/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "barrier.h" #include #include "base/aborting.h" #include "base/mutex.h" #include "base/time_utils.h" #include "thread.h" namespace art { Barrier::Barrier(int count, bool verify_count_on_shutdown) : count_(count), lock_(new Mutex("GC barrier lock", kThreadSuspendCountLock)), condition_(new ConditionVariable("GC barrier condition", *lock_)), verify_count_on_shutdown_(verify_count_on_shutdown) { } template void Barrier::Increment(Thread* self, int delta); template void Barrier::Increment(Thread* self, int delta); void Barrier::Pass(Thread* self) { MutexLock mu(self, *GetLock()); SetCountLocked(self, count_ - 1); } void Barrier::Wait(Thread* self) { Increment(self, -1); } void Barrier::Init(Thread* self, int count) { MutexLock mu(self, *GetLock()); SetCountLocked(self, count); } template void Barrier::Increment(Thread* self, int delta) { MutexLock mu(self, *GetLock()); SetCountLocked(self, count_ + delta); // Increment the count. If it becomes zero after the increment // then all the threads have already passed the barrier. If // it is non-zero then there is still one or more threads // that have not yet called the Pass function. When the // Pass function is called by the last thread, the count will // be decremented to zero and a Broadcast will be made on the // condition variable, thus waking this up. while (count_ != 0) { if (locks == kAllowHoldingLocks) { condition_->WaitHoldingLocks(self); } else { condition_->Wait(self); } } } bool Barrier::Increment(Thread* self, int delta, uint32_t timeout_ms) { MutexLock mu(self, *GetLock()); SetCountLocked(self, count_ + delta); bool timed_out = false; if (count_ != 0) { uint32_t timeout_ns = 0; uint64_t abs_timeout = NanoTime() + MsToNs(timeout_ms); for (;;) { timed_out = condition_->TimedWait(self, timeout_ms, timeout_ns); if (timed_out || count_ == 0) return timed_out; // Compute time remaining on timeout. uint64_t now = NanoTime(); int64_t time_left = abs_timeout - now; if (time_left <= 0) return true; timeout_ns = time_left % (1000*1000); timeout_ms = time_left / (1000*1000); } } return timed_out; } int Barrier::GetCount(Thread* self) { MutexLock mu(self, *GetLock()); return count_; } void Barrier::SetCountLocked(Thread* self, int count) { count_ = count; if (count == 0) { condition_->Broadcast(self); } } Barrier::~Barrier() { if (count_ != 0) { // Only check when not aborting and if we verify the count on shutdown. LOG((gAborting == 0 && verify_count_on_shutdown_) ? FATAL : WARNING) << "Attempted to destroy barrier with non zero count " << count_; } } } // namespace art