SetActuallyStructural(); } } } } } bool Redefiner::EnsureAllClassAllocationsFinished(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { if (!data.GetRedefinition().EnsureClassAllocationsFinished(&data)) { return false; } } return true; } bool Redefiner::CollectAndCreateNewInstances(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { // Allocate the data this redefinition requires. if (!data.GetRedefinition().CollectAndCreateNewInstances(&data)) { return false; } } return true; } bool Redefiner::FinishAllNewClassAllocations(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { // Allocate the data this redefinition requires. if (!data.GetRedefinition().FinishNewClassAllocations(holder, &data)) { return false; } } return true; } bool Redefiner::FinishAllRemainingCommonAllocations(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { // Allocate the data this redefinition requires. if (!data.GetRedefinition().FinishRemainingCommonAllocations(&data)) { return false; } } return true; } void Redefiner::ClassRedefinition::ReleaseDexFile() { dex_file_.release(); // NOLINT b/117926937 } void Redefiner::ReleaseAllDexFiles() { for (Redefiner::ClassRedefinition& redef : redefinitions_) { redef.ReleaseDexFile(); } } bool Redefiner::CheckAllClassesAreVerified(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { if (!data.GetRedefinition().CheckVerification(data)) { return false; } } return true; } class ScopedDisableConcurrentAndMovingGc { public: ScopedDisableConcurrentAndMovingGc(art::gc::Heap* heap, art::Thread* self) : heap_(heap), self_(self) { if (heap_->IsGcConcurrentAndMoving()) { heap_->IncrementDisableMovingGC(self_); } } ~ScopedDisableConcurrentAndMovingGc() { if (heap_->IsGcConcurrentAndMoving()) { heap_->DecrementDisableMovingGC(self_); } } private: art::gc::Heap* heap_; art::Thread* self_; }; class ClassDefinitionPauser : public art::ClassLoadCallback { public: explicit ClassDefinitionPauser(art::Thread* self) REQUIRES_SHARED(art::Locks::mutator_lock_) : self_(self), is_running_(false), barrier_(0), release_mu_("SuspendClassDefinition lock", art::kGenericBottomLock), release_barrier_(0), release_cond_("SuspendClassDefinition condvar", release_mu_), count_(0), release_(false) { art::Locks::mutator_lock_->AssertSharedHeld(self_); } ~ClassDefinitionPauser() REQUIRES_SHARED(art::Locks::mutator_lock_) { art::Locks::mutator_lock_->AssertSharedHeld(self_); CHECK(release_) << "Must call Release()"; } void Release() REQUIRES(art::Locks::mutator_lock_) { if (is_running_) { art::Locks::mutator_lock_->AssertExclusiveHeld(self_); uint32_t count; // Wake up everything. { art::MutexLock mu(self_, release_mu_); release_ = true; // We have an exclusive mutator so all threads must be suspended and therefore they've // either already incremented this count_ or they are stuck somewhere before it. count = count_; release_cond_.Broadcast(self_); } // Wait for all threads to leave this structs code. VLOG(plugin) << "Resuming " << count << " threads paused before class-allocation!"; release_barrier_.Increment(self_, count); } else { release_ = true; } } void BeginDefineClass() override REQUIRES_SHARED(art::Locks::mutator_lock_) { art::Thread* this_thread = art::Thread::Current(); if (this_thread == self_) { // Allow the redefining thread to do whatever. return; } if (this_thread->GetDefineClassCount() != 0) { // We are in the middle of a recursive define-class. Don't suspend now allow it to finish. VLOG(plugin) << "Recursive DefineClass in " << *this_thread << " allowed to proceed despite class-def pause initiated by " << *self_; return; } // If we are suspended (no mutator-lock) then the pausing thread could do everything before the // count_++ including destroying this object, causing UAF/deadlock. art::Locks::mutator_lock_->AssertSharedHeld(this_thread); ++count_; art::ScopedThreadSuspension sts(this_thread, art::ThreadState::kSuspended); { art::MutexLock mu(this_thread, release_mu_); VLOG(plugin) << "Suspending " << *this_thread << " due to class definition. class-def pause " << "initiated by " << *self_; while (!release_) { release_cond_.Wait(this_thread); } } release_barrier_.Pass(this_thread); } void EndDefineClass() override REQUIRES_SHARED(art::Locks::mutator_lock_) { art::Thread* this_thread = art::Thread::Current(); if (this_thread == self_) { // Allow the redefining thread to do whatever. return; } if (this_thread->GetDefineClassCount() == 0) { // We are done with defining classes. barrier_.Pass(this_thread); } } void ClassLoad(art::Handle klass ATTRIBUTE_UNUSED) override {} void ClassPrepare(art::Handle klass1 ATTRIBUTE_UNUSED, art::Handle klass2 ATTRIBUTE_UNUSED) override {} void SetRunning() { is_running_ = true; } void WaitFor(uint32_t t) REQUIRES(!art::Locks::mutator_lock_) { barrier_.Increment(self_, t); } private: art::Thread* self_; bool is_running_; art::Barrier barrier_; art::Mutex release_mu_; art::Barrier release_barrier_; art::ConditionVariable release_cond_; std::atomic count_; bool release_; }; class ScopedSuspendClassLoading { public: ScopedSuspendClassLoading(art::Thread* self, art::Runtime* runtime, RedefinitionDataHolder& h) REQUIRES_SHARED(art::Locks::mutator_lock_) : self_(self), runtime_(runtime), pauser_() { if (std::any_of(h.begin(), h.end(), [](auto r) REQUIRES_SHARED(art::Locks::mutator_lock_) { return r.GetRedefinition().IsStructuralRedefinition(); })) { VLOG(plugin) << "Pausing Class loading for structural redefinition."; pauser_.emplace(self); { art::ScopedThreadSuspension sts(self_, art::ThreadState::kNative); uint32_t in_progress_defines = 0; { art::ScopedSuspendAll ssa(__FUNCTION__); pauser_->SetRunning(); runtime_->GetRuntimeCallbacks()->AddClassLoadCallback(&pauser_.value()); art::MutexLock mu(self_, *art::Locks::thread_list_lock_); runtime_->GetThreadList()->ForEach([&](art::Thread* t) { if (t != self_ && t->GetDefineClassCount() != 0) { in_progress_defines++; } }); VLOG(plugin) << "Waiting for " << in_progress_defines << " in progress class-loads to finish"; } pauser_->WaitFor(in_progress_defines); } } } ~ScopedSuspendClassLoading() { if (pauser_.has_value()) { art::ScopedThreadSuspension sts(self_, art::ThreadState::kNative); art::ScopedSuspendAll ssa(__FUNCTION__); pauser_->Release(); runtime_->GetRuntimeCallbacks()->RemoveClassLoadCallback(&pauser_.value()); } } private: art::Thread* self_; art::Runtime* runtime_; std::optional pauser_; }; class ScopedSuspendAllocations { public: ScopedSuspendAllocations(art::Runtime* runtime, RedefinitionDataHolder& h) REQUIRES_SHARED(art::Locks::mutator_lock_) : paused_(false) { if (std::any_of(h.begin(), h.end(), [](auto r) REQUIRES_SHARED(art::Locks::mutator_lock_) { return r.GetRedefinition().IsStructuralRedefinition(); })) { VLOG(plugin) << "Pausing allocations for structural redefinition."; paused_ = true; AllocationManager::Get()->PauseAllocations(art::Thread::Current()); // Collect garbage so we don't need to recreate as much. runtime->GetHeap()->CollectGarbage(/*clear_soft_references=*/false); } } ~ScopedSuspendAllocations() REQUIRES_SHARED(art::Locks::mutator_lock_) { if (paused_) { AllocationManager::Get()->ResumeAllocations(art::Thread::Current()); } } private: bool paused_; DISALLOW_COPY_AND_ASSIGN(ScopedSuspendAllocations); }; jvmtiError Redefiner::Run() { art::StackHandleScope<1> hs(self_); // Sort the redefinitions_ array topologically by class. This makes later steps easier since we // know that every class precedes all of its supertypes. std::sort(redefinitions_.begin(), redefinitions_.end(), [&](auto& l, auto& r) REQUIRES_SHARED(art::Locks::mutator_lock_) { return CompareClasses(l.GetMirrorClass(), r.GetMirrorClass()); }); // Allocate an array to hold onto all java temporary objects associated with this // redefinition. We will let this be collected after the end of this function. RedefinitionDataHolder holder(&hs, runtime_, self_, &redefinitions_); if (holder.IsNull()) { self_->AssertPendingOOMException(); self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate storage for temporaries"); return result_; } // First we just allocate the ClassExt and its fields that we need. These can be updated // atomically without any issues (since we allocate the map arrays as empty). if (!CheckAllRedefinitionAreValid()) { return result_; } // Mark structural changes. MarkStructuralChanges(holder); // Now we pause class loading. If we are doing a structural redefinition we will need to get an // accurate picture of the classes loaded and having loads in the middle would make that // impossible. This only pauses class-loading if we actually have at least one structural // redefinition. ScopedSuspendClassLoading suspend_class_load(self_, runtime_, holder); if (!EnsureAllClassAllocationsFinished(holder) || !FinishAllRemainingCommonAllocations(holder) || !FinishAllNewClassAllocations(holder) || !CheckAllClassesAreVerified(holder)) { return result_; } ScopedSuspendAllocations suspend_alloc(runtime_, holder); if (!CollectAndCreateNewInstances(holder)) { return result_; } // At this point we can no longer fail without corrupting the runtime state. for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { art::ClassLinker* cl = runtime_->GetClassLinker(); cl->RegisterExistingDexCache(data.GetNewDexCache(), data.GetSourceClassLoader()); if (data.GetSourceClassLoader() == nullptr) { cl->AppendToBootClassPath(self_, &data.GetRedefinition().GetDexFile()); } } UnregisterAllBreakpoints(); { // Disable GC and wait for it to be done if we are a moving GC. This is fine since we are done // allocating so no deadlocks. ScopedDisableConcurrentAndMovingGc sdcamgc(runtime_->GetHeap(), self_); // Do transition to final suspension // TODO We might want to give this its own suspended state! // TODO This isn't right. We need to change state without any chance of suspend ideally! art::ScopedThreadSuspension sts(self_, art::ThreadState::kNative); art::ScopedSuspendAll ssa("Final installation of redefined Classes!", /*long_suspend=*/true); for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { art::ScopedAssertNoThreadSuspension nts("Updating runtime objects for redefinition"); ClassRedefinition& redef = data.GetRedefinition(); if (data.GetSourceClassLoader() != nullptr) { ClassLoaderHelper::UpdateJavaDexFile(data.GetJavaDexFile(), data.GetNewDexFileCookie()); } redef.UpdateClass(data); } RestoreObsoleteMethodMapsIfUnneeded(holder); // TODO We should check for if any of the redefined methods are intrinsic methods here and, if // any are, force a full-world deoptimization before finishing redefinition. If we don't do this // then methods that have been jitted prior to the current redefinition being applied might // continue to use the old versions of the intrinsics! // TODO Do the dex_file release at a more reasonable place. This works but it muddles who really // owns the DexFile and when ownership is transferred. ReleaseAllDexFiles(); } // By now the class-linker knows about all the classes so we can safetly retry verification and // update method flags. ReverifyClasses(holder); return OK; } void Redefiner::ReverifyClasses(RedefinitionDataHolder& holder) { for (RedefinitionDataIter data = holder.begin(); data != holder.end(); ++data) { data.GetRedefinition().ReverifyClass(data); } } void Redefiner::ClassRedefinition::ReverifyClass(const RedefinitionDataIter &cur_data) { if (!needs_reverify_) { return; } VLOG(plugin) << "Reverifying " << class_sig_ << " due to soft failures"; std::string error; // TODO Make verification log level lower art::verifier::FailureKind failure = art::verifier::ClassVerifier::ReverifyClass(driver_->self_, cur_data.GetMirrorClass(), /*log_level=*/ art::verifier::HardFailLogMode::kLogWarning, /*api_level=*/ art::Runtime::Current()->GetTargetSdkVersion(), &error); CHECK_NE(failure, art::verifier::FailureKind::kHardFailure); } void Redefiner::ClassRedefinition::UpdateMethods(art::ObjPtr mclass, const art::dex::ClassDef& class_def) { art::ClassLinker* linker = driver_->runtime_->GetClassLinker(); art::PointerSize image_pointer_size = linker->GetImagePointerSize(); const art::dex::TypeId& declaring_class_id = dex_file_->GetTypeId(class_def.class_idx_); const art::DexFile& old_dex_file = mclass->GetDexFile(); // Update methods. for (art::ArtMethod& method : mclass->GetDeclaredMethods(image_pointer_size)) { const art::dex::StringId* new_name_id = dex_file_->FindStringId(method.GetName()); art::dex::TypeIndex method_return_idx = dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(method.GetReturnTypeDescriptor())); const auto* old_type_list = method.GetParameterTypeList(); std::vector new_type_list; for (uint32_t i = 0; old_type_list != nullptr && i < old_type_list->Size(); i++) { new_type_list.push_back( dex_file_->GetIndexForTypeId( *dex_file_->FindTypeId( old_dex_file.GetTypeDescriptor( old_dex_file.GetTypeId( old_type_list->GetTypeItem(i).type_idx_))))); } const art::dex::ProtoId* proto_id = dex_file_->FindProtoId(method_return_idx, new_type_list); CHECK(proto_id != nullptr || old_type_list == nullptr); const art::dex::MethodId* method_id = dex_file_->FindMethodId(declaring_class_id, *new_name_id, *proto_id); CHECK(method_id != nullptr); uint32_t dex_method_idx = dex_file_->GetIndexForMethodId(*method_id); method.SetDexMethodIndex(dex_method_idx); linker->SetEntryPointsToInterpreter(&method); method.SetCodeItemOffset(dex_file_->FindCodeItemOffset(class_def, dex_method_idx)); // Clear all the intrinsics related flags. method.SetNotIntrinsic(); } } void Redefiner::ClassRedefinition::UpdateFields(art::ObjPtr mclass) { // TODO The IFields & SFields pointers should be combined like the methods_ arrays were. for (auto fields_iter : {mclass->GetIFields(), mclass->GetSFields()}) { for (art::ArtField& field : fields_iter) { std::string declaring_class_name; const art::dex::TypeId* new_declaring_id = dex_file_->FindTypeId(field.GetDeclaringClass()->GetDescriptor(&declaring_class_name)); const art::dex::StringId* new_name_id = dex_file_->FindStringId(field.GetName()); const art::dex::TypeId* new_type_id = dex_file_->FindTypeId(field.GetTypeDescriptor()); CHECK(new_name_id != nullptr && new_type_id != nullptr && new_declaring_id != nullptr); const art::dex::FieldId* new_field_id = dex_file_->FindFieldId(*new_declaring_id, *new_name_id, *new_type_id); CHECK(new_field_id != nullptr); uint32_t new_field_index = dex_file_->GetIndexForFieldId(*new_field_id); // We only need to update the index since the other data in the ArtField cannot be updated. field.SetDexFieldIndex(new_field_index); } } } void Redefiner::ClassRedefinition::CollectNewFieldAndMethodMappings( const RedefinitionDataIter& data, std::map* method_map, std::map* field_map) { for (auto [new_cls, old_cls] : art::ZipLeft(data.GetNewClasses()->Iterate(), data.GetOldClasses()->Iterate())) { for (art::ArtField& f : old_cls->GetSFields()) { (*field_map)[&f] = new_cls->FindDeclaredStaticField(f.GetName(), f.GetTypeDescriptor()); } for (art::ArtField& f : old_cls->GetIFields()) { (*field_map)[&f] = new_cls->FindDeclaredInstanceField(f.GetName(), f.GetTypeDescriptor()); } auto new_methods = new_cls->GetMethods(art::kRuntimePointerSize); for (art::ArtMethod& m : old_cls->GetMethods(art::kRuntimePointerSize)) { // No support for finding methods in this way since it's generally not needed. Just do it the // easy way. auto nm_iter = std::find_if( new_methods.begin(), new_methods.end(), [&](art::ArtMethod& cand) REQUIRES_SHARED(art::Locks::mutator_lock_) { return cand.GetNameView() == m.GetNameView() && cand.GetSignature() == m.GetSignature(); }); CHECK(nm_iter != new_methods.end()) << "Could not find redefined version of " << m.PrettyMethod(); (*method_map)[&m] = &(*nm_iter); } } } static void CopyField(art::ObjPtr target, art::ArtField* new_field, art::ObjPtr source, art::ArtField& old_field) REQUIRES(art::Locks::mutator_lock_) { art::Primitive::Type ftype = old_field.GetTypeAsPrimitiveType(); CHECK_EQ(ftype, new_field->GetTypeAsPrimitiveType()) << old_field.PrettyField() << " vs " << new_field->PrettyField(); if (ftype == art::Primitive::kPrimNot) { new_field->SetObject(target, old_field.GetObject(source)); } else { switch (ftype) { #define UPDATE_FIELD(TYPE) \ case art::Primitive::kPrim##TYPE: \ new_field->Set##TYPE(target, old_field.Get##TYPE(source)); \ break UPDATE_FIELD(Int); UPDATE_FIELD(Float); UPDATE_FIELD(Long); UPDATE_FIELD(Double); UPDATE_FIELD(Short); UPDATE_FIELD(Char); UPDATE_FIELD(Byte); UPDATE_FIELD(Boolean); case art::Primitive::kPrimNot: case art::Primitive::kPrimVoid: LOG(FATAL) << "Unexpected field with type " << ftype << " found!"; UNREACHABLE(); #undef UPDATE_FIELD } } } static void CopyFields(bool is_static, art::ObjPtr target, art::ObjPtr target_class, art::ObjPtr source, art::ObjPtr source_class) REQUIRES(art::Locks::mutator_lock_) { DCHECK(!source_class->IsObjectClass() && !target_class->IsObjectClass()) << "Should not be overriding object class fields. Target: " << target_class->PrettyClass() << " Source: " << source_class->PrettyClass(); for (art::ArtField& f : (is_static ? source_class->GetSFields() : source_class->GetIFields())) { art::ArtField* new_field = (is_static ? target_class->FindDeclaredStaticField(f.GetName(), f.GetTypeDescriptor()) : target_class->FindDeclaredInstanceField(f.GetName(), f.GetTypeDescriptor())); CHECK(new_field != nullptr) << "could not find new version of " << f.PrettyField(); CopyField(target, new_field, source, f); } if (!is_static && !target_class->GetSuperClass()->IsObjectClass()) { CopyFields( is_static, target, target_class->GetSuperClass(), source, source_class->GetSuperClass()); } } static void ClearField(art::ObjPtr target, art::ArtField& field) REQUIRES(art::Locks::mutator_lock_) { art::Primitive::Type ftype = field.GetTypeAsPrimitiveType(); if (ftype == art::Primitive::kPrimNot) { field.SetObject(target, nullptr); } else { switch (ftype) { #define UPDATE_FIELD(TYPE) \ case art::Primitive::kPrim##TYPE: \ field.Set##TYPE(target, 0); \ break UPDATE_FIELD(Int); UPDATE_FIELD(Float); UPDATE_FIELD(Long); UPDATE_FIELD(Double); UPDATE_FIELD(Short); UPDATE_FIELD(Char); UPDATE_FIELD(Byte); UPDATE_FIELD(Boolean); case art::Primitive::kPrimNot: case art::Primitive::kPrimVoid: LOG(FATAL) << "Unexpected field with type " << ftype << " found!"; UNREACHABLE(); #undef UPDATE_FIELD } } } static void ClearFields(bool is_static, art::ObjPtr target, art::ObjPtr target_class) REQUIRES(art::Locks::mutator_lock_) { DCHECK(!target_class->IsObjectClass()); for (art::ArtField& f : (is_static ? target_class->GetSFields() : target_class->GetIFields())) { ClearField(target, f); } if (!is_static && !target_class->GetSuperClass()->IsObjectClass()) { ClearFields(is_static, target, target_class->GetSuperClass()); } } static void CopyAndClearFields(bool is_static, art::ObjPtr target, art::ObjPtr target_class, art::ObjPtr source, art::ObjPtr source_class) REQUIRES(art::Locks::mutator_lock_) { // Copy all non-j.l.Object fields CopyFields(is_static, target, target_class, source, source_class); // Copy the lock-word. target->SetLockWord(source->GetLockWord(false), false); // Clear (reset) the old one. source->SetLockWord(art::LockWord::Default(), false); art::WriteBarrier::ForEveryFieldWrite(target); // Clear the fields from the old class. We don't need it anymore. ClearFields(is_static, source, source_class); art::WriteBarrier::ForEveryFieldWrite(source); } void Redefiner::ClassRedefinition::UpdateClassStructurally(const RedefinitionDataIter& holder) { DCHECK(holder.IsActuallyStructural()); DCHECK(holder.IsInitialStructural()); // LETS GO. We've got all new class structures so no need to do all the updating of the stacks. // Instead we need to update everything else. // Just replace the class and be done with it. art::Locks::mutator_lock_->AssertExclusiveHeld(driver_->self_); art::ClassLinker* cl = driver_->runtime_->GetClassLinker(); art::ScopedAssertNoThreadSuspension sants(__FUNCTION__); art::ObjPtr> new_classes(holder.GetNewClasses()); art::ObjPtr> old_classes(holder.GetOldClasses()); // Collect mappings from old to new fields/methods std::map method_map; std::map field_map; CollectNewFieldAndMethodMappings(holder, &method_map, &field_map); art::ObjPtr> new_instances( holder.GetNewInstanceObjects()); art::ObjPtr> old_instances( holder.GetOldInstanceObjects()); // Once we do the ReplaceReferences old_classes will have the new_classes in it. We want to keep // ahold of the old classes so copy them now. std::vector> old_classes_vec(old_classes->Iterate().begin(), old_classes->Iterate().end()); // Copy over the static fields of the class and all the instance fields. for (auto [new_class, old_class] : art::ZipLeft(new_classes->Iterate(), old_classes->Iterate())) { CHECK(!new_class.IsNull()); CHECK(!old_class.IsNull()); CHECK(!old_class->IsErroneous()); if (old_class->GetStatus() > new_class->GetStatus()) { // Some verification/initialization step happened during interval between // creating the new class and now. Just copy the new status. new_class->SetStatusLocked(old_class->GetStatus()); } CopyAndClearFields(true, new_class, new_class, old_class, old_class); } // Copy and clear the fields of the old-instances. for (auto [new_instance, old_instance] : art::ZipLeft(new_instances->Iterate(), old_instances->Iterate())) { CopyAndClearFields(/*is_static=*/false, new_instance, new_instance->GetClass(), old_instance, old_instance->GetClass()); } // Mark old class and methods obsolete. Copy over any native implementation as well. for (auto [old_class, new_class] : art::ZipLeft(old_classes->Iterate(), new_classes->Iterate())) { old_class->SetObsoleteObject(); // Mark methods obsolete and copy native implementation. We need to wait // until later to actually clear the jit data. We copy the native // implementation here since we don't want to race with any threads doing // RegisterNatives. for (art::ArtMethod& m : old_class->GetMethods(art::kRuntimePointerSize)) { if (m.IsNative()) { art::ArtMethod* new_method = new_class->FindClassMethod(m.GetNameView(), m.GetSignature(), art::kRuntimePointerSize); DCHECK(new_class->GetMethodsSlice(art::kRuntimePointerSize).Contains(new_method)) << "Could not find method " << m.PrettyMethod() << " declared in new class!"; DCHECK(new_method->IsNative()); new_method->SetEntryPointFromJni(m.GetEntryPointFromJni()); } m.SetIsObsolete(); cl->SetEntryPointsForObsoleteMethod(&m); if (m.IsInvokable()) { m.SetDontCompile(); } } } // Update live pointers in ART code. auto could_change_resolution_of = [&](auto* field_or_method, const auto& info) REQUIRES(art::Locks::mutator_lock_) { constexpr bool is_method = std::is_same_v; static_assert(is_method || std::is_same_v, "Input is not field or method!"); // Only dex-cache is used for resolution if (LIKELY(info.GetType() != art::ReflectionSourceType::kSourceDexCacheResolvedField && info.GetType() != art::ReflectionSourceType::kSourceDexCacheResolvedMethod)) { return false; } if constexpr (is_method) { // Only direct methods are used without further indirection through a vtable/IFTable. // Constructors cannot be shadowed. if (LIKELY(!field_or_method->IsDirect() || field_or_method->IsConstructor())) { return false; } } else { // Only non-private fields can be shadowed in a manner that's visible. if (LIKELY(field_or_method->IsPrivate())) { return false; } } // We can only shadow things from our superclasses auto orig_classes_iter = old_classes->Iterate(); auto replacement_classes_iter = new_classes->Iterate(); art::ObjPtr f_or_m_class = field_or_method->GetDeclaringClass(); if (LIKELY(!f_or_m_class->IsAssignableFrom(holder.GetMirrorClass()) && std::find(orig_classes_iter.begin(), orig_classes_iter.end(), f_or_m_class) == orig_classes_iter.end())) { return false; } if constexpr (is_method) { return std::any_of( replacement_classes_iter.begin(), replacement_classes_iter.end(), [&](art::ObjPtr cand) REQUIRES(art::Locks::mutator_lock_) { auto direct_methods = cand->GetDirectMethods(art::kRuntimePointerSize); return std::find_if(direct_methods.begin(), direct_methods.end(), [&](art::ArtMethod& m) REQUIRES(art::Locks::mutator_lock_) { return UNLIKELY(m.HasSameNameAndSignature(field_or_method)); }) != direct_methods.end(); }); } else { auto pred = [&](art::ArtField& f) REQUIRES(art::Locks::mutator_lock_) { return std::string_view(f.GetName()) == std::string_view(field_or_method->GetName()) && std::string_view(f.GetTypeDescriptor()) == std::string_view(field_or_method->GetTypeDescriptor()); }; if (field_or_method->IsStatic()) { return std::any_of( replacement_classes_iter.begin(), replacement_classes_iter.end(), [&](art::ObjPtr cand) REQUIRES(art::Locks::mutator_lock_) { auto sfields = cand->GetSFields(); return std::find_if(sfields.begin(), sfields.end(), pred) != sfields.end(); }); } else { return std::any_of( replacement_classes_iter.begin(), replacement_classes_iter.end(), [&](art::ObjPtr cand) REQUIRES(art::Locks::mutator_lock_) { auto ifields = cand->GetIFields(); return std::find_if(ifields.begin(), ifields.end(), pred) != ifields.end(); }); } } }; // TODO Performing 2 stack-walks back to back isn't the greatest. We might want to try to combine // it with the one ReplaceReferences does. Doing so would be rather complicated though. driver_->runtime_->VisitReflectiveTargets( [&](art::ArtField* f, const auto& info) REQUIRES(art::Locks::mutator_lock_) { DCHECK(f != nullptr) << info; auto it = field_map.find(f); if (UNLIKELY(could_change_resolution_of(f, info))) { // Dex-cache Resolution might change. Just clear the resolved value. VLOG(plugin) << "Clearing resolution " << info << " for (field) " << f->PrettyField(); return static_cast(nullptr); } else if (it != field_map.end()) { VLOG(plugin) << "Updating " << info << " object for (field) " << it->second->PrettyField(); return it->second; } return f; }, [&](art::ArtMethod* m, const auto& info) REQUIRES(art::Locks::mutator_lock_) { DCHECK(m != nullptr) << info; auto it = method_map.find(m); if (UNLIKELY(could_change_resolution_of(m, info))) { // Dex-cache Resolution might change. Just clear the resolved value. VLOG(plugin) << "Clearing resolution " << info << " for (method) " << m->PrettyMethod(); return static_cast(nullptr); } else if (it != method_map.end()) { VLOG(plugin) << "Updating " << info << " object for (method) " << it->second->PrettyMethod(); return it->second; } return m; }); // Force every frame of every thread to deoptimize (any frame might have eg offsets compiled in). driver_->runtime_->GetInstrumentation()->DeoptimizeAllThreadFrames(); std::unordered_map, art::ObjPtr, art::HashObjPtr> map; for (auto [new_class, old_class] : art::ZipLeft(new_classes->Iterate(), old_classes->Iterate())) { map.emplace(old_class, new_class); } for (auto [new_instance, old_instance] : art::ZipLeft(new_instances->Iterate(), old_instances->Iterate())) { map.emplace(old_instance, new_instance); // Bare-bones check that the mapping is correct. CHECK(new_instance->GetClass() == map[old_instance->GetClass()]->AsClass()) << new_instance->GetClass()->PrettyClass() << " vs " << map[old_instance->GetClass()]->AsClass()->PrettyClass(); } // Actually perform the general replacement. This doesn't affect ArtMethod/ArtFields. It does // affect the declaring_class field of all the obsolete objects, which is unfortunate and needs to // be undone. This replaces the mirror::Class in 'holder' as well. It's magic! HeapExtensions::ReplaceReferences(driver_->self_, map); // Save the old class so that the JIT gc doesn't get confused by it being collected before the // jit code. This is also needed to keep the dex-caches of any obsolete methods live. for (auto [new_class, old_class] : art::ZipLeft(new_classes->Iterate(), art::MakeIterationRange(old_classes_vec))) { new_class->GetExtData()->SetObsoleteClass(old_class); } art::jit::Jit* jit = driver_->runtime_->GetJit(); if (jit != nullptr) { // Clear jit. // TODO We might want to have some way to tell the JIT not to wait the kJitSamplesBatchSize // invokes to start compiling things again. jit->GetCodeCache()->InvalidateAllCompiledCode(); } // Clear thread caches { // TODO We might be able to avoid doing this but given the rather unstructured nature of the // interpreter cache it's probably not worth the effort. art::MutexLock mu(driver_->self_, *art::Locks::thread_list_lock_); driver_->runtime_->GetThreadList()->ForEach( [](art::Thread* t) { t->GetInterpreterCache()->Clear(t); }); } if (art::kIsDebugBuild) { // Just make sure we didn't screw up any of the now obsolete methods or fields. We need their // declaring-class to still be the obolete class std::for_each( old_classes_vec.cbegin(), old_classes_vec.cend(), [](art::ObjPtr orig) REQUIRES_SHARED(art::Locks::mutator_lock_) { orig->VisitMethods( [&](art::ArtMethod* method) REQUIRES_SHARED(art::Locks::mutator_lock_) { if (method->IsCopied()) { // Copied methods have interfaces as their declaring class. return; } DCHECK_EQ(method->GetDeclaringClass(), orig) << method->GetDeclaringClass()->PrettyClass() << " vs " << orig->PrettyClass(); }, art::kRuntimePointerSize); orig->VisitFields([&](art::ArtField* field) REQUIRES_SHARED(art::Locks::mutator_lock_) { DCHECK_EQ(field->GetDeclaringClass(), orig) << field->GetDeclaringClass()->PrettyClass() << " vs " << orig->PrettyClass(); }); }); } } // Redefines the class in place void Redefiner::ClassRedefinition::UpdateClassInPlace(const RedefinitionDataIter& holder) { art::ObjPtr mclass(holder.GetMirrorClass()); // TODO Rewrite so we don't do a stack walk for each and every class. FindAndAllocateObsoleteMethods(mclass); art::ObjPtr new_dex_cache(holder.GetNewDexCache()); art::ObjPtr original_dex_file(holder.GetOriginalDexFile()); DCHECK_EQ(dex_file_->NumClassDefs(), 1u); const art::dex::ClassDef& class_def = dex_file_->GetClassDef(0); UpdateMethods(mclass, class_def); UpdateFields(mclass); art::ObjPtr ext(mclass->GetExtData()); CHECK(!ext.IsNull()); ext->SetOriginalDexFile(original_dex_file); // If this is the first time the class is being redefined, store // the native DexFile pointer and initial ClassDef index in ClassExt. // This preserves the pointer for hiddenapi access checks which need // to read access flags from the initial DexFile. if (ext->GetPreRedefineDexFile() == nullptr) { ext->SetPreRedefineDexFile(&mclass->GetDexFile()); ext->SetPreRedefineClassDefIndex(mclass->GetDexClassDefIndex()); } // Update the class fields. // Need to update class last since the ArtMethod gets its DexFile from the class (which is needed // to call GetReturnTypeDescriptor and GetParameterTypeList above). mclass->SetDexCache(new_dex_cache.Ptr()); mclass->SetDexClassDefIndex(dex_file_->GetIndexForClassDef(class_def)); mclass->SetDexTypeIndex(dex_file_->GetIndexForTypeId(*dex_file_->FindTypeId(class_sig_.c_str()))); // Notify the jit that all the methods in this class were redefined. Need to do this last since // the jit relies on the dex_file_ being correct (for native methods at least) to find the method // meta-data. art::jit::Jit* jit = driver_->runtime_->GetJit(); if (jit != nullptr) { art::PointerSize image_pointer_size = driver_->runtime_->GetClassLinker()->GetImagePointerSize(); auto code_cache = jit->GetCodeCache(); // Non-invokable methods don't have any JIT data associated with them so we don't need to tell // the jit about them. for (art::ArtMethod& method : mclass->GetDeclaredMethods(image_pointer_size)) { if (method.IsInvokable()) { code_cache->NotifyMethodRedefined(&method); } } } } // Performs final updates to class for redefinition. void Redefiner::ClassRedefinition::UpdateClass(const RedefinitionDataIter& holder) { CHECK(holder.IsInitialized()); if (holder.IsInitialStructural()) { UpdateClassStructurally(holder); } else if (!holder.IsActuallyStructural()) { UpdateClassInPlace(holder); } UpdateClassCommon(holder); } void Redefiner::ClassRedefinition::UpdateClassCommon(const RedefinitionDataIter &cur_data) { // NB This is after we've already replaced all old-refs with new-refs in the structural case. art::ObjPtr klass(cur_data.GetMirrorClass()); DCHECK(!IsStructuralRedefinition() || klass == cur_data.GetNewClassObject()); if (!needs_reverify_) { return; } // Force the most restrictive interpreter environment. We don't know what the final verification // will allow. We will clear these after retrying verification once we drop the mutator-lock. klass->VisitMethods([](art::ArtMethod* m) REQUIRES_SHARED(art::Locks::mutator_lock_) { if (!m->IsNative() && m->IsInvokable() && !m->IsObsolete()) { m->ClearSkipAccessChecks(); m->SetDontCompile(); m->SetMustCountLocks(); } }, art::kRuntimePointerSize); } // Restores the old obsolete methods maps if it turns out they weren't needed (ie there were no new // obsolete methods). void Redefiner::ClassRedefinition::RestoreObsoleteMethodMapsIfUnneeded( const RedefinitionDataIter* cur_data) { if (cur_data->IsActuallyStructural()) { // We didn't touch these in this case. return; } art::ObjPtr klass = GetMirrorClass(); art::ObjPtr ext = klass->GetExtData(); art::ObjPtr methods = ext->GetObsoleteMethods(); art::ObjPtr old_methods = cur_data->GetOldObsoleteMethods(); int32_t old_length = old_methods == nullptr ? 0 : old_methods->GetLength(); int32_t expected_length = old_length + klass->NumDirectMethods() + klass->NumDeclaredVirtualMethods(); // Check to make sure we are only undoing this one. if (methods.IsNull()) { // No new obsolete methods! We can get rid of the maps. ext->SetObsoleteArrays(cur_data->GetOldObsoleteMethods(), cur_data->GetOldDexCaches()); } else if (expected_length == methods->GetLength()) { for (int32_t i = 0; i < expected_length; i++) { art::ArtMethod* expected = nullptr; if (i < old_length) { expected = old_methods->GetElementPtrSize(i, art::kRuntimePointerSize); } if (methods->GetElementPtrSize(i, art::kRuntimePointerSize) != expected) { // We actually have some new obsolete methods. Just abort since we cannot safely shrink the // obsolete methods array. return; } } // No new obsolete methods! We can get rid of the maps. ext->SetObsoleteArrays(cur_data->GetOldObsoleteMethods(), cur_data->GetOldDexCaches()); } } // This function does all (java) allocations we need to do for the Class being redefined. // TODO Change this name maybe? bool Redefiner::ClassRedefinition::EnsureClassAllocationsFinished( /*out*/RedefinitionDataIter* cur_data) { art::StackHandleScope<2> hs(driver_->self_); art::Handle klass(hs.NewHandle( driver_->self_->DecodeJObject(klass_)->AsClass())); if (klass == nullptr) { RecordFailure(ERR(INVALID_CLASS), "Unable to decode class argument!"); return false; } // Allocate the classExt art::Handle ext = hs.NewHandle(art::mirror::Class::EnsureExtDataPresent(klass, driver_->self_)); if (ext == nullptr) { // No memory. Clear exception (it's not useful) and return error. driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Could not allocate ClassExt"); return false; } if (!cur_data->IsActuallyStructural()) { CHECK(!IsStructuralRedefinition()); // First save the old values of the 2 arrays that make up the obsolete methods maps. Then // allocate the 2 arrays that make up the obsolete methods map. Since the contents of the arrays // are only modified when all threads (other than the modifying one) are suspended we don't need // to worry about missing the unsyncronized writes to the array. We do synchronize when setting // it however, since that can happen at any time. cur_data->SetOldObsoleteMethods(ext->GetObsoleteMethods()); cur_data->SetOldDexCaches(ext->GetObsoleteDexCaches()); if (!art::mirror::ClassExt::ExtendObsoleteArrays( ext, driver_->self_, klass->GetDeclaredMethodsSlice(art::kRuntimePointerSize).size())) { // OOM. Clear exception and return error. driver_->self_->AssertPendingOOMException(); driver_->self_->ClearException(); RecordFailure(ERR(OUT_OF_MEMORY), "Unable to allocate/extend obsolete methods map"); return false; } } return true; } } // namespace openjdkjvmti