/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include #include #include "art_method-inl.h" #include "base/logging.h" // For VLOG #include "base/safe_copy.h" #include "base/stl_util.h" #include "dex/dex_file_types.h" #include "mirror/class.h" #include "mirror/object_reference.h" #include "oat_quick_method_header.h" #include "sigchain.h" #include "thread-current-inl.h" #include "verify_object-inl.h" namespace art { // Static fault manger object accessed by signal handler. FaultManager fault_manager; // This needs to be NO_INLINE since some debuggers do not read the inline-info to set a breakpoint // if it isn't. extern "C" NO_INLINE __attribute__((visibility("default"))) void art_sigsegv_fault() { // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART. VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler."; } // Signal handler called on SIGSEGV. static bool art_fault_handler(int sig, siginfo_t* info, void* context) { return fault_manager.HandleFault(sig, info, context); } #if defined(__linux__) // Change to verify the safe implementations against the original ones. constexpr bool kVerifySafeImpls = false; // Provide implementations of ArtMethod::GetDeclaringClass and VerifyClassClass that use SafeCopy // to safely dereference pointers which are potentially garbage. // Only available on Linux due to availability of SafeCopy. static mirror::Class* SafeGetDeclaringClass(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { char* method_declaring_class = reinterpret_cast(method) + ArtMethod::DeclaringClassOffset().SizeValue(); // ArtMethod::declaring_class_ is a GcRoot. // Read it out into as a CompressedReference directly for simplicity's sake. mirror::CompressedReference cls; ssize_t rc = SafeCopy(&cls, method_declaring_class, sizeof(cls)); CHECK_NE(-1, rc); if (kVerifySafeImpls) { ObjPtr actual_class = method->GetDeclaringClassUnchecked(); CHECK_EQ(actual_class, cls.AsMirrorPtr()); } if (rc != sizeof(cls)) { return nullptr; } return cls.AsMirrorPtr(); } static mirror::Class* SafeGetClass(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { char* obj_cls = reinterpret_cast(obj) + mirror::Object::ClassOffset().SizeValue(); mirror::HeapReference cls; ssize_t rc = SafeCopy(&cls, obj_cls, sizeof(cls)); CHECK_NE(-1, rc); if (kVerifySafeImpls) { mirror::Class* actual_class = obj->GetClass(); CHECK_EQ(actual_class, cls.AsMirrorPtr()); } if (rc != sizeof(cls)) { return nullptr; } return cls.AsMirrorPtr(); } static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Class* c_c = SafeGetClass(cls); bool result = c_c != nullptr && c_c == SafeGetClass(c_c); if (kVerifySafeImpls) { CHECK_EQ(VerifyClassClass(cls), result); } return result; } #else static mirror::Class* SafeGetDeclaringClass(ArtMethod* method_obj) REQUIRES_SHARED(Locks::mutator_lock_) { return method_obj->GetDeclaringClassUnchecked().Ptr(); } static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) { return VerifyClassClass(cls); } #endif FaultManager::FaultManager() : initialized_(false) { sigaction(SIGSEGV, nullptr, &oldaction_); } FaultManager::~FaultManager() { } void FaultManager::Init() { CHECK(!initialized_); sigset_t mask; sigfillset(&mask); sigdelset(&mask, SIGABRT); sigdelset(&mask, SIGBUS); sigdelset(&mask, SIGFPE); sigdelset(&mask, SIGILL); sigdelset(&mask, SIGSEGV); SigchainAction sa = { .sc_sigaction = art_fault_handler, .sc_mask = mask, .sc_flags = 0UL, }; AddSpecialSignalHandlerFn(SIGSEGV, &sa); initialized_ = true; } void FaultManager::Release() { if (initialized_) { RemoveSpecialSignalHandlerFn(SIGSEGV, art_fault_handler); initialized_ = false; } } void FaultManager::Shutdown() { if (initialized_) { Release(); // Free all handlers. STLDeleteElements(&generated_code_handlers_); STLDeleteElements(&other_handlers_); } } bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* context) { if (other_handlers_.empty()) { return false; } Thread* self = Thread::Current(); DCHECK(self != nullptr); DCHECK(Runtime::Current() != nullptr); DCHECK(Runtime::Current()->IsStarted()); for (const auto& handler : other_handlers_) { if (handler->Action(sig, info, context)) { return true; } } return false; } static const char* SignalCodeName(int sig, int code) { if (sig != SIGSEGV) { return "UNKNOWN"; } else { switch (code) { case SEGV_MAPERR: return "SEGV_MAPERR"; case SEGV_ACCERR: return "SEGV_ACCERR"; default: return "UNKNOWN"; } } } static std::ostream& PrintSignalInfo(std::ostream& os, siginfo_t* info) { os << " si_signo: " << info->si_signo << " (" << strsignal(info->si_signo) << ")\n" << " si_code: " << info->si_code << " (" << SignalCodeName(info->si_signo, info->si_code) << ")"; if (info->si_signo == SIGSEGV) { os << "\n" << " si_addr: " << info->si_addr; } return os; } bool FaultManager::HandleFault(int sig, siginfo_t* info, void* context) { if (VLOG_IS_ON(signals)) { PrintSignalInfo(VLOG_STREAM(signals) << "Handling fault:" << "\n", info); } #ifdef TEST_NESTED_SIGNAL // Simulate a crash in a handler. raise(SIGSEGV); #endif if (IsInGeneratedCode(info, context, true)) { VLOG(signals) << "in generated code, looking for handler"; for (const auto& handler : generated_code_handlers_) { VLOG(signals) << "invoking Action on handler " << handler; if (handler->Action(sig, info, context)) { // We have handled a signal so it's time to return from the // signal handler to the appropriate place. return true; } } } // We hit a signal we didn't handle. This might be something for which // we can give more information about so call all registered handlers to // see if it is. if (HandleFaultByOtherHandlers(sig, info, context)) { return true; } // Set a breakpoint in this function to catch unhandled signals. art_sigsegv_fault(); return false; } void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) { DCHECK(initialized_); if (generated_code) { generated_code_handlers_.push_back(handler); } else { other_handlers_.push_back(handler); } } void FaultManager::RemoveHandler(FaultHandler* handler) { auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler); if (it != generated_code_handlers_.end()) { generated_code_handlers_.erase(it); return; } auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler); if (it2 != other_handlers_.end()) { other_handlers_.erase(it2); return; } LOG(FATAL) << "Attempted to remove non existent handler " << handler; } // This function is called within the signal handler. It checks that // the mutator_lock is held (shared). No annotalysis is done. bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) { // We can only be running Java code in the current thread if it // is in Runnable state. VLOG(signals) << "Checking for generated code"; Thread* thread = Thread::Current(); if (thread == nullptr) { VLOG(signals) << "no current thread"; return false; } ThreadState state = thread->GetState(); if (state != kRunnable) { VLOG(signals) << "not runnable"; return false; } // Current thread is runnable. // Make sure it has the mutator lock. if (!Locks::mutator_lock_->IsSharedHeld(thread)) { VLOG(signals) << "no lock"; return false; } ArtMethod* method_obj = nullptr; uintptr_t return_pc = 0; uintptr_t sp = 0; bool is_stack_overflow = false; // Get the architecture specific method address and return address. These // are in architecture specific files in arch//fault_handler_. GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp, &is_stack_overflow); // If we don't have a potential method, we're outta here. VLOG(signals) << "potential method: " << method_obj; // TODO: Check linear alloc and image. DCHECK_ALIGNED(ArtMethod::Size(kRuntimePointerSize), sizeof(void*)) << "ArtMethod is not pointer aligned"; if (method_obj == nullptr || !IsAligned(method_obj)) { VLOG(signals) << "no method"; return false; } // Verify that the potential method is indeed a method. // TODO: check the GC maps to make sure it's an object. // Check that the class pointer inside the object is not null and is aligned. // No read barrier because method_obj may not be a real object. mirror::Class* cls = SafeGetDeclaringClass(method_obj); if (cls == nullptr) { VLOG(signals) << "not a class"; return false; } if (!IsAligned(cls)) { VLOG(signals) << "not aligned"; return false; } if (!SafeVerifyClassClass(cls)) { VLOG(signals) << "not a class class"; return false; } const OatQuickMethodHeader* method_header = method_obj->GetOatQuickMethodHeader(return_pc); // We can be certain that this is a method now. Check if we have a GC map // at the return PC address. if (true || kIsDebugBuild) { VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc; uint32_t sought_offset = return_pc - reinterpret_cast(method_header->GetEntryPoint()); VLOG(signals) << "pc offset: " << std::hex << sought_offset; } uint32_t dexpc = dex::kDexNoIndex; if (is_stack_overflow) { // If it's an implicit stack overflow check, the frame is not setup, so we // just infer the dex PC as zero. dexpc = 0; } else { CHECK_EQ(*reinterpret_cast(sp), method_obj); dexpc = method_header->ToDexPc(reinterpret_cast(sp), return_pc, false); } VLOG(signals) << "dexpc: " << dexpc; return !check_dex_pc || dexpc != dex::kDexNoIndex; } FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) { } // // Null pointer fault handler // NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Suspension fault handler // SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Stack overflow fault handler // StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code. // JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, false); } bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo, void* context) { // Make sure that we are in the generated code, but we may not have a dex pc. bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false); if (in_generated_code) { LOG(ERROR) << "Dumping java stack trace for crash in generated code"; ArtMethod* method = nullptr; uintptr_t return_pc = 0; uintptr_t sp = 0; bool is_stack_overflow = false; Thread* self = Thread::Current(); manager_->GetMethodAndReturnPcAndSp( siginfo, context, &method, &return_pc, &sp, &is_stack_overflow); // Inside of generated code, sp[0] is the method, so sp is the frame. self->SetTopOfStack(reinterpret_cast(sp)); self->DumpJavaStack(LOG_STREAM(ERROR)); } return false; // Return false since we want to propagate the fault to the main signal handler. } } // namespace art