/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "debugger.h" #include #include #include #include #include #include "android-base/macros.h" #include "android-base/stringprintf.h" #include "arch/context.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/endian_utils.h" #include "base/enums.h" #include "base/logging.h" #include "base/memory_tool.h" #include "base/safe_map.h" #include "base/strlcpy.h" #include "base/time_utils.h" #include "class_linker-inl.h" #include "class_linker.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_annotations.h" #include "dex/dex_file_types.h" #include "dex/dex_instruction.h" #include "dex/utf.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc/accounting/card_table-inl.h" #include "gc/allocation_record.h" #include "gc/gc_cause.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/bump_pointer_space-walk-inl.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "handle_scope-inl.h" #include "instrumentation.h" #include "jni/jni_internal.h" #include "jvalue-inl.h" #include "mirror/array-alloc-inl.h" #include "mirror/class-alloc-inl.h" #include "mirror/class-inl.h" #include "mirror/class.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-alloc-inl.h" #include "mirror/string-inl.h" #include "mirror/throwable.h" #include "nativehelper/scoped_local_ref.h" #include "nativehelper/scoped_primitive_array.h" #include "oat_file.h" #include "obj_ptr-inl.h" #include "reflection.h" #include "reflective_handle.h" #include "reflective_handle_scope-inl.h" #include "runtime-inl.h" #include "runtime_callbacks.h" #include "scoped_thread_state_change-inl.h" #include "scoped_thread_state_change.h" #include "stack.h" #include "thread.h" #include "thread_list.h" #include "thread_pool.h" #include "well_known_classes.h" namespace art { using android::base::StringPrintf; // Limit alloc_record_count to the 2BE value (64k-1) that is the limit of the current protocol. static uint16_t CappedAllocRecordCount(size_t alloc_record_count) { const size_t cap = 0xffff; if (alloc_record_count > cap) { return cap; } return alloc_record_count; } // JDWP is allowed unless the Zygote forbids it. static bool gJdwpAllowed = true; static bool gDdmThreadNotification = false; // DDMS GC-related settings. static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER; static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER; static Dbg::HpsgWhat gDdmHpsgWhat; static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER; static Dbg::HpsgWhat gDdmNhsgWhat; Dbg::DbgThreadLifecycleCallback Dbg::thread_lifecycle_callback_; void Dbg::GcDidFinish() { if (gDdmHpifWhen != HPIF_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); VLOG(jdwp) << "Sending heap info to DDM"; DdmSendHeapInfo(gDdmHpifWhen); } if (gDdmHpsgWhen != HPSG_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); VLOG(jdwp) << "Dumping heap to DDM"; DdmSendHeapSegments(false); } if (gDdmNhsgWhen != HPSG_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); VLOG(jdwp) << "Dumping native heap to DDM"; DdmSendHeapSegments(true); } } void Dbg::SetJdwpAllowed(bool allowed) { gJdwpAllowed = allowed; } bool Dbg::IsJdwpAllowed() { return gJdwpAllowed; } // Do we need to deoptimize the stack to handle an exception? bool Dbg::IsForcedInterpreterNeededForExceptionImpl(Thread* thread) { // Deoptimization is required if at least one method in the stack needs it. However we // skip frames that will be unwound (thus not executed). bool needs_deoptimization = false; StackVisitor::WalkStack( [&](art::StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) { // The visitor is meant to be used when handling exception from compiled code only. CHECK(!visitor->IsShadowFrame()) << "We only expect to visit compiled frame: " << ArtMethod::PrettyMethod(visitor->GetMethod()); ArtMethod* method = visitor->GetMethod(); if (method == nullptr) { // We reach an upcall and don't need to deoptimize this part of the stack (ManagedFragment) // so we can stop the visit. DCHECK(!needs_deoptimization); return false; } if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) { // We found a compiled frame in the stack but instrumentation is set to interpret // everything: we need to deoptimize. needs_deoptimization = true; return false; } if (Runtime::Current()->GetInstrumentation()->IsDeoptimized(method)) { // We found a deoptimized method in the stack. needs_deoptimization = true; return false; } ShadowFrame* frame = visitor->GetThread()->FindDebuggerShadowFrame(visitor->GetFrameId()); if (frame != nullptr) { // The debugger allocated a ShadowFrame to update a variable in the stack: we need to // deoptimize the stack to execute (and deallocate) this frame. needs_deoptimization = true; return false; } return true; }, thread, /* context= */ nullptr, art::StackVisitor::StackWalkKind::kIncludeInlinedFrames, /* check_suspended */ true, /* include_transitions */ true); return needs_deoptimization; } bool Dbg::DdmHandleChunk(JNIEnv* env, uint32_t type, const ArrayRef& data, /*out*/uint32_t* out_type, /*out*/std::vector* out_data) { ScopedLocalRef dataArray(env, env->NewByteArray(data.size())); if (dataArray.get() == nullptr) { LOG(WARNING) << "byte[] allocation failed: " << data.size(); env->ExceptionClear(); return false; } env->SetByteArrayRegion(dataArray.get(), 0, data.size(), reinterpret_cast(data.data())); // Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)". ScopedLocalRef chunk( env, env->CallStaticObjectMethod( WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer, WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch, type, dataArray.get(), 0, data.size())); if (env->ExceptionCheck()) { Thread* self = Thread::Current(); ScopedObjectAccess soa(self); LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type) << std::endl << self->GetException()->Dump(); self->ClearException(); return false; } if (chunk.get() == nullptr) { return false; } /* * Pull the pieces out of the chunk. We copy the results into a * newly-allocated buffer that the caller can free. We don't want to * continue using the Chunk object because nothing has a reference to it. * * We could avoid this by returning type/data/offset/length and having * the caller be aware of the object lifetime issues, but that * integrates the JDWP code more tightly into the rest of the runtime, and doesn't work * if we have responses for multiple chunks. * * So we're pretty much stuck with copying data around multiple times. */ ScopedLocalRef replyData( env, reinterpret_cast( env->GetObjectField( chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_data))); jint offset = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_offset); jint length = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_length); *out_type = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_type); VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d", type, replyData.get(), offset, length); out_data->resize(length); env->GetByteArrayRegion(replyData.get(), offset, length, reinterpret_cast(out_data->data())); if (env->ExceptionCheck()) { Thread* self = Thread::Current(); ScopedObjectAccess soa(self); LOG(INFO) << StringPrintf("Exception thrown when reading response data from dispatcher 0x%08x", type) << std::endl << self->GetException()->Dump(); self->ClearException(); return false; } return true; } void Dbg::DdmBroadcast(bool connect) { VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "..."; Thread* self = Thread::Current(); if (self->GetState() != kRunnable) { LOG(ERROR) << "DDM broadcast in thread state " << self->GetState(); /* try anyway? */ } JNIEnv* env = self->GetJniEnv(); jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/; env->CallStaticVoidMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer, WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_broadcast, event); if (env->ExceptionCheck()) { LOG(ERROR) << "DdmServer.broadcast " << event << " failed"; env->ExceptionDescribe(); env->ExceptionClear(); } } void Dbg::DdmConnected() { Dbg::DdmBroadcast(true); } void Dbg::DdmDisconnected() { Dbg::DdmBroadcast(false); gDdmThreadNotification = false; } /* * Send a notification when a thread starts, stops, or changes its name. * * Because we broadcast the full set of threads when the notifications are * first enabled, it's possible for "thread" to be actively executing. */ void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) { Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current()); if (!gDdmThreadNotification) { return; } RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks(); if (type == CHUNK_TYPE("THDE")) { uint8_t buf[4]; Set4BE(&buf[0], t->GetThreadId()); cb->DdmPublishChunk(CHUNK_TYPE("THDE"), ArrayRef(buf)); } else { CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type; StackHandleScope<1> hs(Thread::Current()); Handle name(hs.NewHandle(t->GetThreadName())); size_t char_count = (name != nullptr) ? name->GetLength() : 0; const jchar* chars = (name != nullptr) ? name->GetValue() : nullptr; bool is_compressed = (name != nullptr) ? name->IsCompressed() : false; std::vector bytes; Append4BE(bytes, t->GetThreadId()); if (is_compressed) { const uint8_t* chars_compressed = name->GetValueCompressed(); AppendUtf16CompressedBE(bytes, chars_compressed, char_count); } else { AppendUtf16BE(bytes, chars, char_count); } CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2); cb->DdmPublishChunk(type, ArrayRef(bytes)); } } void Dbg::DdmSetThreadNotification(bool enable) { // Enable/disable thread notifications. gDdmThreadNotification = enable; if (enable) { // Use a Checkpoint to cause every currently running thread to send their own notification when // able. We then wait for every thread thread active at the time to post the creation // notification. Threads created later will send this themselves. Thread* self = Thread::Current(); ScopedObjectAccess soa(self); Barrier finish_barrier(0); FunctionClosure fc([&](Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) { Thread* cls_self = Thread::Current(); Locks::mutator_lock_->AssertSharedHeld(cls_self); Dbg::DdmSendThreadNotification(thread, CHUNK_TYPE("THCR")); finish_barrier.Pass(cls_self); }); size_t checkpoints = Runtime::Current()->GetThreadList()->RunCheckpoint(&fc); ScopedThreadSuspension sts(self, ThreadState::kWaitingForCheckPointsToRun); finish_barrier.Increment(self, checkpoints); } } void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) { Dbg::DdmSendThreadNotification(t, type); } void Dbg::PostThreadStart(Thread* t) { Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR")); } void Dbg::PostThreadDeath(Thread* t) { Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE")); } int Dbg::DdmHandleHpifChunk(HpifWhen when) { if (when == HPIF_WHEN_NOW) { DdmSendHeapInfo(when); return 1; } if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) { LOG(ERROR) << "invalid HpifWhen value: " << static_cast(when); return 0; } gDdmHpifWhen = when; return 1; } bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) { if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) { LOG(ERROR) << "invalid HpsgWhen value: " << static_cast(when); return false; } if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) { LOG(ERROR) << "invalid HpsgWhat value: " << static_cast(what); return false; } if (native) { gDdmNhsgWhen = when; gDdmNhsgWhat = what; } else { gDdmHpsgWhen = when; gDdmHpsgWhat = what; } return true; } void Dbg::DdmSendHeapInfo(HpifWhen reason) { // If there's a one-shot 'when', reset it. if (reason == gDdmHpifWhen) { if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) { gDdmHpifWhen = HPIF_WHEN_NEVER; } } /* * Chunk HPIF (client --> server) * * Heap Info. General information about the heap, * suitable for a summary display. * * [u4]: number of heaps * * For each heap: * [u4]: heap ID * [u8]: timestamp in ms since Unix epoch * [u1]: capture reason (same as 'when' value from server) * [u4]: max heap size in bytes (-Xmx) * [u4]: current heap size in bytes * [u4]: current number of bytes allocated * [u4]: current number of objects allocated */ uint8_t heap_count = 1; gc::Heap* heap = Runtime::Current()->GetHeap(); std::vector bytes; Append4BE(bytes, heap_count); Append4BE(bytes, 1); // Heap id (bogus; we only have one heap). Append8BE(bytes, MilliTime()); Append1BE(bytes, reason); Append4BE(bytes, heap->GetMaxMemory()); // Max allowed heap size in bytes. Append4BE(bytes, heap->GetTotalMemory()); // Current heap size in bytes. Append4BE(bytes, heap->GetBytesAllocated()); Append4BE(bytes, heap->GetObjectsAllocated()); CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4))); Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(CHUNK_TYPE("HPIF"), ArrayRef(bytes)); } enum HpsgSolidity { SOLIDITY_FREE = 0, SOLIDITY_HARD = 1, SOLIDITY_SOFT = 2, SOLIDITY_WEAK = 3, SOLIDITY_PHANTOM = 4, SOLIDITY_FINALIZABLE = 5, SOLIDITY_SWEEP = 6, }; enum HpsgKind { KIND_OBJECT = 0, KIND_CLASS_OBJECT = 1, KIND_ARRAY_1 = 2, KIND_ARRAY_2 = 3, KIND_ARRAY_4 = 4, KIND_ARRAY_8 = 5, KIND_UNKNOWN = 6, KIND_NATIVE = 7, }; #define HPSG_PARTIAL (1<<7) #define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7))) class HeapChunkContext { public: // Maximum chunk size. Obtain this from the formula: // (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2 HeapChunkContext(bool merge, bool native) : buf_(16384 - 16), type_(0), chunk_overhead_(0) { Reset(); if (native) { type_ = CHUNK_TYPE("NHSG"); } else { type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO"); } } ~HeapChunkContext() { if (p_ > &buf_[0]) { Flush(); } } void SetChunkOverhead(size_t chunk_overhead) { chunk_overhead_ = chunk_overhead; } void ResetStartOfNextChunk() { startOfNextMemoryChunk_ = nullptr; } void EnsureHeader(const void* chunk_ptr) { if (!needHeader_) { return; } // Start a new HPSx chunk. Write4BE(&p_, 1); // Heap id (bogus; we only have one heap). Write1BE(&p_, 8); // Size of allocation unit, in bytes. Write4BE(&p_, reinterpret_cast(chunk_ptr)); // virtual address of segment start. Write4BE(&p_, 0); // offset of this piece (relative to the virtual address). // [u4]: length of piece, in allocation units // We won't know this until we're done, so save the offset and stuff in a fake value. pieceLenField_ = p_; Write4BE(&p_, 0x55555555); needHeader_ = false; } void Flush() REQUIRES_SHARED(Locks::mutator_lock_) { if (pieceLenField_ == nullptr) { // Flush immediately post Reset (maybe back-to-back Flush). Ignore. CHECK(needHeader_); return; } // Patch the "length of piece" field. CHECK_LE(&buf_[0], pieceLenField_); CHECK_LE(pieceLenField_, p_); Set4BE(pieceLenField_, totalAllocationUnits_); ArrayRef out(&buf_[0], p_ - &buf_[0]); Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(type_, out); Reset(); } static void HeapChunkJavaCallback(void* start, void* end, size_t used_bytes, void* arg) REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { reinterpret_cast(arg)->HeapChunkJavaCallback(start, end, used_bytes); } static void HeapChunkNativeCallback(void* start, void* end, size_t used_bytes, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { reinterpret_cast(arg)->HeapChunkNativeCallback(start, end, used_bytes); } private: enum { ALLOCATION_UNIT_SIZE = 8 }; void Reset() { p_ = &buf_[0]; ResetStartOfNextChunk(); totalAllocationUnits_ = 0; needHeader_ = true; pieceLenField_ = nullptr; } bool IsNative() const { return type_ == CHUNK_TYPE("NHSG"); } // Returns true if the object is not an empty chunk. bool ProcessRecord(void* start, size_t used_bytes) REQUIRES_SHARED(Locks::mutator_lock_) { // Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken // in the following code not to allocate memory, by ensuring buf_ is of the correct size if (used_bytes == 0) { if (start == nullptr) { // Reset for start of new heap. startOfNextMemoryChunk_ = nullptr; Flush(); } // Only process in use memory so that free region information // also includes dlmalloc book keeping. return false; } if (startOfNextMemoryChunk_ != nullptr) { // Transmit any pending free memory. Native free memory of over kMaxFreeLen could be because // of the use of mmaps, so don't report. If not free memory then start a new segment. bool flush = true; if (start > startOfNextMemoryChunk_) { const size_t kMaxFreeLen = 2 * kPageSize; void* free_start = startOfNextMemoryChunk_; void* free_end = start; const size_t free_len = reinterpret_cast(free_end) - reinterpret_cast(free_start); if (!IsNative() || free_len < kMaxFreeLen) { AppendChunk(HPSG_STATE(SOLIDITY_FREE, 0), free_start, free_len, IsNative()); flush = false; } } if (flush) { startOfNextMemoryChunk_ = nullptr; Flush(); } } return true; } void HeapChunkNativeCallback(void* start, void* /*end*/, size_t used_bytes) REQUIRES_SHARED(Locks::mutator_lock_) { if (ProcessRecord(start, used_bytes)) { uint8_t state = ExamineNativeObject(start); AppendChunk(state, start, used_bytes + chunk_overhead_, /*is_native=*/ true); startOfNextMemoryChunk_ = reinterpret_cast(start) + used_bytes + chunk_overhead_; } } void HeapChunkJavaCallback(void* start, void* /*end*/, size_t used_bytes) REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { if (ProcessRecord(start, used_bytes)) { // Determine the type of this chunk. // OLD-TODO: if context.merge, see if this chunk is different from the last chunk. // If it's the same, we should combine them. uint8_t state = ExamineJavaObject(reinterpret_cast(start)); AppendChunk(state, start, used_bytes + chunk_overhead_, /*is_native=*/ false); startOfNextMemoryChunk_ = reinterpret_cast(start) + used_bytes + chunk_overhead_; } } void AppendChunk(uint8_t state, void* ptr, size_t length, bool is_native) REQUIRES_SHARED(Locks::mutator_lock_) { // Make sure there's enough room left in the buffer. // We need to use two bytes for every fractional 256 allocation units used by the chunk plus // 17 bytes for any header. const size_t needed = ((RoundUp(length / ALLOCATION_UNIT_SIZE, 256) / 256) * 2) + 17; size_t byte_left = &buf_.back() - p_; if (byte_left < needed) { if (is_native) { // Cannot trigger memory allocation while walking native heap. return; } Flush(); } byte_left = &buf_.back() - p_; if (byte_left < needed) { LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << length << ", " << needed << " bytes)"; return; } EnsureHeader(ptr); // Write out the chunk description. length /= ALLOCATION_UNIT_SIZE; // Convert to allocation units. totalAllocationUnits_ += length; while (length > 256) { *p_++ = state | HPSG_PARTIAL; *p_++ = 255; // length - 1 length -= 256; } *p_++ = state; *p_++ = length - 1; } uint8_t ExamineNativeObject(const void* p) REQUIRES_SHARED(Locks::mutator_lock_) { return p == nullptr ? HPSG_STATE(SOLIDITY_FREE, 0) : HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE); } uint8_t ExamineJavaObject(ObjPtr o) REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { if (o == nullptr) { return HPSG_STATE(SOLIDITY_FREE, 0); } // It's an allocated chunk. Figure out what it is. gc::Heap* heap = Runtime::Current()->GetHeap(); if (!heap->IsLiveObjectLocked(o)) { LOG(ERROR) << "Invalid object in managed heap: " << o; return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE); } ObjPtr c = o->GetClass(); if (c == nullptr) { // The object was probably just created but hasn't been initialized yet. return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT); } if (!heap->IsValidObjectAddress(c.Ptr())) { LOG(ERROR) << "Invalid class for managed heap object: " << o << " " << c; return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN); } if (c->GetClass() == nullptr) { LOG(ERROR) << "Null class of class " << c << " for object " << o; return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN); } if (c->IsClassClass()) { return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT); } if (c->IsArrayClass()) { switch (c->GetComponentSize()) { case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1); case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2); case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4); case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8); } } return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT); } std::vector buf_; uint8_t* p_; uint8_t* pieceLenField_; void* startOfNextMemoryChunk_; size_t totalAllocationUnits_; uint32_t type_; bool needHeader_; size_t chunk_overhead_; DISALLOW_COPY_AND_ASSIGN(HeapChunkContext); }; void Dbg::DdmSendHeapSegments(bool native) { Dbg::HpsgWhen when = native ? gDdmNhsgWhen : gDdmHpsgWhen; Dbg::HpsgWhat what = native ? gDdmNhsgWhat : gDdmHpsgWhat; if (when == HPSG_WHEN_NEVER) { return; } RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks(); // Figure out what kind of chunks we'll be sending. CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS) << static_cast(what); // First, send a heap start chunk. uint8_t heap_id[4]; Set4BE(&heap_id[0], 1); // Heap id (bogus; we only have one heap). cb->DdmPublishChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"), ArrayRef(heap_id)); Thread* self = Thread::Current(); Locks::mutator_lock_->AssertSharedHeld(self); // Send a series of heap segment chunks. HeapChunkContext context(what == HPSG_WHAT_MERGED_OBJECTS, native); auto bump_pointer_space_visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { const size_t size = RoundUp(obj->SizeOf(), kObjectAlignment); HeapChunkContext::HeapChunkJavaCallback( obj, reinterpret_cast(reinterpret_cast(obj) + size), size, &context); }; if (native) { UNIMPLEMENTED(WARNING) << "Native heap inspection is not supported"; } else { gc::Heap* heap = Runtime::Current()->GetHeap(); for (const auto& space : heap->GetContinuousSpaces()) { if (space->IsDlMallocSpace()) { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // dlmalloc's chunk header is 2 * sizeof(size_t), but if the previous chunk is in use for an // allocation then the first sizeof(size_t) may belong to it. context.SetChunkOverhead(sizeof(size_t)); space->AsDlMallocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context); } else if (space->IsRosAllocSpace()) { context.SetChunkOverhead(0); // Need to acquire the mutator lock before the heap bitmap lock with exclusive access since // RosAlloc's internal logic doesn't know to release and reacquire the heap bitmap lock. ScopedThreadSuspension sts(self, kSuspended); ScopedSuspendAll ssa(__FUNCTION__); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); space->AsRosAllocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context); } else if (space->IsBumpPointerSpace()) { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); context.SetChunkOverhead(0); space->AsBumpPointerSpace()->Walk(bump_pointer_space_visitor); HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context); } else if (space->IsRegionSpace()) { heap->IncrementDisableMovingGC(self); { ScopedThreadSuspension sts(self, kSuspended); ScopedSuspendAll ssa(__FUNCTION__); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); context.SetChunkOverhead(0); space->AsRegionSpace()->Walk(bump_pointer_space_visitor); HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context); } heap->DecrementDisableMovingGC(self); } else { UNIMPLEMENTED(WARNING) << "Not counting objects in space " << *space; } context.ResetStartOfNextChunk(); } ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); // Walk the large objects, these are not in the AllocSpace. context.SetChunkOverhead(0); heap->GetLargeObjectsSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context); } // Finally, send a heap end chunk. cb->DdmPublishChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"), ArrayRef(heap_id)); } void Dbg::SetAllocTrackingEnabled(bool enable) { gc::AllocRecordObjectMap::SetAllocTrackingEnabled(enable); } class StringTable { private: struct Entry { explicit Entry(const char* data_in) : data(data_in), hash(ComputeModifiedUtf8Hash(data_in)), index(0) { } Entry(const Entry& entry) = default; Entry(Entry&& entry) = default; // Pointer to the actual string data. const char* data; // The hash of the data. const uint32_t hash; // The index. This will be filled in on Finish and is not part of the ordering, so mark it // mutable. mutable uint32_t index; bool operator==(const Entry& other) const { return strcmp(data, other.data) == 0; } }; struct EntryHash { size_t operator()(const Entry& entry) const { return entry.hash; } }; public: StringTable() : finished_(false) { } void Add(const char* str, bool copy_string) { DCHECK(!finished_); if (UNLIKELY(copy_string)) { // Check whether it's already there. Entry entry(str); if (table_.find(entry) != table_.end()) { return; } // Make a copy. size_t str_len = strlen(str); char* copy = new char[str_len + 1]; strlcpy(copy, str, str_len + 1); string_backup_.emplace_back(copy); str = copy; } Entry entry(str); table_.insert(entry); } // Update all entries and give them an index. Note that this is likely not the insertion order, // as the set will with high likelihood reorder elements. Thus, Add must not be called after // Finish, and Finish must be called before IndexOf. In that case, WriteTo will walk in // the same order as Finish, and indices will agree. The order invariant, as well as indices, // are enforced through debug checks. void Finish() { DCHECK(!finished_); finished_ = true; uint32_t index = 0; for (auto& entry : table_) { entry.index = index; ++index; } } size_t IndexOf(const char* s) const { DCHECK(finished_); Entry entry(s); auto it = table_.find(entry); if (it == table_.end()) { LOG(FATAL) << "IndexOf(\"" << s << "\") failed"; } return it->index; } size_t Size() const { return table_.size(); } void WriteTo(std::vector& bytes) const { DCHECK(finished_); uint32_t cur_index = 0; for (const auto& entry : table_) { DCHECK_EQ(cur_index++, entry.index); size_t s_len = CountModifiedUtf8Chars(entry.data); std::unique_ptr s_utf16(new uint16_t[s_len]); ConvertModifiedUtf8ToUtf16(s_utf16.get(), entry.data); AppendUtf16BE(bytes, s_utf16.get(), s_len); } } private: std::unordered_set table_; std::vector> string_backup_; bool finished_; DISALLOW_COPY_AND_ASSIGN(StringTable); }; static const char* GetMethodSourceFile(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(method != nullptr); const char* source_file = method->GetDeclaringClassSourceFile(); return (source_file != nullptr) ? source_file : ""; } /* * The data we send to DDMS contains everything we have recorded. * * Message header (all values big-endian): * (1b) message header len (to allow future expansion); includes itself * (1b) entry header len * (1b) stack frame len * (2b) number of entries * (4b) offset to string table from start of message * (2b) number of class name strings * (2b) number of method name strings * (2b) number of source file name strings * For each entry: * (4b) total allocation size * (2b) thread id * (2b) allocated object's class name index * (1b) stack depth * For each stack frame: * (2b) method's class name * (2b) method name * (2b) method source file * (2b) line number, clipped to 32767; -2 if native; -1 if no source * (xb) class name strings * (xb) method name strings * (xb) source file strings * * As with other DDM traffic, strings are sent as a 4-byte length * followed by UTF-16 data. * * We send up 16-bit unsigned indexes into string tables. In theory there * can be (kMaxAllocRecordStackDepth * alloc_record_max_) unique strings in * each table, but in practice there should be far fewer. * * The chief reason for using a string table here is to keep the size of * the DDMS message to a minimum. This is partly to make the protocol * efficient, but also because we have to form the whole thing up all at * once in a memory buffer. * * We use separate string tables for class names, method names, and source * files to keep the indexes small. There will generally be no overlap * between the contents of these tables. */ jbyteArray Dbg::GetRecentAllocations() { if ((false)) { DumpRecentAllocations(); } Thread* self = Thread::Current(); std::vector bytes; { MutexLock mu(self, *Locks::alloc_tracker_lock_); gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords(); // In case this method is called when allocation tracker is not enabled, // we should still send some data back. gc::AllocRecordObjectMap fallback_record_map; if (records == nullptr) { CHECK(!Runtime::Current()->GetHeap()->IsAllocTrackingEnabled()); records = &fallback_record_map; } // We don't need to wait on the condition variable records->new_record_condition_, because this // function only reads the class objects, which are already marked so it doesn't change their // reachability. // // Part 1: generate string tables. // StringTable class_names; StringTable method_names; StringTable filenames; VLOG(jdwp) << "Collecting StringTables."; const uint16_t capped_count = CappedAllocRecordCount(records->GetRecentAllocationSize()); uint16_t count = capped_count; size_t alloc_byte_count = 0; for (auto it = records->RBegin(), end = records->REnd(); count > 0 && it != end; count--, it++) { const gc::AllocRecord* record = &it->second; std::string temp; const char* class_descr = record->GetClassDescriptor(&temp); class_names.Add(class_descr, !temp.empty()); // Size + tid + class name index + stack depth. alloc_byte_count += 4u + 2u + 2u + 1u; for (size_t i = 0, depth = record->GetDepth(); i < depth; i++) { ArtMethod* m = record->StackElement(i).GetMethod(); class_names.Add(m->GetDeclaringClassDescriptor(), false); method_names.Add(m->GetName(), false); filenames.Add(GetMethodSourceFile(m), false); } // Depth * (class index + method name index + file name index + line number). alloc_byte_count += record->GetDepth() * (2u + 2u + 2u + 2u); } class_names.Finish(); method_names.Finish(); filenames.Finish(); VLOG(jdwp) << "Done collecting StringTables:" << std::endl << " ClassNames: " << class_names.Size() << std::endl << " MethodNames: " << method_names.Size() << std::endl << " Filenames: " << filenames.Size(); LOG(INFO) << "recent allocation records: " << capped_count; LOG(INFO) << "allocation records all objects: " << records->Size(); // // Part 2: Generate the output and store it in the buffer. // // (1b) message header len (to allow future expansion); includes itself // (1b) entry header len // (1b) stack frame len const int kMessageHeaderLen = 15; const int kEntryHeaderLen = 9; const int kStackFrameLen = 8; Append1BE(bytes, kMessageHeaderLen); Append1BE(bytes, kEntryHeaderLen); Append1BE(bytes, kStackFrameLen); // (2b) number of entries // (4b) offset to string table from start of message // (2b) number of class name strings // (2b) number of method name strings // (2b) number of source file name strings Append2BE(bytes, capped_count); size_t string_table_offset = bytes.size(); Append4BE(bytes, 0); // We'll patch this later... Append2BE(bytes, class_names.Size()); Append2BE(bytes, method_names.Size()); Append2BE(bytes, filenames.Size()); VLOG(jdwp) << "Dumping allocations with stacks"; // Enlarge the vector for the allocation data. size_t reserve_size = bytes.size() + alloc_byte_count; bytes.reserve(reserve_size); std::string temp; count = capped_count; // The last "count" number of allocation records in "records" are the most recent "count" number // of allocations. Reverse iterate to get them. The most recent allocation is sent first. for (auto it = records->RBegin(), end = records->REnd(); count > 0 && it != end; count--, it++) { // For each entry: // (4b) total allocation size // (2b) thread id // (2b) allocated object's class name index // (1b) stack depth const gc::AllocRecord* record = &it->second; size_t stack_depth = record->GetDepth(); size_t allocated_object_class_name_index = class_names.IndexOf(record->GetClassDescriptor(&temp)); Append4BE(bytes, record->ByteCount()); Append2BE(bytes, static_cast(record->GetTid())); Append2BE(bytes, allocated_object_class_name_index); Append1BE(bytes, stack_depth); for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) { // For each stack frame: // (2b) method's class name // (2b) method name // (2b) method source file // (2b) line number, clipped to 32767; -2 if native; -1 if no source ArtMethod* m = record->StackElement(stack_frame).GetMethod(); size_t class_name_index = class_names.IndexOf(m->GetDeclaringClassDescriptor()); size_t method_name_index = method_names.IndexOf(m->GetName()); size_t file_name_index = filenames.IndexOf(GetMethodSourceFile(m)); Append2BE(bytes, class_name_index); Append2BE(bytes, method_name_index); Append2BE(bytes, file_name_index); Append2BE(bytes, record->StackElement(stack_frame).ComputeLineNumber()); } } CHECK_EQ(bytes.size(), reserve_size); VLOG(jdwp) << "Dumping tables."; // (xb) class name strings // (xb) method name strings // (xb) source file strings Set4BE(&bytes[string_table_offset], bytes.size()); class_names.WriteTo(bytes); method_names.WriteTo(bytes); filenames.WriteTo(bytes); VLOG(jdwp) << "GetRecentAllocations: data created. " << bytes.size(); } JNIEnv* env = self->GetJniEnv(); jbyteArray result = env->NewByteArray(bytes.size()); if (result != nullptr) { env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast(&bytes[0])); } return result; } void Dbg::DbgThreadLifecycleCallback::ThreadStart(Thread* self) { Dbg::PostThreadStart(self); } void Dbg::DbgThreadLifecycleCallback::ThreadDeath(Thread* self) { Dbg::PostThreadDeath(self); } } // namespace art