/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "heap.h" #include #include "android-base/thread_annotations.h" #if defined(__BIONIC__) || defined(__GLIBC__) #include // For mallinfo() #endif #include #include #include "android-base/stringprintf.h" #include "allocation_listener.h" #include "art_field-inl.h" #include "backtrace_helper.h" #include "base/allocator.h" #include "base/arena_allocator.h" #include "base/dumpable.h" #include "base/file_utils.h" #include "base/histogram-inl.h" #include "base/logging.h" // For VLOG. #include "base/memory_tool.h" #include "base/mutex.h" #include "base/os.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/utils.h" #include "class_root-inl.h" #include "common_throws.h" #include "debugger.h" #include "dex/dex_file-inl.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/mod_union_table-inl.h" #include "gc/accounting/read_barrier_table.h" #include "gc/accounting/remembered_set.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/collector/concurrent_copying.h" #include "gc/collector/mark_sweep.h" #include "gc/collector/partial_mark_sweep.h" #include "gc/collector/semi_space.h" #include "gc/collector/sticky_mark_sweep.h" #include "gc/racing_check.h" #include "gc/reference_processor.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/bump_pointer_space.h" #include "gc/space/dlmalloc_space-inl.h" #include "gc/space/image_space.h" #include "gc/space/large_object_space.h" #include "gc/space/region_space.h" #include "gc/space/rosalloc_space-inl.h" #include "gc/space/space-inl.h" #include "gc/space/zygote_space.h" #include "gc/task_processor.h" #include "gc/verification.h" #include "gc_pause_listener.h" #include "gc_root.h" #include "handle_scope-inl.h" #include "heap-inl.h" #include "heap-visit-objects-inl.h" #include "image.h" #include "intern_table.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jni/java_vm_ext.h" #include "mirror/class-inl.h" #include "mirror/executable-inl.h" #include "mirror/field.h" #include "mirror/method_handle_impl.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "mirror/object_array-inl.h" #include "mirror/reference-inl.h" #include "mirror/var_handle.h" #include "nativehelper/scoped_local_ref.h" #include "obj_ptr-inl.h" #include "reflection.h" #include "runtime.h" #include "scoped_thread_state_change-inl.h" #include "thread_list.h" #include "verify_object-inl.h" #include "well_known_classes.h" namespace art { namespace gc { DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition); // Minimum amount of remaining bytes before a concurrent GC is triggered. static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB; static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB; // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator // threads (lower pauses, use less memory bandwidth). static double GetStickyGcThroughputAdjustment(bool use_generational_cc) { return use_generational_cc ? 0.5 : 1.0; } // Whether or not we compact the zygote in PreZygoteFork. static constexpr bool kCompactZygote = kMovingCollector; // How many reserve entries are at the end of the allocation stack, these are only needed if the // allocation stack overflows. static constexpr size_t kAllocationStackReserveSize = 1024; // Default mark stack size in bytes. static const size_t kDefaultMarkStackSize = 64 * KB; // Define space name. static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"}; static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"}; static const char* kMemMapSpaceName[2] = {"main space", "main space 1"}; static const char* kNonMovingSpaceName = "non moving space"; static const char* kZygoteSpaceName = "zygote space"; static constexpr bool kGCALotMode = false; // GC alot mode uses a small allocation stack to stress test a lot of GC. static constexpr size_t kGcAlotAllocationStackSize = 4 * KB / sizeof(mirror::HeapReference); // Verify objet has a small allocation stack size since searching the allocation stack is slow. static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB / sizeof(mirror::HeapReference); static constexpr size_t kDefaultAllocationStackSize = 8 * MB / sizeof(mirror::HeapReference); // For deterministic compilation, we need the heap to be at a well-known address. static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000; // Dump the rosalloc stats on SIGQUIT. static constexpr bool kDumpRosAllocStatsOnSigQuit = false; static const char* kRegionSpaceName = "main space (region space)"; // If true, we log all GCs in the both the foreground and background. Used for debugging. static constexpr bool kLogAllGCs = false; // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave // allocate with relaxed ergonomics for that long. static constexpr size_t kPostForkMaxHeapDurationMS = 2000; #if defined(__LP64__) || !defined(ADDRESS_SANITIZER) // 300 MB (0x12c00000) - (default non-moving space capacity). uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast(300 * MB - kDefaultNonMovingSpaceCapacity); #else #ifdef __ANDROID__ // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000. uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast(0x20000000); #else // For 32-bit host, use 0x40000000 because asan uses most of the space below this. uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast(0x40000000); #endif #endif static inline bool CareAboutPauseTimes() { return Runtime::Current()->InJankPerceptibleProcessState(); } static void VerifyBootImagesContiguity(const std::vector& image_spaces) { uint32_t boot_image_size = 0u; for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) { const ImageHeader& image_header = image_spaces[i]->GetImageHeader(); uint32_t reservation_size = image_header.GetImageReservationSize(); uint32_t image_count = image_header.GetImageSpaceCount(); CHECK_NE(image_count, 0u); CHECK_LE(image_count, num_spaces - i); CHECK_NE(reservation_size, 0u); for (size_t j = 1u; j != image_count; ++j) { CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u); CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u); } // Check the start of the heap. CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin()); // Check contiguous layout of images and oat files. const uint8_t* current_heap = image_spaces[i]->Begin(); const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin(); for (size_t j = 0u; j != image_count; ++j) { const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader(); CHECK_EQ(current_heap, image_spaces[i + j]->Begin()); CHECK_EQ(current_oat, current_header.GetOatFileBegin()); current_heap += RoundUp(current_header.GetImageSize(), kPageSize); CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin()); current_oat = current_header.GetOatFileEnd(); } // Check that oat files start at the end of images. CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin()); // Check that the reservation size equals the size of images and oat files. CHECK_EQ(reservation_size, static_cast(current_oat - image_spaces[i]->Begin())); boot_image_size += reservation_size; i += image_count; } } Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free, double target_utilization, double foreground_heap_growth_multiplier, size_t stop_for_native_allocs, size_t capacity, size_t non_moving_space_capacity, const std::vector& boot_class_path, const std::vector& boot_class_path_locations, const std::string& image_file_name, const InstructionSet image_instruction_set, CollectorType foreground_collector_type, CollectorType background_collector_type, space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold, size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode, size_t long_pause_log_threshold, size_t long_gc_log_threshold, bool ignore_target_footprint, bool always_log_explicit_gcs, bool use_tlab, bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap, bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc, bool verify_post_gc_rosalloc, bool gc_stress_mode, bool measure_gc_performance, bool use_homogeneous_space_compaction_for_oom, bool use_generational_cc, uint64_t min_interval_homogeneous_space_compaction_by_oom, bool dump_region_info_before_gc, bool dump_region_info_after_gc, space::ImageSpaceLoadingOrder image_space_loading_order) : non_moving_space_(nullptr), rosalloc_space_(nullptr), dlmalloc_space_(nullptr), main_space_(nullptr), collector_type_(kCollectorTypeNone), foreground_collector_type_(foreground_collector_type), background_collector_type_(background_collector_type), desired_collector_type_(foreground_collector_type_), pending_task_lock_(nullptr), parallel_gc_threads_(parallel_gc_threads), conc_gc_threads_(conc_gc_threads), low_memory_mode_(low_memory_mode), long_pause_log_threshold_(long_pause_log_threshold), long_gc_log_threshold_(long_gc_log_threshold), process_cpu_start_time_ns_(ProcessCpuNanoTime()), pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_), post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_), pre_gc_weighted_allocated_bytes_(0.0), post_gc_weighted_allocated_bytes_(0.0), ignore_target_footprint_(ignore_target_footprint), always_log_explicit_gcs_(always_log_explicit_gcs), zygote_creation_lock_("zygote creation lock", kZygoteCreationLock), zygote_space_(nullptr), large_object_threshold_(large_object_threshold), disable_thread_flip_count_(0), thread_flip_running_(false), collector_type_running_(kCollectorTypeNone), last_gc_cause_(kGcCauseNone), thread_running_gc_(nullptr), last_gc_type_(collector::kGcTypeNone), next_gc_type_(collector::kGcTypePartial), capacity_(capacity), growth_limit_(growth_limit), target_footprint_(initial_size), // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after // this one. process_state_update_lock_("process state update lock", kPostMonitorLock), min_foreground_target_footprint_(0), concurrent_start_bytes_(std::numeric_limits::max()), total_bytes_freed_ever_(0), total_objects_freed_ever_(0), num_bytes_allocated_(0), native_bytes_registered_(0), old_native_bytes_allocated_(0), native_objects_notified_(0), num_bytes_freed_revoke_(0), verify_missing_card_marks_(false), verify_system_weaks_(false), verify_pre_gc_heap_(verify_pre_gc_heap), verify_pre_sweeping_heap_(verify_pre_sweeping_heap), verify_post_gc_heap_(verify_post_gc_heap), verify_mod_union_table_(false), verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc), verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc), verify_post_gc_rosalloc_(verify_post_gc_rosalloc), gc_stress_mode_(gc_stress_mode), /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap * verification is enabled, we limit the size of allocation stacks to speed up their * searching. */ max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize : kDefaultAllocationStackSize), current_allocator_(kAllocatorTypeDlMalloc), current_non_moving_allocator_(kAllocatorTypeNonMoving), bump_pointer_space_(nullptr), temp_space_(nullptr), region_space_(nullptr), min_free_(min_free), max_free_(max_free), target_utilization_(target_utilization), foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier), stop_for_native_allocs_(stop_for_native_allocs), total_wait_time_(0), verify_object_mode_(kVerifyObjectModeDisabled), disable_moving_gc_count_(0), semi_space_collector_(nullptr), active_concurrent_copying_collector_(nullptr), young_concurrent_copying_collector_(nullptr), concurrent_copying_collector_(nullptr), is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()), use_tlab_(use_tlab), main_space_backup_(nullptr), min_interval_homogeneous_space_compaction_by_oom_( min_interval_homogeneous_space_compaction_by_oom), last_time_homogeneous_space_compaction_by_oom_(NanoTime()), pending_collector_transition_(nullptr), pending_heap_trim_(nullptr), use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom), use_generational_cc_(use_generational_cc), running_collection_is_blocking_(false), blocking_gc_count_(0U), blocking_gc_time_(0U), last_update_time_gc_count_rate_histograms_( // Round down by the window duration. (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration), gc_count_last_window_(0U), blocking_gc_count_last_window_(0U), gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount), blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U, kGcCountRateMaxBucketCount), alloc_tracking_enabled_(false), alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth), backtrace_lock_(nullptr), seen_backtrace_count_(0u), unique_backtrace_count_(0u), gc_disabled_for_shutdown_(false), dump_region_info_before_gc_(dump_region_info_before_gc), dump_region_info_after_gc_(dump_region_info_after_gc), boot_image_spaces_(), boot_images_start_address_(0u), boot_images_size_(0u) { if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Heap() entering"; } if (kUseReadBarrier) { CHECK_EQ(foreground_collector_type_, kCollectorTypeCC); CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground); } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) { CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_)) << "Changing from " << foreground_collector_type_ << " to " << background_collector_type_ << " (or visa versa) is not supported."; } verification_.reset(new Verification(this)); CHECK_GE(large_object_threshold, kMinLargeObjectThreshold); ScopedTrace trace(__FUNCTION__); Runtime* const runtime = Runtime::Current(); // If we aren't the zygote, switch to the default non zygote allocator. This may update the // entrypoints. const bool is_zygote = runtime->IsZygote(); if (!is_zygote) { // Background compaction is currently not supported for command line runs. if (background_collector_type_ != foreground_collector_type_) { VLOG(heap) << "Disabling background compaction for non zygote"; background_collector_type_ = foreground_collector_type_; } } ChangeCollector(desired_collector_type_); live_bitmap_.reset(new accounting::HeapBitmap(this)); mark_bitmap_.reset(new accounting::HeapBitmap(this)); // We don't have hspace compaction enabled with CC. if (foreground_collector_type_ == kCollectorTypeCC) { use_homogeneous_space_compaction_for_oom_ = false; } bool support_homogeneous_space_compaction = background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact || use_homogeneous_space_compaction_for_oom_; // We may use the same space the main space for the non moving space if we don't need to compact // from the main space. // This is not the case if we support homogeneous compaction or have a moving background // collector type. bool separate_non_moving_space = is_zygote || support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) || IsMovingGc(background_collector_type_); // Requested begin for the alloc space, to follow the mapped image and oat files uint8_t* request_begin = nullptr; // Calculate the extra space required after the boot image, see allocations below. size_t heap_reservation_size = 0u; if (separate_non_moving_space) { heap_reservation_size = non_moving_space_capacity; } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) { heap_reservation_size = capacity_; } heap_reservation_size = RoundUp(heap_reservation_size, kPageSize); // Load image space(s). std::vector> boot_image_spaces; MemMap heap_reservation; if (space::ImageSpace::LoadBootImage(boot_class_path, boot_class_path_locations, image_file_name, image_instruction_set, image_space_loading_order, runtime->ShouldRelocate(), /*executable=*/ !runtime->IsAotCompiler(), is_zygote, heap_reservation_size, &boot_image_spaces, &heap_reservation)) { DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u); DCHECK(!boot_image_spaces.empty()); request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd(); DCHECK(!heap_reservation.IsValid() || request_begin == heap_reservation.Begin()) << "request_begin=" << static_cast(request_begin) << " heap_reservation.Begin()=" << static_cast(heap_reservation.Begin()); for (std::unique_ptr& space : boot_image_spaces) { boot_image_spaces_.push_back(space.get()); AddSpace(space.release()); } boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin()); uint32_t boot_images_end = PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd()); boot_images_size_ = boot_images_end - boot_images_start_address_; if (kIsDebugBuild) { VerifyBootImagesContiguity(boot_image_spaces_); } } else { if (foreground_collector_type_ == kCollectorTypeCC) { // Need to use a low address so that we can allocate a contiguous 2 * Xmx space // when there's no image (dex2oat for target). request_begin = kPreferredAllocSpaceBegin; } // Gross hack to make dex2oat deterministic. if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) { // Currently only enabled for MS collector since that is what the deterministic dex2oat uses. // b/26849108 request_begin = reinterpret_cast(kAllocSpaceBeginForDeterministicAoT); } } /* requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +- nonmoving space (non_moving_space_capacity)+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-????????????????????????????????????????????+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-main alloc space / bump space 1 (capacity_) +- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-????????????????????????????????????????????+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-main alloc space2 / bump space 2 (capacity_)+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- */ MemMap main_mem_map_1; MemMap main_mem_map_2; std::string error_str; MemMap non_moving_space_mem_map; if (separate_non_moving_space) { ScopedTrace trace2("Create separate non moving space"); // If we are the zygote, the non moving space becomes the zygote space when we run // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't // rename the mem map later. const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName; // Reserve the non moving mem map before the other two since it needs to be at a specific // address. DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty()); if (heap_reservation.IsValid()) { non_moving_space_mem_map = heap_reservation.RemapAtEnd( heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str); } else { non_moving_space_mem_map = MapAnonymousPreferredAddress( space_name, request_begin, non_moving_space_capacity, &error_str); } CHECK(non_moving_space_mem_map.IsValid()) << error_str; DCHECK(!heap_reservation.IsValid()); // Try to reserve virtual memory at a lower address if we have a separate non moving space. request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity; } // Attempt to create 2 mem maps at or after the requested begin. if (foreground_collector_type_ != kCollectorTypeCC) { ScopedTrace trace2("Create main mem map"); if (separate_non_moving_space || !is_zygote) { main_mem_map_1 = MapAnonymousPreferredAddress( kMemMapSpaceName[0], request_begin, capacity_, &error_str); } else { // If no separate non-moving space and we are the zygote, the main space must come right after // the image space to avoid a gap. This is required since we want the zygote space to be // adjacent to the image space. DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty()); main_mem_map_1 = MemMap::MapAnonymous( kMemMapSpaceName[0], request_begin, capacity_, PROT_READ | PROT_WRITE, /* low_4gb= */ true, /* reuse= */ false, heap_reservation.IsValid() ? &heap_reservation : nullptr, &error_str); } CHECK(main_mem_map_1.IsValid()) << error_str; DCHECK(!heap_reservation.IsValid()); } if (support_homogeneous_space_compaction || background_collector_type_ == kCollectorTypeSS || foreground_collector_type_ == kCollectorTypeSS) { ScopedTrace trace2("Create main mem map 2"); main_mem_map_2 = MapAnonymousPreferredAddress( kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str); CHECK(main_mem_map_2.IsValid()) << error_str; } // Create the non moving space first so that bitmaps don't take up the address range. if (separate_non_moving_space) { ScopedTrace trace2("Add non moving space"); // Non moving space is always dlmalloc since we currently don't have support for multiple // active rosalloc spaces. const size_t size = non_moving_space_mem_map.Size(); const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin(); non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map), "zygote / non moving space", kDefaultStartingSize, initial_size, size, size, /* can_move_objects= */ false); CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space " << non_moving_space_mem_map_begin; non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); AddSpace(non_moving_space_); } // Create other spaces based on whether or not we have a moving GC. if (foreground_collector_type_ == kCollectorTypeCC) { CHECK(separate_non_moving_space); // Reserve twice the capacity, to allow evacuating every region for explicit GCs. MemMap region_space_mem_map = space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin); CHECK(region_space_mem_map.IsValid()) << "No region space mem map"; region_space_ = space::RegionSpace::Create( kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_); AddSpace(region_space_); } else if (IsMovingGc(foreground_collector_type_)) { // Create bump pointer spaces. // We only to create the bump pointer if the foreground collector is a compacting GC. // TODO: Place bump-pointer spaces somewhere to minimize size of card table. bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1", std::move(main_mem_map_1)); CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space"; AddSpace(bump_pointer_space_); temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2", std::move(main_mem_map_2)); CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space"; AddSpace(temp_space_); CHECK(separate_non_moving_space); } else { CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_); CHECK(main_space_ != nullptr); AddSpace(main_space_); if (!separate_non_moving_space) { non_moving_space_ = main_space_; CHECK(!non_moving_space_->CanMoveObjects()); } if (main_mem_map_2.IsValid()) { const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1]; main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2), initial_size, growth_limit_, capacity_, name, /* can_move_objects= */ true)); CHECK(main_space_backup_.get() != nullptr); // Add the space so its accounted for in the heap_begin and heap_end. AddSpace(main_space_backup_.get()); } } CHECK(non_moving_space_ != nullptr); CHECK(!non_moving_space_->CanMoveObjects()); // Allocate the large object space. if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) { large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_); CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) { large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space"); CHECK(large_object_space_ != nullptr) << "Failed to create large object space"; } else { // Disable the large object space by making the cutoff excessively large. large_object_threshold_ = std::numeric_limits::max(); large_object_space_ = nullptr; } if (large_object_space_ != nullptr) { AddSpace(large_object_space_); } // Compute heap capacity. Continuous spaces are sorted in order of Begin(). CHECK(!continuous_spaces_.empty()); // Relies on the spaces being sorted. uint8_t* heap_begin = continuous_spaces_.front()->Begin(); uint8_t* heap_end = continuous_spaces_.back()->Limit(); size_t heap_capacity = heap_end - heap_begin; // Remove the main backup space since it slows down the GC to have unused extra spaces. // TODO: Avoid needing to do this. if (main_space_backup_.get() != nullptr) { RemoveSpace(main_space_backup_.get()); } // Allocate the card table. // We currently don't support dynamically resizing the card table. // Since we don't know where in the low_4gb the app image will be located, make the card table // cover the whole low_4gb. TODO: Extend the card table in AddSpace. UNUSED(heap_capacity); // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is // reserved by the kernel. static constexpr size_t kMinHeapAddress = 4 * KB; card_table_.reset(accounting::CardTable::Create(reinterpret_cast(kMinHeapAddress), 4 * GB - kMinHeapAddress)); CHECK(card_table_.get() != nullptr) << "Failed to create card table"; if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) { rb_table_.reset(new accounting::ReadBarrierTable()); DCHECK(rb_table_->IsAllCleared()); } if (HasBootImageSpace()) { // Don't add the image mod union table if we are running without an image, this can crash if // we use the CardCache implementation. for (space::ImageSpace* image_space : GetBootImageSpaces()) { accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace( "Image mod-union table", this, image_space); CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table"; AddModUnionTable(mod_union_table); } } if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) { accounting::RememberedSet* non_moving_space_rem_set = new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_); CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set"; AddRememberedSet(non_moving_space_rem_set); } // TODO: Count objects in the image space here? num_bytes_allocated_.store(0, std::memory_order_relaxed); mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize, kDefaultMarkStackSize)); const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize; allocation_stack_.reset(accounting::ObjectStack::Create( "allocation stack", max_allocation_stack_size_, alloc_stack_capacity)); live_stack_.reset(accounting::ObjectStack::Create( "live stack", max_allocation_stack_size_, alloc_stack_capacity)); // It's still too early to take a lock because there are no threads yet, but we can create locks // now. We don't create it earlier to make it clear that you can't use locks during heap // initialization. gc_complete_lock_ = new Mutex("GC complete lock"); gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable", *gc_complete_lock_)); thread_flip_lock_ = new Mutex("GC thread flip lock"); thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable", *thread_flip_lock_)); task_processor_.reset(new TaskProcessor()); reference_processor_.reset(new ReferenceProcessor()); pending_task_lock_ = new Mutex("Pending task lock"); if (ignore_target_footprint_) { SetIdealFootprint(std::numeric_limits::max()); concurrent_start_bytes_ = std::numeric_limits::max(); } CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U); // Create our garbage collectors. for (size_t i = 0; i < 2; ++i) { const bool concurrent = i != 0; if ((MayUseCollector(kCollectorTypeCMS) && concurrent) || (MayUseCollector(kCollectorTypeMS) && !concurrent)) { garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent)); garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent)); garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent)); } } if (kMovingCollector) { if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) || use_homogeneous_space_compaction_for_oom_) { semi_space_collector_ = new collector::SemiSpace(this); garbage_collectors_.push_back(semi_space_collector_); } if (MayUseCollector(kCollectorTypeCC)) { concurrent_copying_collector_ = new collector::ConcurrentCopying(this, /*young_gen=*/false, use_generational_cc_, "", measure_gc_performance); if (use_generational_cc_) { young_concurrent_copying_collector_ = new collector::ConcurrentCopying( this, /*young_gen=*/true, use_generational_cc_, "young", measure_gc_performance); } active_concurrent_copying_collector_ = concurrent_copying_collector_; DCHECK(region_space_ != nullptr); concurrent_copying_collector_->SetRegionSpace(region_space_); if (use_generational_cc_) { young_concurrent_copying_collector_->SetRegionSpace(region_space_); // At this point, non-moving space should be created. DCHECK(non_moving_space_ != nullptr); concurrent_copying_collector_->CreateInterRegionRefBitmaps(); } garbage_collectors_.push_back(concurrent_copying_collector_); if (use_generational_cc_) { garbage_collectors_.push_back(young_concurrent_copying_collector_); } } } if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr && (is_zygote || separate_non_moving_space)) { // Check that there's no gap between the image space and the non moving space so that the // immune region won't break (eg. due to a large object allocated in the gap). This is only // required when we're the zygote. // Space with smallest Begin(). space::ImageSpace* first_space = nullptr; for (space::ImageSpace* space : boot_image_spaces_) { if (first_space == nullptr || space->Begin() < first_space->Begin()) { first_space = space; } } bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap()); if (!no_gap) { PrintFileToLog("/proc/self/maps", LogSeverity::ERROR); MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true); LOG(FATAL) << "There's a gap between the image space and the non-moving space"; } } instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation(); if (gc_stress_mode_) { backtrace_lock_ = new Mutex("GC complete lock"); } if (is_running_on_memory_tool_ || gc_stress_mode_) { instrumentation->InstrumentQuickAllocEntryPoints(); } if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Heap() exiting"; } } MemMap Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin, size_t capacity, std::string* out_error_str) { while (true) { MemMap map = MemMap::MapAnonymous(name, request_begin, capacity, PROT_READ | PROT_WRITE, /*low_4gb=*/ true, /*reuse=*/ false, /*reservation=*/ nullptr, out_error_str); if (map.IsValid() || request_begin == nullptr) { return map; } // Retry a second time with no specified request begin. request_begin = nullptr; } } bool Heap::MayUseCollector(CollectorType type) const { return foreground_collector_type_ == type || background_collector_type_ == type; } space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map, size_t initial_size, size_t growth_limit, size_t capacity, const char* name, bool can_move_objects) { space::MallocSpace* malloc_space = nullptr; if (kUseRosAlloc) { // Create rosalloc space. malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map), name, kDefaultStartingSize, initial_size, growth_limit, capacity, low_memory_mode_, can_move_objects); } else { malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map), name, kDefaultStartingSize, initial_size, growth_limit, capacity, can_move_objects); } if (collector::SemiSpace::kUseRememberedSet) { accounting::RememberedSet* rem_set = new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space); CHECK(rem_set != nullptr) << "Failed to create main space remembered set"; AddRememberedSet(rem_set); } CHECK(malloc_space != nullptr) << "Failed to create " << name; malloc_space->SetFootprintLimit(malloc_space->Capacity()); return malloc_space; } void Heap::CreateMainMallocSpace(MemMap&& mem_map, size_t initial_size, size_t growth_limit, size_t capacity) { // Is background compaction is enabled? bool can_move_objects = IsMovingGc(background_collector_type_) != IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_; // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact // from the main space to the zygote space. If background compaction is enabled, always pass in // that we can move objets. if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) { // After the zygote we want this to be false if we don't have background compaction enabled so // that getting primitive array elements is faster. can_move_objects = !HasZygoteSpace(); } if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) { RemoveRememberedSet(main_space_); } const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0]; main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map), initial_size, growth_limit, capacity, name, can_move_objects); SetSpaceAsDefault(main_space_); VLOG(heap) << "Created main space " << main_space_; } void Heap::ChangeAllocator(AllocatorType allocator) { if (current_allocator_ != allocator) { // These two allocators are only used internally and don't have any entrypoints. CHECK_NE(allocator, kAllocatorTypeLOS); CHECK_NE(allocator, kAllocatorTypeNonMoving); current_allocator_ = allocator; MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsAllocator(current_allocator_); Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints(); } } bool Heap::IsCompilingBoot() const { if (!Runtime::Current()->IsAotCompiler()) { return false; } ScopedObjectAccess soa(Thread::Current()); for (const auto& space : continuous_spaces_) { if (space->IsImageSpace() || space->IsZygoteSpace()) { return false; } } return true; } void Heap::IncrementDisableMovingGC(Thread* self) { // Need to do this holding the lock to prevent races where the GC is about to run / running when // we attempt to disable it. ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); ++disable_moving_gc_count_; if (IsMovingGc(collector_type_running_)) { WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self); } } void Heap::DecrementDisableMovingGC(Thread* self) { MutexLock mu(self, *gc_complete_lock_); CHECK_GT(disable_moving_gc_count_, 0U); --disable_moving_gc_count_; } void Heap::IncrementDisableThreadFlip(Thread* self) { // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead. CHECK(kUseReadBarrier); bool is_nested = self->GetDisableThreadFlipCount() > 0; self->IncrementDisableThreadFlipCount(); if (is_nested) { // If this is a nested JNI critical section enter, we don't need to wait or increment the global // counter. The global counter is incremented only once for a thread for the outermost enter. return; } ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip); MutexLock mu(self, *thread_flip_lock_); thread_flip_cond_->CheckSafeToWait(self); bool has_waited = false; uint64_t wait_start = 0; if (thread_flip_running_) { wait_start = NanoTime(); ScopedTrace trace("IncrementDisableThreadFlip"); while (thread_flip_running_) { has_waited = true; thread_flip_cond_->Wait(self); } } ++disable_thread_flip_count_; if (has_waited) { uint64_t wait_time = NanoTime() - wait_start; total_wait_time_ += wait_time; if (wait_time > long_pause_log_threshold_) { LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); } } } void Heap::DecrementDisableThreadFlip(Thread* self) { // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up // the GC waiting before doing a thread flip. CHECK(kUseReadBarrier); self->DecrementDisableThreadFlipCount(); bool is_outermost = self->GetDisableThreadFlipCount() == 0; if (!is_outermost) { // If this is not an outermost JNI critical exit, we don't need to decrement the global counter. // The global counter is decremented only once for a thread for the outermost exit. return; } MutexLock mu(self, *thread_flip_lock_); CHECK_GT(disable_thread_flip_count_, 0U); --disable_thread_flip_count_; if (disable_thread_flip_count_ == 0) { // Potentially notify the GC thread blocking to begin a thread flip. thread_flip_cond_->Broadcast(self); } } void Heap::ThreadFlipBegin(Thread* self) { // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_ // > 0, block. Otherwise, go ahead. CHECK(kUseReadBarrier); ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip); MutexLock mu(self, *thread_flip_lock_); thread_flip_cond_->CheckSafeToWait(self); bool has_waited = false; uint64_t wait_start = NanoTime(); CHECK(!thread_flip_running_); // Set this to true before waiting so that frequent JNI critical enter/exits won't starve // GC. This like a writer preference of a reader-writer lock. thread_flip_running_ = true; while (disable_thread_flip_count_ > 0) { has_waited = true; thread_flip_cond_->Wait(self); } if (has_waited) { uint64_t wait_time = NanoTime() - wait_start; total_wait_time_ += wait_time; if (wait_time > long_pause_log_threshold_) { LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time); } } } void Heap::ThreadFlipEnd(Thread* self) { // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators // waiting before doing a JNI critical. CHECK(kUseReadBarrier); MutexLock mu(self, *thread_flip_lock_); CHECK(thread_flip_running_); thread_flip_running_ = false; // Potentially notify mutator threads blocking to enter a JNI critical section. thread_flip_cond_->Broadcast(self); } void Heap::GrowHeapOnJankPerceptibleSwitch() { MutexLock mu(Thread::Current(), process_state_update_lock_); size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed); if (orig_target_footprint < min_foreground_target_footprint_) { target_footprint_.compare_exchange_strong(orig_target_footprint, min_foreground_target_footprint_, std::memory_order_relaxed); } min_foreground_target_footprint_ = 0; } void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) { if (old_process_state != new_process_state) { const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible; if (jank_perceptible) { // Transition back to foreground right away to prevent jank. RequestCollectorTransition(foreground_collector_type_, 0); GrowHeapOnJankPerceptibleSwitch(); } else { // Don't delay for debug builds since we may want to stress test the GC. // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have // special handling which does a homogenous space compaction once but then doesn't transition // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't // transition the collector. RequestCollectorTransition(background_collector_type_, kStressCollectorTransition ? 0 : kCollectorTransitionWait); } } } void Heap::CreateThreadPool() { const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_); if (num_threads != 0) { thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads)); } } void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) { space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_; space::ContinuousSpace* space2 = non_moving_space_; // TODO: Generalize this to n bitmaps? CHECK(space1 != nullptr); CHECK(space2 != nullptr); MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(), (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr), stack); } void Heap::DeleteThreadPool() { thread_pool_.reset(nullptr); } void Heap::AddSpace(space::Space* space) { CHECK(space != nullptr); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); if (space->IsContinuousSpace()) { DCHECK(!space->IsDiscontinuousSpace()); space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); // Continuous spaces don't necessarily have bitmaps. accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); // The region space bitmap is not added since VisitObjects visits the region space objects with // special handling. if (live_bitmap != nullptr && !space->IsRegionSpace()) { CHECK(mark_bitmap != nullptr); live_bitmap_->AddContinuousSpaceBitmap(live_bitmap); mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap); } continuous_spaces_.push_back(continuous_space); // Ensure that spaces remain sorted in increasing order of start address. std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) { return a->Begin() < b->Begin(); }); } else { CHECK(space->IsDiscontinuousSpace()); space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); discontinuous_spaces_.push_back(discontinuous_space); } if (space->IsAllocSpace()) { alloc_spaces_.push_back(space->AsAllocSpace()); } } void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); if (continuous_space->IsDlMallocSpace()) { dlmalloc_space_ = continuous_space->AsDlMallocSpace(); } else if (continuous_space->IsRosAllocSpace()) { rosalloc_space_ = continuous_space->AsRosAllocSpace(); } } void Heap::RemoveSpace(space::Space* space) { DCHECK(space != nullptr); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); if (space->IsContinuousSpace()) { DCHECK(!space->IsDiscontinuousSpace()); space::ContinuousSpace* continuous_space = space->AsContinuousSpace(); // Continuous spaces don't necessarily have bitmaps. accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap(); if (live_bitmap != nullptr && !space->IsRegionSpace()) { DCHECK(mark_bitmap != nullptr); live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap); mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap); } auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space); DCHECK(it != continuous_spaces_.end()); continuous_spaces_.erase(it); } else { DCHECK(space->IsDiscontinuousSpace()); space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace(); live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap()); mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap()); auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(), discontinuous_space); DCHECK(it != discontinuous_spaces_.end()); discontinuous_spaces_.erase(it); } if (space->IsAllocSpace()) { auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace()); DCHECK(it != alloc_spaces_.end()); alloc_spaces_.erase(it); } } double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns, uint64_t current_process_cpu_time) const { uint64_t bytes_allocated = GetBytesAllocated(); double weight = current_process_cpu_time - gc_last_process_cpu_time_ns; return weight * bytes_allocated; } void Heap::CalculatePreGcWeightedAllocatedBytes() { uint64_t current_process_cpu_time = ProcessCpuNanoTime(); pre_gc_weighted_allocated_bytes_ += CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time); pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time; } void Heap::CalculatePostGcWeightedAllocatedBytes() { uint64_t current_process_cpu_time = ProcessCpuNanoTime(); post_gc_weighted_allocated_bytes_ += CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time); post_gc_last_process_cpu_time_ns_ = current_process_cpu_time; } uint64_t Heap::GetTotalGcCpuTime() { uint64_t sum = 0; for (auto* collector : garbage_collectors_) { sum += collector->GetTotalCpuTime(); } return sum; } void Heap::DumpGcPerformanceInfo(std::ostream& os) { // Dump cumulative timings. os << "Dumping cumulative Gc timings\n"; uint64_t total_duration = 0; // Dump cumulative loggers for each GC type. uint64_t total_paused_time = 0; for (auto* collector : garbage_collectors_) { total_duration += collector->GetCumulativeTimings().GetTotalNs(); total_paused_time += collector->GetTotalPausedTimeNs(); collector->DumpPerformanceInfo(os); } if (total_duration != 0) { const double total_seconds = total_duration / 1.0e9; const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9; os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n"; os << "Mean GC size throughput: " << PrettySize(GetBytesFreedEver() / total_seconds) << "/s" << " per cpu-time: " << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n"; os << "Mean GC object throughput: " << (GetObjectsFreedEver() / total_seconds) << " objects/s\n"; } uint64_t total_objects_allocated = GetObjectsAllocatedEver(); os << "Total number of allocations " << total_objects_allocated << "\n"; os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n"; os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n"; os << "Free memory " << PrettySize(GetFreeMemory()) << "\n"; os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n"; os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n"; os << "Total memory " << PrettySize(GetTotalMemory()) << "\n"; os << "Max memory " << PrettySize(GetMaxMemory()) << "\n"; if (HasZygoteSpace()) { os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n"; } os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n"; os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n"; os << "Total GC count: " << GetGcCount() << "\n"; os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n"; os << "Total blocking GC count: " << GetBlockingGcCount() << "\n"; os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n"; { MutexLock mu(Thread::Current(), *gc_complete_lock_); if (gc_count_rate_histogram_.SampleSize() > 0U) { os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; gc_count_rate_histogram_.DumpBins(os); os << "\n"; } if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { os << "Histogram of blocking GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: "; blocking_gc_count_rate_histogram_.DumpBins(os); os << "\n"; } } if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) { rosalloc_space_->DumpStats(os); } os << "Native bytes total: " << GetNativeBytes() << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n"; os << "Total native bytes at last GC: " << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n"; BaseMutex::DumpAll(os); } void Heap::ResetGcPerformanceInfo() { for (auto* collector : garbage_collectors_) { collector->ResetMeasurements(); } process_cpu_start_time_ns_ = ProcessCpuNanoTime(); pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_; pre_gc_weighted_allocated_bytes_ = 0u; post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_; post_gc_weighted_allocated_bytes_ = 0u; total_bytes_freed_ever_.store(0); total_objects_freed_ever_.store(0); total_wait_time_ = 0; blocking_gc_count_ = 0; blocking_gc_time_ = 0; gc_count_last_window_ = 0; blocking_gc_count_last_window_ = 0; last_update_time_gc_count_rate_histograms_ = // Round down by the window duration. (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; { MutexLock mu(Thread::Current(), *gc_complete_lock_); gc_count_rate_histogram_.Reset(); blocking_gc_count_rate_histogram_.Reset(); } } uint64_t Heap::GetGcCount() const { uint64_t gc_count = 0U; for (auto* collector : garbage_collectors_) { gc_count += collector->GetCumulativeTimings().GetIterations(); } return gc_count; } uint64_t Heap::GetGcTime() const { uint64_t gc_time = 0U; for (auto* collector : garbage_collectors_) { gc_time += collector->GetCumulativeTimings().GetTotalNs(); } return gc_time; } uint64_t Heap::GetBlockingGcCount() const { return blocking_gc_count_; } uint64_t Heap::GetBlockingGcTime() const { return blocking_gc_time_; } void Heap::DumpGcCountRateHistogram(std::ostream& os) const { MutexLock mu(Thread::Current(), *gc_complete_lock_); if (gc_count_rate_histogram_.SampleSize() > 0U) { gc_count_rate_histogram_.DumpBins(os); } } void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const { MutexLock mu(Thread::Current(), *gc_complete_lock_); if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) { blocking_gc_count_rate_histogram_.DumpBins(os); } } ALWAYS_INLINE static inline AllocationListener* GetAndOverwriteAllocationListener( Atomic* storage, AllocationListener* new_value) { return storage->exchange(new_value); } Heap::~Heap() { VLOG(heap) << "Starting ~Heap()"; STLDeleteElements(&garbage_collectors_); // If we don't reset then the mark stack complains in its destructor. allocation_stack_->Reset(); allocation_records_.reset(); live_stack_->Reset(); STLDeleteValues(&mod_union_tables_); STLDeleteValues(&remembered_sets_); STLDeleteElements(&continuous_spaces_); STLDeleteElements(&discontinuous_spaces_); delete gc_complete_lock_; delete thread_flip_lock_; delete pending_task_lock_; delete backtrace_lock_; uint64_t unique_count = unique_backtrace_count_.load(); uint64_t seen_count = seen_backtrace_count_.load(); if (unique_count != 0 || seen_count != 0) { LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count); } VLOG(heap) << "Finished ~Heap()"; } space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const { for (const auto& space : continuous_spaces_) { if (space->Contains(addr)) { return space; } } return nullptr; } space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr obj, bool fail_ok) const { space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr()); if (space != nullptr) { return space; } if (!fail_ok) { LOG(FATAL) << "object " << obj << " not inside any spaces!"; } return nullptr; } space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr obj, bool fail_ok) const { for (const auto& space : discontinuous_spaces_) { if (space->Contains(obj.Ptr())) { return space; } } if (!fail_ok) { LOG(FATAL) << "object " << obj << " not inside any spaces!"; } return nullptr; } space::Space* Heap::FindSpaceFromObject(ObjPtr obj, bool fail_ok) const { space::Space* result = FindContinuousSpaceFromObject(obj, true); if (result != nullptr) { return result; } return FindDiscontinuousSpaceFromObject(obj, fail_ok); } space::Space* Heap::FindSpaceFromAddress(const void* addr) const { for (const auto& space : continuous_spaces_) { if (space->Contains(reinterpret_cast(addr))) { return space; } } for (const auto& space : discontinuous_spaces_) { if (space->Contains(reinterpret_cast(addr))) { return space; } } return nullptr; } std::string Heap::DumpSpaceNameFromAddress(const void* addr) const { space::Space* space = FindSpaceFromAddress(addr); return (space != nullptr) ? space->GetName() : "no space"; } void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) { // If we're in a stack overflow, do not create a new exception. It would require running the // constructor, which will of course still be in a stack overflow. if (self->IsHandlingStackOverflow()) { self->SetException( Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow()); return; } std::ostringstream oss; size_t total_bytes_free = GetFreeMemory(); oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM," << " target footprint " << target_footprint_.load(std::memory_order_relaxed) << ", growth limit " << growth_limit_; // If the allocation failed due to fragmentation, print out the largest continuous allocation. if (total_bytes_free >= byte_count) { space::AllocSpace* space = nullptr; if (allocator_type == kAllocatorTypeNonMoving) { space = non_moving_space_; } else if (allocator_type == kAllocatorTypeRosAlloc || allocator_type == kAllocatorTypeDlMalloc) { space = main_space_; } else if (allocator_type == kAllocatorTypeBumpPointer || allocator_type == kAllocatorTypeTLAB) { space = bump_pointer_space_; } else if (allocator_type == kAllocatorTypeRegion || allocator_type == kAllocatorTypeRegionTLAB) { space = region_space_; } // There is no fragmentation info to log for large-object space. if (allocator_type != kAllocatorTypeLOS) { CHECK(space != nullptr) << "allocator_type:" << allocator_type << " byte_count:" << byte_count << " total_bytes_free:" << total_bytes_free; space->LogFragmentationAllocFailure(oss, byte_count); } } self->ThrowOutOfMemoryError(oss.str().c_str()); } void Heap::DoPendingCollectorTransition() { CollectorType desired_collector_type = desired_collector_type_; // Launch homogeneous space compaction if it is desired. if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) { if (!CareAboutPauseTimes()) { PerformHomogeneousSpaceCompact(); } else { VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state"; } } else if (desired_collector_type == kCollectorTypeCCBackground) { DCHECK(kUseReadBarrier); if (!CareAboutPauseTimes()) { // Invoke CC full compaction. CollectGarbageInternal(collector::kGcTypeFull, kGcCauseCollectorTransition, /*clear_soft_references=*/false); } else { VLOG(gc) << "CC background compaction ignored due to jank perceptible process state"; } } else { CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition"; } } void Heap::Trim(Thread* self) { Runtime* const runtime = Runtime::Current(); if (!CareAboutPauseTimes()) { // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care // about pauses. ScopedTrace trace("Deflating monitors"); // Avoid race conditions on the lock word for CC. ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim); ScopedSuspendAll ssa(__FUNCTION__); uint64_t start_time = NanoTime(); size_t count = runtime->GetMonitorList()->DeflateMonitors(); VLOG(heap) << "Deflating " << count << " monitors took " << PrettyDuration(NanoTime() - start_time); } TrimIndirectReferenceTables(self); TrimSpaces(self); // Trim arenas that may have been used by JIT or verifier. runtime->GetArenaPool()->TrimMaps(); } class TrimIndirectReferenceTableClosure : public Closure { public: explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) { } void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS { thread->GetJniEnv()->TrimLocals(); // If thread is a running mutator, then act on behalf of the trim thread. // See the code in ThreadList::RunCheckpoint. barrier_->Pass(Thread::Current()); } private: Barrier* const barrier_; }; void Heap::TrimIndirectReferenceTables(Thread* self) { ScopedObjectAccess soa(self); ScopedTrace trace(__PRETTY_FUNCTION__); JavaVMExt* vm = soa.Vm(); // Trim globals indirect reference table. vm->TrimGlobals(); // Trim locals indirect reference tables. Barrier barrier(0); TrimIndirectReferenceTableClosure closure(&barrier); ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); if (barrier_count != 0) { barrier.Increment(self, barrier_count); } } void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) { // Need to do this before acquiring the locks since we don't want to get suspended while // holding any locks. ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); // Ensure there is only one GC at a time. WaitForGcToCompleteLocked(cause, self); collector_type_running_ = collector_type; last_gc_cause_ = cause; thread_running_gc_ = self; } void Heap::TrimSpaces(Thread* self) { // Pretend we are doing a GC to prevent background compaction from deleting the space we are // trimming. StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim); ScopedTrace trace(__PRETTY_FUNCTION__); const uint64_t start_ns = NanoTime(); // Trim the managed spaces. uint64_t total_alloc_space_allocated = 0; uint64_t total_alloc_space_size = 0; uint64_t managed_reclaimed = 0; { ScopedObjectAccess soa(self); for (const auto& space : continuous_spaces_) { if (space->IsMallocSpace()) { gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) { // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock // for a long period of time. managed_reclaimed += malloc_space->Trim(); } total_alloc_space_size += malloc_space->Size(); } } } total_alloc_space_allocated = GetBytesAllocated(); if (large_object_space_ != nullptr) { total_alloc_space_allocated -= large_object_space_->GetBytesAllocated(); } if (bump_pointer_space_ != nullptr) { total_alloc_space_allocated -= bump_pointer_space_->Size(); } if (region_space_ != nullptr) { total_alloc_space_allocated -= region_space_->GetBytesAllocated(); } const float managed_utilization = static_cast(total_alloc_space_allocated) / static_cast(total_alloc_space_size); uint64_t gc_heap_end_ns = NanoTime(); // We never move things in the native heap, so we can finish the GC at this point. FinishGC(self, collector::kGcTypeNone); VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns) << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of " << static_cast(100 * managed_utilization) << "%."; } bool Heap::IsValidObjectAddress(const void* addr) const { if (addr == nullptr) { return true; } return IsAligned(addr) && FindSpaceFromAddress(addr) != nullptr; } bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const { return FindContinuousSpaceFromAddress(reinterpret_cast(addr)) != nullptr; } bool Heap::IsLiveObjectLocked(ObjPtr obj, bool search_allocation_stack, bool search_live_stack, bool sorted) { if (UNLIKELY(!IsAligned(obj.Ptr()))) { return false; } if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) { mirror::Class* klass = obj->GetClass(); if (obj == klass) { // This case happens for java.lang.Class. return true; } return VerifyClassClass(klass) && IsLiveObjectLocked(klass); } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) { // If we are in the allocated region of the temp space, then we are probably live (e.g. during // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained. return temp_space_->Contains(obj.Ptr()); } if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) { return true; } space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true); space::DiscontinuousSpace* d_space = nullptr; if (c_space != nullptr) { if (c_space->GetLiveBitmap()->Test(obj.Ptr())) { return true; } } else { d_space = FindDiscontinuousSpaceFromObject(obj, true); if (d_space != nullptr) { if (d_space->GetLiveBitmap()->Test(obj.Ptr())) { return true; } } } // This is covering the allocation/live stack swapping that is done without mutators suspended. for (size_t i = 0; i < (sorted ? 1 : 5); ++i) { if (i > 0) { NanoSleep(MsToNs(10)); } if (search_allocation_stack) { if (sorted) { if (allocation_stack_->ContainsSorted(obj.Ptr())) { return true; } } else if (allocation_stack_->Contains(obj.Ptr())) { return true; } } if (search_live_stack) { if (sorted) { if (live_stack_->ContainsSorted(obj.Ptr())) { return true; } } else if (live_stack_->Contains(obj.Ptr())) { return true; } } } // We need to check the bitmaps again since there is a race where we mark something as live and // then clear the stack containing it. if (c_space != nullptr) { if (c_space->GetLiveBitmap()->Test(obj.Ptr())) { return true; } } else { d_space = FindDiscontinuousSpaceFromObject(obj, true); if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) { return true; } } return false; } std::string Heap::DumpSpaces() const { std::ostringstream oss; DumpSpaces(oss); return oss.str(); } void Heap::DumpSpaces(std::ostream& stream) const { for (const auto& space : continuous_spaces_) { accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); stream << space << " " << *space << "\n"; if (live_bitmap != nullptr) { stream << live_bitmap << " " << *live_bitmap << "\n"; } if (mark_bitmap != nullptr) { stream << mark_bitmap << " " << *mark_bitmap << "\n"; } } for (const auto& space : discontinuous_spaces_) { stream << space << " " << *space << "\n"; } } void Heap::VerifyObjectBody(ObjPtr obj) { if (verify_object_mode_ == kVerifyObjectModeDisabled) { return; } // Ignore early dawn of the universe verifications. if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) { return; } CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned"; mirror::Class* c = obj->GetFieldObject(mirror::Object::ClassOffset()); CHECK(c != nullptr) << "Null class in object " << obj; CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj; CHECK(VerifyClassClass(c)); if (verify_object_mode_ > kVerifyObjectModeFast) { // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock. CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces(); } } void Heap::VerifyHeap() { ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); auto visitor = [&](mirror::Object* obj) { VerifyObjectBody(obj); }; // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already // NO_THREAD_SAFETY_ANALYSIS. auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS { GetLiveBitmap()->Visit(visitor); }; no_thread_safety_analysis(); } void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) { // Use signed comparison since freed bytes can be negative when background compaction foreground // transitions occurs. This is typically due to objects moving from a bump pointer space to a // free list backed space, which may increase memory footprint due to padding and binning. RACING_DCHECK_LE(freed_bytes, static_cast(num_bytes_allocated_.load(std::memory_order_relaxed))); // Note: This relies on 2s complement for handling negative freed_bytes. num_bytes_allocated_.fetch_sub(static_cast(freed_bytes), std::memory_order_relaxed); if (Runtime::Current()->HasStatsEnabled()) { RuntimeStats* thread_stats = Thread::Current()->GetStats(); thread_stats->freed_objects += freed_objects; thread_stats->freed_bytes += freed_bytes; // TODO: Do this concurrently. RuntimeStats* global_stats = Runtime::Current()->GetStats(); global_stats->freed_objects += freed_objects; global_stats->freed_bytes += freed_bytes; } } void Heap::RecordFreeRevoke() { // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers. // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_ // all the way to zero exactly as the remainder will be subtracted at the next GC. size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed); CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed), bytes_freed) << "num_bytes_freed_revoke_ underflow"; CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed), bytes_freed) << "num_bytes_allocated_ underflow"; GetCurrentGcIteration()->SetFreedRevoke(bytes_freed); } space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const { if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) { return rosalloc_space_; } for (const auto& space : continuous_spaces_) { if (space->AsContinuousSpace()->IsRosAllocSpace()) { if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) { return space->AsContinuousSpace()->AsRosAllocSpace(); } } } return nullptr; } static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) { instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented(); } mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator, bool instrumented, size_t alloc_size, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated, ObjPtr* klass) { // After a GC (due to allocation failure) we should retrieve at least this // fraction of the current max heap size. Otherwise throw OOME. constexpr double kMinFreeHeapAfterGcForAlloc = 0.01; bool was_default_allocator = allocator == GetCurrentAllocator(); // Make sure there is no pending exception since we may need to throw an OOME. self->AssertNoPendingException(); DCHECK(klass != nullptr); StackHandleScope<1> hs(self); HandleWrapperObjPtr h_klass(hs.NewHandleWrapper(klass)); auto send_object_pre_alloc = [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) { if (UNLIKELY(instrumented)) { AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst); if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) { l->PreObjectAllocated(self, h_klass, &alloc_size); } } }; #define PERFORM_SUSPENDING_OPERATION(op) \ [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \ ScopedAllowThreadSuspension ats; \ auto res = (op); \ send_object_pre_alloc(); \ return res; \ }() // The allocation failed. If the GC is running, block until it completes, and then retry the // allocation. collector::GcType last_gc = PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self)); // If we were the default allocator but the allocator changed while we were suspended, // abort the allocation. if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } if (last_gc != collector::kGcTypeNone) { // A GC was in progress and we blocked, retry allocation now that memory has been freed. mirror::Object* ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { return ptr; } } auto have_reclaimed_enough = [&]() { size_t curr_bytes_allocated = GetBytesAllocated(); double curr_free_heap = static_cast(growth_limit_ - curr_bytes_allocated) / growth_limit_; return curr_free_heap >= kMinFreeHeapAfterGcForAlloc; }; // We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization), // if it's not already tried. If that doesn't succeed then go for the most // exhaustive option. Perform a full-heap collection including clearing // SoftReferences. In case of ConcurrentCopying, it will also ensure that // all regions are evacuated. If allocation doesn't succeed even after that // then there is no hope, so we throw OOME. collector::GcType tried_type = next_gc_type_; if (last_gc < tried_type) { const bool gc_ran = PERFORM_SUSPENDING_OPERATION( CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone); if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } if (gc_ran && have_reclaimed_enough()) { mirror::Object* ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { return ptr; } } } // Most allocations should have succeeded by now, so the heap is really full, really fragmented, // or the requested size is really big. Do another GC, collecting SoftReferences this time. The // VM spec requires that all SoftReferences have been collected and cleared before throwing // OOME. VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation"; // TODO: Run finalization, but this may cause more allocations to occur. // We don't need a WaitForGcToComplete here either. DCHECK(!gc_plan_.empty()); PERFORM_SUSPENDING_OPERATION(CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true)); if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } mirror::Object* ptr = nullptr; if (have_reclaimed_enough()) { ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); } if (ptr == nullptr) { const uint64_t current_time = NanoTime(); switch (allocator) { case kAllocatorTypeRosAlloc: // Fall-through. case kAllocatorTypeDlMalloc: { if (use_homogeneous_space_compaction_for_oom_ && current_time - last_time_homogeneous_space_compaction_by_oom_ > min_interval_homogeneous_space_compaction_by_oom_) { last_time_homogeneous_space_compaction_by_oom_ = current_time; HomogeneousSpaceCompactResult result = PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact()); // Thread suspension could have occurred. if ((was_default_allocator && allocator != GetCurrentAllocator()) || (!instrumented && EntrypointsInstrumented())) { return nullptr; } switch (result) { case HomogeneousSpaceCompactResult::kSuccess: // If the allocation succeeded, we delayed an oom. ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); if (ptr != nullptr) { count_delayed_oom_++; } break; case HomogeneousSpaceCompactResult::kErrorReject: // Reject due to disabled moving GC. break; case HomogeneousSpaceCompactResult::kErrorVMShuttingDown: // Throw OOM by default. break; default: { UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: " << static_cast(result); UNREACHABLE(); } } // Always print that we ran homogeneous space compation since this can cause jank. VLOG(heap) << "Ran heap homogeneous space compaction, " << " requested defragmentation " << count_requested_homogeneous_space_compaction_.load() << " performed defragmentation " << count_performed_homogeneous_space_compaction_.load() << " ignored homogeneous space compaction " << count_ignored_homogeneous_space_compaction_.load() << " delayed count = " << count_delayed_oom_.load(); } break; } default: { // Do nothing for others allocators. } } } #undef PERFORM_SUSPENDING_OPERATION // If the allocation hasn't succeeded by this point, throw an OOM error. if (ptr == nullptr) { ScopedAllowThreadSuspension ats; ThrowOutOfMemoryError(self, alloc_size, allocator); } return ptr; } void Heap::SetTargetHeapUtilization(float target) { DCHECK_GT(target, 0.1f); // asserted in Java code DCHECK_LT(target, 1.0f); target_utilization_ = target; } size_t Heap::GetObjectsAllocated() const { Thread* const self = Thread::Current(); ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated); // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells // us to suspend while we are doing SuspendAll. b/35232978 gc::ScopedGCCriticalSection gcs(Thread::Current(), gc::kGcCauseGetObjectsAllocated, gc::kCollectorTypeGetObjectsAllocated); // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll. ScopedSuspendAll ssa(__FUNCTION__); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); size_t total = 0; for (space::AllocSpace* space : alloc_spaces_) { total += space->GetObjectsAllocated(); } return total; } uint64_t Heap::GetObjectsAllocatedEver() const { uint64_t total = GetObjectsFreedEver(); // If we are detached, we can't use GetObjectsAllocated since we can't change thread states. if (Thread::Current() != nullptr) { total += GetObjectsAllocated(); } return total; } uint64_t Heap::GetBytesAllocatedEver() const { // Force the returned value to be monotonically increasing, in the sense that if this is called // at A and B, such that A happens-before B, then the call at B returns a value no smaller than // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first, // and total_bytes_freed_ever_ is incremented later. static std::atomic max_bytes_so_far(0); uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed); uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire); current_bytes += GetBytesAllocated(); do { if (current_bytes <= so_far) { return so_far; } } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */, current_bytes, std::memory_order_relaxed)); return current_bytes; } // Check whether the given object is an instance of the given class. static bool MatchesClass(mirror::Object* obj, Handle h_class, bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Class* instance_class = obj->GetClass(); CHECK(instance_class != nullptr); ObjPtr klass = h_class.Get(); if (use_is_assignable_from) { return klass != nullptr && klass->IsAssignableFrom(instance_class); } return instance_class == klass; } void Heap::CountInstances(const std::vector>& classes, bool use_is_assignable_from, uint64_t* counts) { auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < classes.size(); ++i) { if (MatchesClass(obj, classes[i], use_is_assignable_from)) { ++counts[i]; } } }; VisitObjects(instance_counter); } void Heap::GetInstances(VariableSizedHandleScope& scope, Handle h_class, bool use_is_assignable_from, int32_t max_count, std::vector>& instances) { DCHECK_GE(max_count, 0); auto instance_collector = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { if (MatchesClass(obj, h_class, use_is_assignable_from)) { if (max_count == 0 || instances.size() < static_cast(max_count)) { instances.push_back(scope.NewHandle(obj)); } } }; VisitObjects(instance_collector); } void Heap::GetReferringObjects(VariableSizedHandleScope& scope, Handle o, int32_t max_count, std::vector>& referring_objects) { class ReferringObjectsFinder { public: ReferringObjectsFinder(VariableSizedHandleScope& scope_in, Handle object_in, int32_t max_count_in, std::vector>& referring_objects_in) REQUIRES_SHARED(Locks::mutator_lock_) : scope_(scope_in), object_(object_in), max_count_(max_count_in), referring_objects_(referring_objects_in) {} // For Object::VisitReferences. void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Object* ref = obj->GetFieldObject(offset); if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) { referring_objects_.push_back(scope_.NewHandle(obj)); } } void VisitRootIfNonNull(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} void VisitRoot(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} private: VariableSizedHandleScope& scope_; Handle const object_; const uint32_t max_count_; std::vector>& referring_objects_; DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder); }; ReferringObjectsFinder finder(scope, o, max_count, referring_objects); auto referring_objects_finder = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { obj->VisitReferences(finder, VoidFunctor()); }; VisitObjects(referring_objects_finder); } void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) { // Even if we waited for a GC we still need to do another GC since weaks allocated during the // last GC will not have necessarily been cleared. CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references); } bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const { return main_space_backup_.get() != nullptr && main_space_ != nullptr && foreground_collector_type_ == kCollectorTypeCMS; } HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() { Thread* self = Thread::Current(); // Inc requested homogeneous space compaction. count_requested_homogeneous_space_compaction_++; // Store performed homogeneous space compaction at a new request arrival. ScopedThreadStateChange tsc(self, kWaitingPerformingGc); Locks::mutator_lock_->AssertNotHeld(self); { ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); // Ensure there is only one GC at a time. WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self); // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable // count is non zero. // If the collector type changed to something which doesn't benefit from homogeneous space // compaction, exit. if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) || !main_space_->CanMoveObjects()) { return kErrorReject; } if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) { return kErrorUnsupported; } collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact; } if (Runtime::Current()->IsShuttingDown(self)) { // Don't allow heap transitions to happen if the runtime is shutting down since these can // cause objects to get finalized. FinishGC(self, collector::kGcTypeNone); return HomogeneousSpaceCompactResult::kErrorVMShuttingDown; } collector::GarbageCollector* collector; { ScopedSuspendAll ssa(__FUNCTION__); uint64_t start_time = NanoTime(); // Launch compaction. space::MallocSpace* to_space = main_space_backup_.release(); space::MallocSpace* from_space = main_space_; to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE); const uint64_t space_size_before_compaction = from_space->Size(); AddSpace(to_space); // Make sure that we will have enough room to copy. CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit()); collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact); const uint64_t space_size_after_compaction = to_space->Size(); main_space_ = to_space; main_space_backup_.reset(from_space); RemoveSpace(from_space); SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space. // Update performed homogeneous space compaction count. count_performed_homogeneous_space_compaction_++; // Print statics log and resume all threads. uint64_t duration = NanoTime() - start_time; VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: " << PrettySize(space_size_before_compaction) << " -> " << PrettySize(space_size_after_compaction) << " compact-ratio: " << std::fixed << static_cast(space_size_after_compaction) / static_cast(space_size_before_compaction); } // Finish GC. // Get the references we need to enqueue. SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self); GrowForUtilization(semi_space_collector_); LogGC(kGcCauseHomogeneousSpaceCompact, collector); FinishGC(self, collector::kGcTypeFull); // Enqueue any references after losing the GC locks. clear->Run(self); clear->Finalize(); { ScopedObjectAccess soa(self); soa.Vm()->UnloadNativeLibraries(); } return HomogeneousSpaceCompactResult::kSuccess; } void Heap::ChangeCollector(CollectorType collector_type) { // TODO: Only do this with all mutators suspended to avoid races. if (collector_type != collector_type_) { collector_type_ = collector_type; gc_plan_.clear(); switch (collector_type_) { case kCollectorTypeCC: { if (use_generational_cc_) { gc_plan_.push_back(collector::kGcTypeSticky); } gc_plan_.push_back(collector::kGcTypeFull); if (use_tlab_) { ChangeAllocator(kAllocatorTypeRegionTLAB); } else { ChangeAllocator(kAllocatorTypeRegion); } break; } case kCollectorTypeSS: { gc_plan_.push_back(collector::kGcTypeFull); if (use_tlab_) { ChangeAllocator(kAllocatorTypeTLAB); } else { ChangeAllocator(kAllocatorTypeBumpPointer); } break; } case kCollectorTypeMS: { gc_plan_.push_back(collector::kGcTypeSticky); gc_plan_.push_back(collector::kGcTypePartial); gc_plan_.push_back(collector::kGcTypeFull); ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); break; } case kCollectorTypeCMS: { gc_plan_.push_back(collector::kGcTypeSticky); gc_plan_.push_back(collector::kGcTypePartial); gc_plan_.push_back(collector::kGcTypeFull); ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc); break; } default: { UNIMPLEMENTED(FATAL); UNREACHABLE(); } } if (IsGcConcurrent()) { concurrent_start_bytes_ = UnsignedDifference(target_footprint_.load(std::memory_order_relaxed), kMinConcurrentRemainingBytes); } else { concurrent_start_bytes_ = std::numeric_limits::max(); } } } // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size. class ZygoteCompactingCollector final : public collector::SemiSpace { public: ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool) : SemiSpace(heap, "zygote collector"), bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr), is_running_on_memory_tool_(is_running_on_memory_tool) {} void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { bin_live_bitmap_ = space->GetLiveBitmap(); bin_mark_bitmap_ = space->GetMarkBitmap(); uintptr_t prev = reinterpret_cast(space->Begin()); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); // Note: This requires traversing the space in increasing order of object addresses. auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { uintptr_t object_addr = reinterpret_cast(obj); size_t bin_size = object_addr - prev; // Add the bin consisting of the end of the previous object to the start of the current object. AddBin(bin_size, prev); prev = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment); }; bin_live_bitmap_->Walk(visitor); // Add the last bin which spans after the last object to the end of the space. AddBin(reinterpret_cast(space->End()) - prev, prev); } private: // Maps from bin sizes to locations. std::multimap bins_; // Live bitmap of the space which contains the bins. accounting::ContinuousSpaceBitmap* bin_live_bitmap_; // Mark bitmap of the space which contains the bins. accounting::ContinuousSpaceBitmap* bin_mark_bitmap_; const bool is_running_on_memory_tool_; void AddBin(size_t size, uintptr_t position) { if (is_running_on_memory_tool_) { MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast(position), size); } if (size != 0) { bins_.insert(std::make_pair(size, position)); } } bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const override { // Don't sweep any spaces since we probably blasted the internal accounting of the free list // allocator. return false; } mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { size_t obj_size = obj->SizeOf(); size_t alloc_size = RoundUp(obj_size, kObjectAlignment); mirror::Object* forward_address; // Find the smallest bin which we can move obj in. auto it = bins_.lower_bound(alloc_size); if (it == bins_.end()) { // No available space in the bins, place it in the target space instead (grows the zygote // space). size_t bytes_allocated, unused_bytes_tl_bulk_allocated; forward_address = to_space_->Alloc( self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated); if (to_space_live_bitmap_ != nullptr) { to_space_live_bitmap_->Set(forward_address); } else { GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address); GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address); } } else { size_t size = it->first; uintptr_t pos = it->second; bins_.erase(it); // Erase the old bin which we replace with the new smaller bin. forward_address = reinterpret_cast(pos); // Set the live and mark bits so that sweeping system weaks works properly. bin_live_bitmap_->Set(forward_address); bin_mark_bitmap_->Set(forward_address); DCHECK_GE(size, alloc_size); // Add a new bin with the remaining space. AddBin(size - alloc_size, pos + alloc_size); } // Copy the object over to its new location. // Historical note: We did not use `alloc_size` to avoid a Valgrind error. memcpy(reinterpret_cast(forward_address), obj, obj_size); if (kUseBakerReadBarrier) { obj->AssertReadBarrierState(); forward_address->AssertReadBarrierState(); } return forward_address; } }; void Heap::UnBindBitmaps() { TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings()); for (const auto& space : GetContinuousSpaces()) { if (space->IsContinuousMemMapAllocSpace()) { space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) { alloc_space->UnBindBitmaps(); } } } } void Heap::IncrementFreedEver() { // Counters are updated only by us, but may be read concurrently. // The updates should become visible after the corresponding live object info. total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed) + GetCurrentGcIteration()->GetFreedObjects() + GetCurrentGcIteration()->GetFreedLargeObjects(), std::memory_order_release); total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed) + GetCurrentGcIteration()->GetFreedBytes() + GetCurrentGcIteration()->GetFreedLargeObjectBytes(), std::memory_order_release); } #pragma clang diagnostic push #if !ART_USE_FUTEXES // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care. # pragma clang diagnostic ignored "-Wframe-larger-than=" #endif // This has a large frame, but shouldn't be run anywhere near the stack limit. void Heap::PreZygoteFork() { if (!HasZygoteSpace()) { // We still want to GC in case there is some unreachable non moving objects that could cause a // suboptimal bin packing when we compact the zygote space. CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false); // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since // the trim process may require locking the mutator lock. non_moving_space_->Trim(); } Thread* self = Thread::Current(); MutexLock mu(self, zygote_creation_lock_); // Try to see if we have any Zygote spaces. if (HasZygoteSpace()) { return; } Runtime::Current()->GetInternTable()->AddNewTable(); Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote(); VLOG(heap) << "Starting PreZygoteFork"; // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote // there. non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); const bool same_space = non_moving_space_ == main_space_; if (kCompactZygote) { // Temporarily disable rosalloc verification because the zygote // compaction will mess up the rosalloc internal metadata. ScopedDisableRosAllocVerification disable_rosalloc_verif(this); ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_); zygote_collector.BuildBins(non_moving_space_); // Create a new bump pointer space which we will compact into. space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(), non_moving_space_->Limit()); // Compact the bump pointer space to a new zygote bump pointer space. bool reset_main_space = false; if (IsMovingGc(collector_type_)) { if (collector_type_ == kCollectorTypeCC) { zygote_collector.SetFromSpace(region_space_); } else { zygote_collector.SetFromSpace(bump_pointer_space_); } } else { CHECK(main_space_ != nullptr); CHECK_NE(main_space_, non_moving_space_) << "Does not make sense to compact within the same space"; // Copy from the main space. zygote_collector.SetFromSpace(main_space_); reset_main_space = true; } zygote_collector.SetToSpace(&target_space); zygote_collector.SetSwapSemiSpaces(false); zygote_collector.Run(kGcCauseCollectorTransition, false); if (reset_main_space) { main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED); MemMap mem_map = main_space_->ReleaseMemMap(); RemoveSpace(main_space_); space::Space* old_main_space = main_space_; CreateMainMallocSpace(std::move(mem_map), kDefaultInitialSize, std::min(mem_map.Size(), growth_limit_), mem_map.Size()); delete old_main_space; AddSpace(main_space_); } else { if (collector_type_ == kCollectorTypeCC) { region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); // Evacuated everything out of the region space, clear the mark bitmap. region_space_->GetMarkBitmap()->Clear(); } else { bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); } } if (temp_space_ != nullptr) { CHECK(temp_space_->IsEmpty()); } IncrementFreedEver(); // Update the end and write out image. non_moving_space_->SetEnd(target_space.End()); non_moving_space_->SetLimit(target_space.Limit()); VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes"; } // Change the collector to the post zygote one. ChangeCollector(foreground_collector_type_); // Save the old space so that we can remove it after we complete creating the zygote space. space::MallocSpace* old_alloc_space = non_moving_space_; // Turn the current alloc space into a zygote space and obtain the new alloc space composed of // the remaining available space. // Remove the old space before creating the zygote space since creating the zygote space sets // the old alloc space's bitmaps to null. RemoveSpace(old_alloc_space); if (collector::SemiSpace::kUseRememberedSet) { // Consistency bound check. FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace(); // Remove the remembered set for the now zygote space (the old // non-moving space). Note now that we have compacted objects into // the zygote space, the data in the remembered set is no longer // needed. The zygote space will instead have a mod-union table // from this point on. RemoveRememberedSet(old_alloc_space); } // Remaining space becomes the new non moving space. zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_, &non_moving_space_); CHECK(!non_moving_space_->CanMoveObjects()); if (same_space) { main_space_ = non_moving_space_; SetSpaceAsDefault(main_space_); } delete old_alloc_space; CHECK(HasZygoteSpace()) << "Failed creating zygote space"; AddSpace(zygote_space_); non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity()); AddSpace(non_moving_space_); constexpr bool set_mark_bit = kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects; if (set_mark_bit) { // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is // safe since we mark all of the objects that may reference non immune objects as gray. zygote_space_->SetMarkBitInLiveObjects(); } // Create the zygote space mod union table. accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_); CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table"; if (collector_type_ != kCollectorTypeCC) { // Set all the cards in the mod-union table since we don't know which objects contain references // to large objects. mod_union_table->SetCards(); } else { // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There // may be dirty cards from the zygote compaction or reference processing. These cards are not // necessary to have marked since the zygote space may not refer to any objects not in the // zygote or image spaces at this point. mod_union_table->ProcessCards(); mod_union_table->ClearTable(); // For CC we never collect zygote large objects. This means we do not need to set the cards for // the zygote mod-union table and we can also clear all of the existing image mod-union tables. // The existing mod-union tables are only for image spaces and may only reference zygote and // image objects. for (auto& pair : mod_union_tables_) { CHECK(pair.first->IsImageSpace()); CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage()); accounting::ModUnionTable* table = pair.second; table->ClearTable(); } } AddModUnionTable(mod_union_table); large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit); if (collector::SemiSpace::kUseRememberedSet) { // Add a new remembered set for the post-zygote non-moving space. accounting::RememberedSet* post_zygote_non_moving_space_rem_set = new accounting::RememberedSet("Post-zygote non-moving space remembered set", this, non_moving_space_); CHECK(post_zygote_non_moving_space_rem_set != nullptr) << "Failed to create post-zygote non-moving space remembered set"; AddRememberedSet(post_zygote_non_moving_space_rem_set); } } #pragma clang diagnostic pop void Heap::FlushAllocStack() { MarkAllocStackAsLive(allocation_stack_.get()); allocation_stack_->Reset(); } void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1, accounting::ContinuousSpaceBitmap* bitmap2, accounting::LargeObjectBitmap* large_objects, accounting::ObjectStack* stack) { DCHECK(bitmap1 != nullptr); DCHECK(bitmap2 != nullptr); const auto* limit = stack->End(); for (auto* it = stack->Begin(); it != limit; ++it) { const mirror::Object* obj = it->AsMirrorPtr(); if (!kUseThreadLocalAllocationStack || obj != nullptr) { if (bitmap1->HasAddress(obj)) { bitmap1->Set(obj); } else if (bitmap2->HasAddress(obj)) { bitmap2->Set(obj); } else { DCHECK(large_objects != nullptr); large_objects->Set(obj); } } } } void Heap::SwapSemiSpaces() { CHECK(bump_pointer_space_ != nullptr); CHECK(temp_space_ != nullptr); std::swap(bump_pointer_space_, temp_space_); } collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space, space::ContinuousMemMapAllocSpace* source_space, GcCause gc_cause) { CHECK(kMovingCollector); if (target_space != source_space) { // Don't swap spaces since this isn't a typical semi space collection. semi_space_collector_->SetSwapSemiSpaces(false); semi_space_collector_->SetFromSpace(source_space); semi_space_collector_->SetToSpace(target_space); semi_space_collector_->Run(gc_cause, false); return semi_space_collector_; } LOG(FATAL) << "Unsupported"; UNREACHABLE(); } void Heap::TraceHeapSize(size_t heap_size) { ATraceIntegerValue("Heap size (KB)", heap_size / KB); } #if defined(__GLIBC__) # define IF_GLIBC(x) x #else # define IF_GLIBC(x) #endif size_t Heap::GetNativeBytes() { size_t malloc_bytes; #if defined(__BIONIC__) || defined(__GLIBC__) IF_GLIBC(size_t mmapped_bytes;) struct mallinfo mi = mallinfo(); // In spite of the documentation, the jemalloc version of this call seems to do what we want, // and it is thread-safe. if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) { // Shouldn't happen, but glibc declares uordblks as int. // Avoiding sign extension gets us correct behavior for another 2 GB. malloc_bytes = (unsigned int)mi.uordblks; IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;) } else { malloc_bytes = mi.uordblks; IF_GLIBC(mmapped_bytes = mi.hblkhd;) } // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it. // However, malloc implementations seem to interpret hblkhd differently, namely as // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it // previously helped, and which appears to use a reading of the spec compatible // with our adjustment. #if defined(__GLIBC__) if (mmapped_bytes > malloc_bytes) { malloc_bytes = mmapped_bytes; } #endif // GLIBC #else // Neither Bionic nor Glibc // We should hit this case only in contexts in which GC triggering is not critical. Effectively // disable GC triggering based on malloc(). malloc_bytes = 1000; #endif return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed); // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no // more expensive, and it would allow us to count memory allocated by means other than malloc. // However it would change as pages are unmapped and remapped due to memory pressure, among // other things. It seems risky to trigger GCs as a result of such changes. } collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause, bool clear_soft_references) { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); // If the heap can't run the GC, silently fail and return that no GC was run. switch (gc_type) { case collector::kGcTypePartial: { if (!HasZygoteSpace()) { return collector::kGcTypeNone; } break; } default: { // Other GC types don't have any special cases which makes them not runnable. The main case // here is full GC. } } ScopedThreadStateChange tsc(self, kWaitingPerformingGc); Locks::mutator_lock_->AssertNotHeld(self); if (self->IsHandlingStackOverflow()) { // If we are throwing a stack overflow error we probably don't have enough remaining stack // space to run the GC. return collector::kGcTypeNone; } bool compacting_gc; { gc_complete_lock_->AssertNotHeld(self); ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); // Ensure there is only one GC at a time. WaitForGcToCompleteLocked(gc_cause, self); compacting_gc = IsMovingGc(collector_type_); // GC can be disabled if someone has a used GetPrimitiveArrayCritical. if (compacting_gc && disable_moving_gc_count_ != 0) { LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_; return collector::kGcTypeNone; } if (gc_disabled_for_shutdown_) { return collector::kGcTypeNone; } collector_type_running_ = collector_type_; } if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) { ++runtime->GetStats()->gc_for_alloc_count; ++self->GetStats()->gc_for_alloc_count; } const size_t bytes_allocated_before_gc = GetBytesAllocated(); DCHECK_LT(gc_type, collector::kGcTypeMax); DCHECK_NE(gc_type, collector::kGcTypeNone); collector::GarbageCollector* collector = nullptr; // TODO: Clean this up. if (compacting_gc) { DCHECK(current_allocator_ == kAllocatorTypeBumpPointer || current_allocator_ == kAllocatorTypeTLAB || current_allocator_ == kAllocatorTypeRegion || current_allocator_ == kAllocatorTypeRegionTLAB); switch (collector_type_) { case kCollectorTypeSS: semi_space_collector_->SetFromSpace(bump_pointer_space_); semi_space_collector_->SetToSpace(temp_space_); semi_space_collector_->SetSwapSemiSpaces(true); collector = semi_space_collector_; break; case kCollectorTypeCC: if (use_generational_cc_) { // TODO: Other threads must do the flip checkpoint before they start poking at // active_concurrent_copying_collector_. So we should not concurrency here. active_concurrent_copying_collector_ = (gc_type == collector::kGcTypeSticky) ? young_concurrent_copying_collector_ : concurrent_copying_collector_; DCHECK(active_concurrent_copying_collector_->RegionSpace() == region_space_); } collector = active_concurrent_copying_collector_; break; default: LOG(FATAL) << "Invalid collector type " << static_cast(collector_type_); } if (collector != active_concurrent_copying_collector_) { temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE); if (kIsDebugBuild) { // Try to read each page of the memory map in case mprotect didn't work properly b/19894268. temp_space_->GetMemMap()->TryReadable(); } CHECK(temp_space_->IsEmpty()); } gc_type = collector::kGcTypeFull; // TODO: Not hard code this in. } else if (current_allocator_ == kAllocatorTypeRosAlloc || current_allocator_ == kAllocatorTypeDlMalloc) { collector = FindCollectorByGcType(gc_type); } else { LOG(FATAL) << "Invalid current allocator " << current_allocator_; } CHECK(collector != nullptr) << "Could not find garbage collector with collector_type=" << static_cast(collector_type_) << " and gc_type=" << gc_type; collector->Run(gc_cause, clear_soft_references || runtime->IsZygote()); IncrementFreedEver(); RequestTrim(self); // Collect cleared references. SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self); // Grow the heap so that we know when to perform the next GC. GrowForUtilization(collector, bytes_allocated_before_gc); LogGC(gc_cause, collector); FinishGC(self, gc_type); // Actually enqueue all cleared references. Do this after the GC has officially finished since // otherwise we can deadlock. clear->Run(self); clear->Finalize(); // Inform DDMS that a GC completed. Dbg::GcDidFinish(); old_native_bytes_allocated_.store(GetNativeBytes()); // Unload native libraries for class unloading. We do this after calling FinishGC to prevent // deadlocks in case the JNI_OnUnload function does allocations. { ScopedObjectAccess soa(self); soa.Vm()->UnloadNativeLibraries(); } return gc_type; } void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) { const size_t duration = GetCurrentGcIteration()->GetDurationNs(); const std::vector& pause_times = GetCurrentGcIteration()->GetPauseTimes(); // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC // (mutator time blocked >= long_pause_log_threshold_). bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_); if (!log_gc && CareAboutPauseTimes()) { // GC for alloc pauses the allocating thread, so consider it as a pause. log_gc = duration > long_gc_log_threshold_ || (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_); for (uint64_t pause : pause_times) { log_gc = log_gc || pause >= long_pause_log_threshold_; } } if (log_gc) { const size_t percent_free = GetPercentFree(); const size_t current_heap_size = GetBytesAllocated(); const size_t total_memory = GetTotalMemory(); std::ostringstream pause_string; for (size_t i = 0; i < pause_times.size(); ++i) { pause_string << PrettyDuration((pause_times[i] / 1000) * 1000) << ((i != pause_times.size() - 1) ? "," : ""); } LOG(INFO) << gc_cause << " " << collector->GetName() << " GC freed " << current_gc_iteration_.GetFreedObjects() << "(" << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, " << current_gc_iteration_.GetFreedLargeObjects() << "(" << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, " << percent_free << "% free, " << PrettySize(current_heap_size) << "/" << PrettySize(total_memory) << ", " << "paused " << pause_string.str() << " total " << PrettyDuration((duration / 1000) * 1000); VLOG(heap) << Dumpable(*current_gc_iteration_.GetTimings()); } } void Heap::FinishGC(Thread* self, collector::GcType gc_type) { MutexLock mu(self, *gc_complete_lock_); collector_type_running_ = kCollectorTypeNone; if (gc_type != collector::kGcTypeNone) { last_gc_type_ = gc_type; // Update stats. ++gc_count_last_window_; if (running_collection_is_blocking_) { // If the currently running collection was a blocking one, // increment the counters and reset the flag. ++blocking_gc_count_; blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs(); ++blocking_gc_count_last_window_; } // Update the gc count rate histograms if due. UpdateGcCountRateHistograms(); } // Reset. running_collection_is_blocking_ = false; thread_running_gc_ = nullptr; // Wake anyone who may have been waiting for the GC to complete. gc_complete_cond_->Broadcast(self); } void Heap::UpdateGcCountRateHistograms() { // Invariant: if the time since the last update includes more than // one windows, all the GC runs (if > 0) must have happened in first // window because otherwise the update must have already taken place // at an earlier GC run. So, we report the non-first windows with // zero counts to the histograms. DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); uint64_t now = NanoTime(); DCHECK_GE(now, last_update_time_gc_count_rate_histograms_); uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_; uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration; // The computed number of windows can be incoherently high if NanoTime() is not monotonic. // Setting a limit on its maximum value reduces the impact on CPU time in such cases. if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) { LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from " << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows; num_of_windows = kGcCountRateHistogramMaxNumMissedWindows; } if (time_since_last_update >= kGcCountRateHistogramWindowDuration) { // Record the first window. gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run. blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ? blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_); // Record the other windows (with zero counts). for (uint64_t i = 0; i < num_of_windows - 1; ++i) { gc_count_rate_histogram_.AddValue(0); blocking_gc_count_rate_histogram_.AddValue(0); } // Update the last update time and reset the counters. last_update_time_gc_count_rate_histograms_ = (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration; gc_count_last_window_ = 1; // Include the current run. blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0; } DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U); } class RootMatchesObjectVisitor : public SingleRootVisitor { public: explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { } void VisitRoot(mirror::Object* root, const RootInfo& info) override REQUIRES_SHARED(Locks::mutator_lock_) { if (root == obj_) { LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString(); } } private: const mirror::Object* const obj_; }; class ScanVisitor { public: void operator()(const mirror::Object* obj) const { LOG(ERROR) << "Would have rescanned object " << obj; } }; // Verify a reference from an object. class VerifyReferenceVisitor : public SingleRootVisitor { public: VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent) REQUIRES_SHARED(Locks::mutator_lock_) : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) { CHECK_EQ(self_, Thread::Current()); } void operator()(ObjPtr klass ATTRIBUTE_UNUSED, ObjPtr ref) const REQUIRES_SHARED(Locks::mutator_lock_) { if (verify_referent_) { VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset()); } } void operator()(ObjPtr obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { VerifyReference(obj.Ptr(), obj->GetFieldObject(offset), offset); } bool IsLive(ObjPtr obj) const NO_THREAD_SAFETY_ANALYSIS { return heap_->IsLiveObjectLocked(obj, true, false, true); } void VisitRootIfNonNull(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference* root) const REQUIRES_SHARED(Locks::mutator_lock_) { const_cast(this)->VisitRoot( root->AsMirrorPtr(), RootInfo(kRootVMInternal)); } void VisitRoot(mirror::Object* root, const RootInfo& root_info) override REQUIRES_SHARED(Locks::mutator_lock_) { if (root == nullptr) { LOG(ERROR) << "Root is null with info " << root_info.GetType(); } else if (!VerifyReference(nullptr, root, MemberOffset(0))) { LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root) << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType(); } } private: // TODO: Fix the no thread safety analysis. // Returns false on failure. bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const NO_THREAD_SAFETY_ANALYSIS { if (ref == nullptr || IsLive(ref)) { // Verify that the reference is live. return true; } CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread. *fail_count_ += 1; if (*fail_count_ == 1) { // Only print message for the first failure to prevent spam. LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!"; } if (obj != nullptr) { // Only do this part for non roots. accounting::CardTable* card_table = heap_->GetCardTable(); accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get(); accounting::ObjectStack* live_stack = heap_->live_stack_.get(); uint8_t* card_addr = card_table->CardFromAddr(obj); LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " << offset << "\n card value = " << static_cast(*card_addr); if (heap_->IsValidObjectAddress(obj->GetClass())) { LOG(ERROR) << "Obj type " << obj->PrettyTypeOf(); } else { LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address"; } // Attempt to find the class inside of the recently freed objects. space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true); if (ref_space != nullptr && ref_space->IsMallocSpace()) { space::MallocSpace* space = ref_space->AsMallocSpace(); mirror::Class* ref_class = space->FindRecentFreedObject(ref); if (ref_class != nullptr) { LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class " << ref_class->PrettyClass(); } else { LOG(ERROR) << "Reference " << ref << " not found as a recently freed object"; } } if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) && ref->GetClass()->IsClass()) { LOG(ERROR) << "Ref type " << ref->PrettyTypeOf(); } else { LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass() << ") is not a valid heap address"; } card_table->CheckAddrIsInCardTable(reinterpret_cast(obj)); void* cover_begin = card_table->AddrFromCard(card_addr); void* cover_end = reinterpret_cast(reinterpret_cast(cover_begin) + accounting::CardTable::kCardSize); LOG(ERROR) << "Card " << reinterpret_cast(card_addr) << " covers " << cover_begin << "-" << cover_end; accounting::ContinuousSpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj); if (bitmap == nullptr) { LOG(ERROR) << "Object " << obj << " has no bitmap"; if (!VerifyClassClass(obj->GetClass())) { LOG(ERROR) << "Object " << obj << " failed class verification!"; } } else { // Print out how the object is live. if (bitmap->Test(obj)) { LOG(ERROR) << "Object " << obj << " found in live bitmap"; } if (alloc_stack->Contains(const_cast(obj))) { LOG(ERROR) << "Object " << obj << " found in allocation stack"; } if (live_stack->Contains(const_cast(obj))) { LOG(ERROR) << "Object " << obj << " found in live stack"; } if (alloc_stack->Contains(const_cast(ref))) { LOG(ERROR) << "Ref " << ref << " found in allocation stack"; } if (live_stack->Contains(const_cast(ref))) { LOG(ERROR) << "Ref " << ref << " found in live stack"; } // Attempt to see if the card table missed the reference. ScanVisitor scan_visitor; uint8_t* byte_cover_begin = reinterpret_cast(card_table->AddrFromCard(card_addr)); card_table->Scan(bitmap, byte_cover_begin, byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor); } // Search to see if any of the roots reference our object. RootMatchesObjectVisitor visitor1(obj); Runtime::Current()->VisitRoots(&visitor1); // Search to see if any of the roots reference our reference. RootMatchesObjectVisitor visitor2(ref); Runtime::Current()->VisitRoots(&visitor2); } return false; } Thread* const self_; Heap* const heap_; size_t* const fail_count_; const bool verify_referent_; }; // Verify all references within an object, for use with HeapBitmap::Visit. class VerifyObjectVisitor { public: VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent) : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {} void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { // Note: we are verifying the references in obj but not obj itself, this is because obj must // be live or else how did we find it in the live bitmap? VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_); // The class doesn't count as a reference but we should verify it anyways. obj->VisitReferences(visitor, visitor); } void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) { ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_); Runtime::Current()->VisitRoots(&visitor); } uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) { CHECK_EQ(self_, Thread::Current()); return *fail_count_; } private: Thread* const self_; Heap* const heap_; size_t* const fail_count_; const bool verify_referent_; }; void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr* obj) { // Slow path, the allocation stack push back must have already failed. DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr())); do { // TODO: Add handle VerifyObject. StackHandleScope<1> hs(self); HandleWrapperObjPtr wrapper(hs.NewHandleWrapper(obj)); // Push our object into the reserve region of the allocation stack. This is only required due // to heap verification requiring that roots are live (either in the live bitmap or in the // allocation stack). CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr())); CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); } while (!allocation_stack_->AtomicPushBack(obj->Ptr())); } void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, ObjPtr* obj) { // Slow path, the allocation stack push back must have already failed. DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr())); StackReference* start_address; StackReference* end_address; while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address, &end_address)) { // TODO: Add handle VerifyObject. StackHandleScope<1> hs(self); HandleWrapperObjPtr wrapper(hs.NewHandleWrapper(obj)); // Push our object into the reserve region of the allocaiton stack. This is only required due // to heap verification requiring that roots are live (either in the live bitmap or in the // allocation stack). CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr())); // Push into the reserve allocation stack. CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); } self->SetThreadLocalAllocationStack(start_address, end_address); // Retry on the new thread-local allocation stack. CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed. } // Must do this with mutators suspended since we are directly accessing the allocation stacks. size_t Heap::VerifyHeapReferences(bool verify_referents) { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); // Lets sort our allocation stacks so that we can efficiently binary search them. allocation_stack_->Sort(); live_stack_->Sort(); // Since we sorted the allocation stack content, need to revoke all // thread-local allocation stacks. RevokeAllThreadLocalAllocationStacks(self); size_t fail_count = 0; VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents); // Verify objects in the allocation stack since these will be objects which were: // 1. Allocated prior to the GC (pre GC verification). // 2. Allocated during the GC (pre sweep GC verification). // We don't want to verify the objects in the live stack since they themselves may be // pointing to dead objects if they are not reachable. VisitObjectsPaused(visitor); // Verify the roots: visitor.VerifyRoots(); if (visitor.GetFailureCount() > 0) { // Dump mod-union tables. for (const auto& table_pair : mod_union_tables_) { accounting::ModUnionTable* mod_union_table = table_pair.second; mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": "); } // Dump remembered sets. for (const auto& table_pair : remembered_sets_) { accounting::RememberedSet* remembered_set = table_pair.second; remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": "); } DumpSpaces(LOG_STREAM(ERROR)); } return visitor.GetFailureCount(); } class VerifyReferenceCardVisitor { public: VerifyReferenceCardVisitor(Heap* heap, bool* failed) REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) : heap_(heap), failed_(failed) { } // There is no card marks for native roots on a class. void VisitRootIfNonNull(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} void VisitRoot(mirror::CompressedReference* root ATTRIBUTE_UNUSED) const {} // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for // annotalysis on visitors. void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const NO_THREAD_SAFETY_ANALYSIS { mirror::Object* ref = obj->GetFieldObject(offset); // Filter out class references since changing an object's class does not mark the card as dirty. // Also handles large objects, since the only reference they hold is a class reference. if (ref != nullptr && !ref->IsClass()) { accounting::CardTable* card_table = heap_->GetCardTable(); // If the object is not dirty and it is referencing something in the live stack other than // class, then it must be on a dirty card. if (!card_table->AddrIsInCardTable(obj)) { LOG(ERROR) << "Object " << obj << " is not in the address range of the card table"; *failed_ = true; } else if (!card_table->IsDirty(obj)) { // TODO: Check mod-union tables. // Card should be either kCardDirty if it got re-dirtied after we aged it, or // kCardDirty - 1 if it didnt get touched since we aged it. accounting::ObjectStack* live_stack = heap_->live_stack_.get(); if (live_stack->ContainsSorted(ref)) { if (live_stack->ContainsSorted(obj)) { LOG(ERROR) << "Object " << obj << " found in live stack"; } if (heap_->GetLiveBitmap()->Test(obj)) { LOG(ERROR) << "Object " << obj << " found in live bitmap"; } LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj) << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref) << " in live stack"; // Print which field of the object is dead. if (!obj->IsObjectArray()) { ObjPtr klass = is_static ? obj->AsClass() : obj->GetClass(); CHECK(klass != nullptr); for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) { if (field.GetOffset().Int32Value() == offset.Int32Value()) { LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is " << field.PrettyField(); break; } } } else { ObjPtr> object_array = obj->AsObjectArray(); for (int32_t i = 0; i < object_array->GetLength(); ++i) { if (object_array->Get(i) == ref) { LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref"; } } } *failed_ = true; } } } } private: Heap* const heap_; bool* const failed_; }; class VerifyLiveStackReferences { public: explicit VerifyLiveStackReferences(Heap* heap) : heap_(heap), failed_(false) {} void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { VerifyReferenceCardVisitor visitor(heap_, const_cast(&failed_)); obj->VisitReferences(visitor, VoidFunctor()); } bool Failed() const { return failed_; } private: Heap* const heap_; bool failed_; }; bool Heap::VerifyMissingCardMarks() { Thread* self = Thread::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); // We need to sort the live stack since we binary search it. live_stack_->Sort(); // Since we sorted the allocation stack content, need to revoke all // thread-local allocation stacks. RevokeAllThreadLocalAllocationStacks(self); VerifyLiveStackReferences visitor(this); GetLiveBitmap()->Visit(visitor); // We can verify objects in the live stack since none of these should reference dead objects. for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) { if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) { visitor(it->AsMirrorPtr()); } } return !visitor.Failed(); } void Heap::SwapStacks() { if (kUseThreadLocalAllocationStack) { live_stack_->AssertAllZero(); } allocation_stack_.swap(live_stack_); } void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) { // This must be called only during the pause. DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self)); MutexLock mu(self, *Locks::runtime_shutdown_lock_); MutexLock mu2(self, *Locks::thread_list_lock_); std::list thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* t : thread_list) { t->RevokeThreadLocalAllocationStack(); } } void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) { if (kIsDebugBuild) { if (rosalloc_space_ != nullptr) { rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread); } if (bump_pointer_space_ != nullptr) { bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread); } } } void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() { if (kIsDebugBuild) { if (bump_pointer_space_ != nullptr) { bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked(); } } } accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) { auto it = mod_union_tables_.find(space); if (it == mod_union_tables_.end()) { return nullptr; } return it->second; } accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) { auto it = remembered_sets_.find(space); if (it == remembered_sets_.end()) { return nullptr; } return it->second; } void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards, bool clear_alloc_space_cards) { TimingLogger::ScopedTiming t(__FUNCTION__, timings); // Clear cards and keep track of cards cleared in the mod-union table. for (const auto& space : continuous_spaces_) { accounting::ModUnionTable* table = FindModUnionTableFromSpace(space); accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space); if (table != nullptr) { const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" : "ImageModUnionClearCards"; TimingLogger::ScopedTiming t2(name, timings); table->ProcessCards(); } else if (use_rem_sets && rem_set != nullptr) { DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast(collector_type_); TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings); rem_set->ClearCards(); } else if (process_alloc_space_cards) { TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings); if (clear_alloc_space_cards) { uint8_t* end = space->End(); if (space->IsImageSpace()) { // Image space end is the end of the mirror objects, it is not necessarily page or card // aligned. Align up so that the check in ClearCardRange does not fail. end = AlignUp(end, accounting::CardTable::kCardSize); } card_table_->ClearCardRange(space->Begin(), end); } else { // No mod union table for the AllocSpace. Age the cards so that the GC knows that these // cards were dirty before the GC started. // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread) // -> clean(cleaning thread). // The races are we either end up with: Aged card, unaged card. Since we have the // checkpoint roots and then we scan / update mod union tables after. We will always // scan either card. If we end up with the non aged card, we scan it it in the pause. card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor()); } } } } struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor { mirror::Object* MarkObject(mirror::Object* obj) override { return obj; } void MarkHeapReference(mirror::HeapReference*, bool) override { } }; void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) { Thread* const self = Thread::Current(); TimingLogger* const timings = current_gc_iteration_.GetTimings(); TimingLogger::ScopedTiming t(__FUNCTION__, timings); if (verify_pre_gc_heap_) { TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings); size_t failures = VerifyHeapReferences(); if (failures > 0) { LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures << " failures"; } } // Check that all objects which reference things in the live stack are on dirty cards. if (verify_missing_card_marks_) { TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); SwapStacks(); // Sort the live stack so that we can quickly binary search it later. CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName() << " missing card mark verification failed\n" << DumpSpaces(); SwapStacks(); } if (verify_mod_union_table_) { TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings); ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_); for (const auto& table_pair : mod_union_tables_) { accounting::ModUnionTable* mod_union_table = table_pair.second; IdentityMarkHeapReferenceVisitor visitor; mod_union_table->UpdateAndMarkReferences(&visitor); mod_union_table->Verify(); } } } void Heap::PreGcVerification(collector::GarbageCollector* gc) { if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) { collector::GarbageCollector::ScopedPause pause(gc, false); PreGcVerificationPaused(gc); } } void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) { // TODO: Add a new runtime option for this? if (verify_pre_gc_rosalloc_) { RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification"); } } void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) { Thread* const self = Thread::Current(); TimingLogger* const timings = current_gc_iteration_.GetTimings(); TimingLogger::ScopedTiming t(__FUNCTION__, timings); // Called before sweeping occurs since we want to make sure we are not going so reclaim any // reachable objects. if (verify_pre_sweeping_heap_) { TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings); CHECK_NE(self->GetState(), kRunnable); { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // Swapping bound bitmaps does nothing. gc->SwapBitmaps(); } // Pass in false since concurrent reference processing can mean that the reference referents // may point to dead objects at the point which PreSweepingGcVerification is called. size_t failures = VerifyHeapReferences(false); if (failures > 0) { LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures << " failures"; } { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); gc->SwapBitmaps(); } } if (verify_pre_sweeping_rosalloc_) { RosAllocVerification(timings, "PreSweepingRosAllocVerification"); } } void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) { // Only pause if we have to do some verification. Thread* const self = Thread::Current(); TimingLogger* const timings = GetCurrentGcIteration()->GetTimings(); TimingLogger::ScopedTiming t(__FUNCTION__, timings); if (verify_system_weaks_) { ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_); collector::MarkSweep* mark_sweep = down_cast(gc); mark_sweep->VerifySystemWeaks(); } if (verify_post_gc_rosalloc_) { RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification"); } if (verify_post_gc_heap_) { TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings); size_t failures = VerifyHeapReferences(); if (failures > 0) { LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures << " failures"; } } } void Heap::PostGcVerification(collector::GarbageCollector* gc) { if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) { collector::GarbageCollector::ScopedPause pause(gc, false); PostGcVerificationPaused(gc); } } void Heap::RosAllocVerification(TimingLogger* timings, const char* name) { TimingLogger::ScopedTiming t(name, timings); for (const auto& space : continuous_spaces_) { if (space->IsRosAllocSpace()) { VLOG(heap) << name << " : " << space->GetName(); space->AsRosAllocSpace()->Verify(); } } } collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) { ScopedThreadStateChange tsc(self, kWaitingForGcToComplete); MutexLock mu(self, *gc_complete_lock_); return WaitForGcToCompleteLocked(cause, self); } collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) { gc_complete_cond_->CheckSafeToWait(self); collector::GcType last_gc_type = collector::kGcTypeNone; GcCause last_gc_cause = kGcCauseNone; uint64_t wait_start = NanoTime(); while (collector_type_running_ != kCollectorTypeNone) { if (self != task_processor_->GetRunningThread()) { // The current thread is about to wait for a currently running // collection to finish. If the waiting thread is not the heap // task daemon thread, the currently running collection is // considered as a blocking GC. running_collection_is_blocking_ = true; VLOG(gc) << "Waiting for a blocking GC " << cause; } SCOPED_TRACE << "GC: Wait For Completion " << cause; // We must wait, change thread state then sleep on gc_complete_cond_; gc_complete_cond_->Wait(self); last_gc_type = last_gc_type_; last_gc_cause = last_gc_cause_; } uint64_t wait_time = NanoTime() - wait_start; total_wait_time_ += wait_time; if (wait_time > long_pause_log_threshold_) { LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for " << PrettyDuration(wait_time); } if (self != task_processor_->GetRunningThread()) { // The current thread is about to run a collection. If the thread // is not the heap task daemon thread, it's considered as a // blocking GC (i.e., blocking itself). running_collection_is_blocking_ = true; // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these, // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too. if (cause == kGcCauseForAlloc || cause == kGcCauseForNativeAlloc || cause == kGcCauseDisableMovingGc) { VLOG(gc) << "Starting a blocking GC " << cause; } } return last_gc_type; } void Heap::DumpForSigQuit(std::ostream& os) { os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/" << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n"; DumpGcPerformanceInfo(os); } size_t Heap::GetPercentFree() { return static_cast(100.0f * static_cast( GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed)); } void Heap::SetIdealFootprint(size_t target_footprint) { if (target_footprint > GetMaxMemory()) { VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to " << PrettySize(GetMaxMemory()); target_footprint = GetMaxMemory(); } target_footprint_.store(target_footprint, std::memory_order_relaxed); } bool Heap::IsMovableObject(ObjPtr obj) const { if (kMovingCollector) { space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true); if (space != nullptr) { // TODO: Check large object? return space->CanMoveObjects(); } } return false; } collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) { for (auto* collector : garbage_collectors_) { if (collector->GetCollectorType() == collector_type_ && collector->GetGcType() == gc_type) { return collector; } } return nullptr; } double Heap::HeapGrowthMultiplier() const { // If we don't care about pause times we are background, so return 1.0. if (!CareAboutPauseTimes()) { return 1.0; } return foreground_heap_growth_multiplier_; } void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran, size_t bytes_allocated_before_gc) { // We know what our utilization is at this moment. // This doesn't actually resize any memory. It just lets the heap grow more when necessary. const size_t bytes_allocated = GetBytesAllocated(); // Trace the new heap size after the GC is finished. TraceHeapSize(bytes_allocated); uint64_t target_size, grow_bytes; collector::GcType gc_type = collector_ran->GetGcType(); MutexLock mu(Thread::Current(), process_state_update_lock_); // Use the multiplier to grow more for foreground. const double multiplier = HeapGrowthMultiplier(); if (gc_type != collector::kGcTypeSticky) { // Grow the heap for non sticky GC. uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0); DCHECK_LE(delta, std::numeric_limits::max()) << "bytes_allocated=" << bytes_allocated << " target_utilization_=" << target_utilization_; grow_bytes = std::min(delta, static_cast(max_free_)); grow_bytes = std::max(grow_bytes, static_cast(min_free_)); target_size = bytes_allocated + static_cast(grow_bytes * multiplier); next_gc_type_ = collector::kGcTypeSticky; } else { collector::GcType non_sticky_gc_type = NonStickyGcType(); // Find what the next non sticky collector will be. collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type); if (use_generational_cc_) { if (non_sticky_collector == nullptr) { non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial); } CHECK(non_sticky_collector != nullptr); } double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_); // If the throughput of the current sticky GC >= throughput of the non sticky collector, then // do another sticky collection next. // We also check that the bytes allocated aren't over the target_footprint, or // concurrent_start_bytes in case of concurrent GCs, in order to prevent a // pathological case where dead objects which aren't reclaimed by sticky could get accumulated // if the sticky GC throughput always remained >= the full/partial throughput. size_t target_footprint = target_footprint_.load(std::memory_order_relaxed); if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >= non_sticky_collector->GetEstimatedMeanThroughput() && non_sticky_collector->NumberOfIterations() > 0 && bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) { next_gc_type_ = collector::kGcTypeSticky; } else { next_gc_type_ = non_sticky_gc_type; } // If we have freed enough memory, shrink the heap back down. const size_t adjusted_max_free = static_cast(max_free_ * multiplier); if (bytes_allocated + adjusted_max_free < target_footprint) { target_size = bytes_allocated + adjusted_max_free; grow_bytes = max_free_; } else { target_size = std::max(bytes_allocated, target_footprint); // The same whether jank perceptible or not; just avoid the adjustment. grow_bytes = 0; } } CHECK_LE(target_size, std::numeric_limits::max()); if (!ignore_target_footprint_) { SetIdealFootprint(target_size); // Store target size (computed with foreground heap growth multiplier) for updating // target_footprint_ when process state switches to foreground. // target_size = 0 ensures that target_footprint_ is not updated on // process-state switch. min_foreground_target_footprint_ = (multiplier <= 1.0 && grow_bytes > 0) ? bytes_allocated + static_cast(grow_bytes * foreground_heap_growth_multiplier_) : 0; if (IsGcConcurrent()) { const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() + current_gc_iteration_.GetFreedLargeObjectBytes() + current_gc_iteration_.GetFreedRevokeBytes(); // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out // how many bytes were allocated during the GC we need to add freed_bytes back on. CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc); const size_t bytes_allocated_during_gc = bytes_allocated + freed_bytes - bytes_allocated_before_gc; // Calculate when to perform the next ConcurrentGC. // Estimate how many remaining bytes we will have when we need to start the next GC. size_t remaining_bytes = bytes_allocated_during_gc; remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes); remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes); size_t target_footprint = target_footprint_.load(std::memory_order_relaxed); if (UNLIKELY(remaining_bytes > target_footprint)) { // A never going to happen situation that from the estimated allocation rate we will exceed // the applications entire footprint with the given estimated allocation rate. Schedule // another GC nearly straight away. remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint); } DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory()); // Start a concurrent GC when we get close to the estimated remaining bytes. When the // allocation rate is very high, remaining_bytes could tell us that we should start a GC // right away. concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated); } } } void Heap::ClampGrowthLimit() { // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap. ScopedObjectAccess soa(Thread::Current()); WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_); capacity_ = growth_limit_; for (const auto& space : continuous_spaces_) { if (space->IsMallocSpace()) { gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); malloc_space->ClampGrowthLimit(); } } if (collector_type_ == kCollectorTypeCC) { DCHECK(region_space_ != nullptr); // Twice the capacity as CC needs extra space for evacuating objects. region_space_->ClampGrowthLimit(2 * capacity_); } // This space isn't added for performance reasons. if (main_space_backup_.get() != nullptr) { main_space_backup_->ClampGrowthLimit(); } } void Heap::ClearGrowthLimit() { if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_ && growth_limit_ < capacity_) { target_footprint_.store(capacity_, std::memory_order_relaxed); concurrent_start_bytes_ = UnsignedDifference(capacity_, kMinConcurrentRemainingBytes); } growth_limit_ = capacity_; ScopedObjectAccess soa(Thread::Current()); for (const auto& space : continuous_spaces_) { if (space->IsMallocSpace()) { gc::space::MallocSpace* malloc_space = space->AsMallocSpace(); malloc_space->ClearGrowthLimit(); malloc_space->SetFootprintLimit(malloc_space->Capacity()); } } // This space isn't added for performance reasons. if (main_space_backup_.get() != nullptr) { main_space_backup_->ClearGrowthLimit(); main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity()); } } void Heap::AddFinalizerReference(Thread* self, ObjPtr* object) { ScopedObjectAccess soa(self); ScopedLocalRef arg(self->GetJniEnv(), soa.AddLocalReference(*object)); jvalue args[1]; args[0].l = arg.get(); InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args); // Restore object in case it gets moved. *object = soa.Decode(arg.get()); } void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr* obj) { StackHandleScope<1> hs(self); HandleWrapperObjPtr wrapper(hs.NewHandleWrapper(obj)); RequestConcurrentGC(self, kGcCauseBackground, force_full); } class Heap::ConcurrentGCTask : public HeapTask { public: ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full) : HeapTask(target_time), cause_(cause), force_full_(force_full) {} void Run(Thread* self) override { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->ConcurrentGC(self, cause_, force_full_); heap->ClearConcurrentGCRequest(); } private: const GcCause cause_; const bool force_full_; // If true, force full (or partial) collection. }; static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) { Runtime* runtime = Runtime::Current(); return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) && !self->IsHandlingStackOverflow(); } void Heap::ClearConcurrentGCRequest() { concurrent_gc_pending_.store(false, std::memory_order_relaxed); } void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) { if (CanAddHeapTask(self) && concurrent_gc_pending_.CompareAndSetStrongSequentiallyConsistent(false, true)) { task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away. cause, force_full)); } } void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) { if (!Runtime::Current()->IsShuttingDown(self)) { // Wait for any GCs currently running to finish. if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) { // If we can't run the GC type we wanted to run, find the next appropriate one and try // that instead. E.g. can't do partial, so do full instead. collector::GcType next_gc_type = next_gc_type_; // If forcing full and next gc type is sticky, override with a non-sticky type. if (force_full && next_gc_type == collector::kGcTypeSticky) { next_gc_type = NonStickyGcType(); } if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) { for (collector::GcType gc_type : gc_plan_) { // Attempt to run the collector, if we succeed, we are done. if (gc_type > next_gc_type && CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) { break; } } } } } } class Heap::CollectorTransitionTask : public HeapTask { public: explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {} void Run(Thread* self) override { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->DoPendingCollectorTransition(); heap->ClearPendingCollectorTransition(self); } }; void Heap::ClearPendingCollectorTransition(Thread* self) { MutexLock mu(self, *pending_task_lock_); pending_collector_transition_ = nullptr; } void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) { Thread* self = Thread::Current(); desired_collector_type_ = desired_collector_type; if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) { return; } if (collector_type_ == kCollectorTypeCC) { // For CC, we invoke a full compaction when going to the background, but the collector type // doesn't change. DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground); } DCHECK_NE(collector_type_, kCollectorTypeCCBackground); CollectorTransitionTask* added_task = nullptr; const uint64_t target_time = NanoTime() + delta_time; { MutexLock mu(self, *pending_task_lock_); // If we have an existing collector transition, update the targe time to be the new target. if (pending_collector_transition_ != nullptr) { task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time); return; } added_task = new CollectorTransitionTask(target_time); pending_collector_transition_ = added_task; } task_processor_->AddTask(self, added_task); } class Heap::HeapTrimTask : public HeapTask { public: explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { } void Run(Thread* self) override { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->Trim(self); heap->ClearPendingTrim(self); } }; void Heap::ClearPendingTrim(Thread* self) { MutexLock mu(self, *pending_task_lock_); pending_heap_trim_ = nullptr; } void Heap::RequestTrim(Thread* self) { if (!CanAddHeapTask(self)) { return; } // GC completed and now we must decide whether to request a heap trim (advising pages back to the // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans // a space it will hold its lock and can become a cause of jank. // Note, the large object space self trims and the Zygote space was trimmed and unchanging since // forking. // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap // because that only marks object heads, so a large array looks like lots of empty space. We // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional // to utilization (which is probably inversely proportional to how much benefit we can expect). // We could try mincore(2) but that's only a measure of how many pages we haven't given away, // not how much use we're making of those pages. HeapTrimTask* added_task = nullptr; { MutexLock mu(self, *pending_task_lock_); if (pending_heap_trim_ != nullptr) { // Already have a heap trim request in task processor, ignore this request. return; } added_task = new HeapTrimTask(kHeapTrimWait); pending_heap_trim_ = added_task; } task_processor_->AddTask(self, added_task); } void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) { size_t previous_num_bytes_freed_revoke = num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed); // Check the updated value is less than the number of bytes allocated. There is a risk of // execution being suspended between the increment above and the CHECK below, leading to // the use of previous_num_bytes_freed_revoke in the comparison. CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed), previous_num_bytes_freed_revoke + freed_bytes_revoke); } void Heap::RevokeThreadLocalBuffers(Thread* thread) { if (rosalloc_space_ != nullptr) { size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); if (freed_bytes_revoke > 0U) { IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke); } } if (bump_pointer_space_ != nullptr) { CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U); } if (region_space_ != nullptr) { CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U); } } void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) { if (rosalloc_space_ != nullptr) { size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread); if (freed_bytes_revoke > 0U) { IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke); } } } void Heap::RevokeAllThreadLocalBuffers() { if (rosalloc_space_ != nullptr) { size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers(); if (freed_bytes_revoke > 0U) { IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke); } } if (bump_pointer_space_ != nullptr) { CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U); } if (region_space_ != nullptr) { CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U); } } bool Heap::IsGCRequestPending() const { return concurrent_gc_pending_.load(std::memory_order_relaxed); } void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) { env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime, WellKnownClasses::dalvik_system_VMRuntime_runFinalization, static_cast(timeout)); } // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as // different fractions of Java allocations. // For now, we essentially do not count old native allocations at all, so that we can preserve the // existing behavior of not limiting native heap size. If we seriously considered it, we would // have to adjust collection thresholds when we encounter large amounts of old native memory, // and handle native out-of-memory situations. static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now. static constexpr size_t kNewNativeDiscountFactor = 2; // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid // running out of memory. static constexpr float kStopForNativeFactor = 4.0; // Return the ratio of the weighted native + java allocated bytes to its target value. // A return value > 1.0 means we should collect. Significantly larger values mean we're falling // behind. inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) { // Collection check for native allocation. Does not enforce Java heap bounds. // With adj_start_bytes defined below, effectively checks // + c1* + c2*= adj_start_bytes, // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above. size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed); if (old_native_bytes > current_native_bytes) { // Net decrease; skip the check, but update old value. // It's OK to lose an update if two stores race. old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed); return 0.0; } else { size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes); size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor + old_native_bytes / kOldNativeDiscountFactor; size_t add_bytes_allowed = static_cast( NativeAllocationGcWatermark() * HeapGrowthMultiplier()); size_t java_gc_start_bytes = is_gc_concurrent ? concurrent_start_bytes_ : target_footprint_.load(std::memory_order_relaxed); size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes, add_bytes_allowed / kNewNativeDiscountFactor); return static_cast(GetBytesAllocated() + weighted_native_bytes) / static_cast(adj_start_bytes); } } inline void Heap::CheckGCForNative(Thread* self) { bool is_gc_concurrent = IsGcConcurrent(); size_t current_native_bytes = GetNativeBytes(); float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent); if (UNLIKELY(gc_urgency >= 1.0)) { if (is_gc_concurrent) { RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true); if (gc_urgency > kStopForNativeFactor && current_native_bytes > stop_for_native_allocs_) { // We're in danger of running out of memory due to rampant native allocation. if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency; } WaitForGcToComplete(kGcCauseForNativeAlloc, self); } } else { CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false); } } } // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect. void Heap::NotifyNativeAllocations(JNIEnv* env) { native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed); CheckGCForNative(ThreadForEnv(env)); } // Register a native allocation with an explicit size. // This should only be done for large allocations of non-malloc memory, which we wouldn't // otherwise see. void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) { // Cautiously check for a wrapped negative bytes argument. DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits::max() / 2)); native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed); uint32_t objects_notified = native_objects_notified_.fetch_add(1, std::memory_order_relaxed); if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1 || bytes > kCheckImmediatelyThreshold) { CheckGCForNative(ThreadForEnv(env)); } } void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) { size_t allocated; size_t new_freed_bytes; do { allocated = native_bytes_registered_.load(std::memory_order_relaxed); new_freed_bytes = std::min(allocated, bytes); // We should not be registering more free than allocated bytes. // But correctly keep going in non-debug builds. DCHECK_EQ(new_freed_bytes, bytes); } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated, allocated - new_freed_bytes)); } size_t Heap::GetTotalMemory() const { return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated()); } void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) { DCHECK(mod_union_table != nullptr); mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table); } void Heap::CheckPreconditionsForAllocObject(ObjPtr c, size_t byte_count) { // Compare rounded sizes since the allocation may have been retried after rounding the size. // See b/37885600 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) || (c->IsVariableSize() || RoundUp(c->GetObjectSize(), kObjectAlignment) == RoundUp(byte_count, kObjectAlignment))) << "ClassFlags=" << c->GetClassFlags() << " IsClassClass=" << c->IsClassClass() << " byte_count=" << byte_count << " IsVariableSize=" << c->IsVariableSize() << " ObjectSize=" << c->GetObjectSize() << " sizeof(Class)=" << sizeof(mirror::Class) << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass"); CHECK_GE(byte_count, sizeof(mirror::Object)); } void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) { CHECK(remembered_set != nullptr); space::Space* space = remembered_set->GetSpace(); CHECK(space != nullptr); CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space; remembered_sets_.Put(space, remembered_set); CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space; } void Heap::RemoveRememberedSet(space::Space* space) { CHECK(space != nullptr); auto it = remembered_sets_.find(space); CHECK(it != remembered_sets_.end()); delete it->second; remembered_sets_.erase(it); CHECK(remembered_sets_.find(space) == remembered_sets_.end()); } void Heap::ClearMarkedObjects() { // Clear all of the spaces' mark bitmaps. for (const auto& space : GetContinuousSpaces()) { if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) { space->GetMarkBitmap()->Clear(); } } // Clear the marked objects in the discontinous space object sets. for (const auto& space : GetDiscontinuousSpaces()) { space->GetMarkBitmap()->Clear(); } } void Heap::SetAllocationRecords(AllocRecordObjectMap* records) { allocation_records_.reset(records); } void Heap::VisitAllocationRecords(RootVisitor* visitor) const { if (IsAllocTrackingEnabled()) { MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); if (IsAllocTrackingEnabled()) { GetAllocationRecords()->VisitRoots(visitor); } } } void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const { if (IsAllocTrackingEnabled()) { MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); if (IsAllocTrackingEnabled()) { GetAllocationRecords()->SweepAllocationRecords(visitor); } } } void Heap::AllowNewAllocationRecords() const { CHECK(!kUseReadBarrier); MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); AllocRecordObjectMap* allocation_records = GetAllocationRecords(); if (allocation_records != nullptr) { allocation_records->AllowNewAllocationRecords(); } } void Heap::DisallowNewAllocationRecords() const { CHECK(!kUseReadBarrier); MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); AllocRecordObjectMap* allocation_records = GetAllocationRecords(); if (allocation_records != nullptr) { allocation_records->DisallowNewAllocationRecords(); } } void Heap::BroadcastForNewAllocationRecords() const { // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may // be set to false while some threads are waiting for system weak access in // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554. MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); AllocRecordObjectMap* allocation_records = GetAllocationRecords(); if (allocation_records != nullptr) { allocation_records->BroadcastForNewAllocationRecords(); } } void Heap::CheckGcStressMode(Thread* self, ObjPtr* obj) { DCHECK(gc_stress_mode_); auto* const runtime = Runtime::Current(); if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) { // Check if we should GC. bool new_backtrace = false; { static constexpr size_t kMaxFrames = 16u; MutexLock mu(self, *backtrace_lock_); FixedSizeBacktrace backtrace; backtrace.Collect(/* skip_count= */ 2); uint64_t hash = backtrace.Hash(); new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end(); if (new_backtrace) { seen_backtraces_.insert(hash); } } if (new_backtrace) { StackHandleScope<1> hs(self); auto h = hs.NewHandleWrapper(obj); CollectGarbage(/* clear_soft_references= */ false); unique_backtrace_count_.fetch_add(1); } else { seen_backtrace_count_.fetch_add(1); } } } void Heap::DisableGCForShutdown() { Thread* const self = Thread::Current(); CHECK(Runtime::Current()->IsShuttingDown(self)); MutexLock mu(self, *gc_complete_lock_); gc_disabled_for_shutdown_ = true; } bool Heap::ObjectIsInBootImageSpace(ObjPtr obj) const { DCHECK_EQ(IsBootImageAddress(obj.Ptr()), any_of(boot_image_spaces_.begin(), boot_image_spaces_.end(), [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { return space->HasAddress(obj.Ptr()); })); return IsBootImageAddress(obj.Ptr()); } bool Heap::IsInBootImageOatFile(const void* p) const { DCHECK_EQ(IsBootImageAddress(p), any_of(boot_image_spaces_.begin(), boot_image_spaces_.end(), [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) { return space->GetOatFile()->Contains(p); })); return IsBootImageAddress(p); } void Heap::SetAllocationListener(AllocationListener* l) { AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l); if (old == nullptr) { Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints(); } } void Heap::RemoveAllocationListener() { AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr); if (old != nullptr) { Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints(); } } void Heap::SetGcPauseListener(GcPauseListener* l) { gc_pause_listener_.store(l, std::memory_order_relaxed); } void Heap::RemoveGcPauseListener() { gc_pause_listener_.store(nullptr, std::memory_order_relaxed); } mirror::Object* Heap::AllocWithNewTLAB(Thread* self, AllocatorType allocator_type, size_t alloc_size, bool grow, size_t* bytes_allocated, size_t* usable_size, size_t* bytes_tl_bulk_allocated) { if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) { DCHECK_GT(alloc_size, self->TlabSize()); // There is enough space if we grow the TLAB. Lets do that. This increases the // TLAB bytes. const size_t min_expand_size = alloc_size - self->TlabSize(); const size_t expand_bytes = std::max( min_expand_size, std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize)); if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) { return nullptr; } *bytes_tl_bulk_allocated = expand_bytes; self->ExpandTlab(expand_bytes); DCHECK_LE(alloc_size, self->TlabSize()); } else if (allocator_type == kAllocatorTypeTLAB) { DCHECK(bump_pointer_space_ != nullptr); const size_t new_tlab_size = alloc_size + kDefaultTLABSize; if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) { return nullptr; } // Try allocating a new thread local buffer, if the allocation fails the space must be // full so return null. if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) { return nullptr; } *bytes_tl_bulk_allocated = new_tlab_size; } else { DCHECK(allocator_type == kAllocatorTypeRegionTLAB); DCHECK(region_space_ != nullptr); if (space::RegionSpace::kRegionSize >= alloc_size) { // Non-large. Check OOME for a tlab. if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, space::RegionSpace::kRegionSize, grow))) { const size_t new_tlab_size = kUsePartialTlabs ? std::max(alloc_size, kPartialTlabSize) : gc::space::RegionSpace::kRegionSize; // Try to allocate a tlab. if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) { // Failed to allocate a tlab. Try non-tlab. return region_space_->AllocNonvirtual(alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); } // Fall-through to using the TLAB below. } else { // Check OOME for a non-tlab allocation. if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) { return region_space_->AllocNonvirtual(alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); } // Neither tlab or non-tlab works. Give up. return nullptr; } } else { // Large. Check OOME. if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) { return region_space_->AllocNonvirtual(alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated); } return nullptr; } } // Refilled TLAB, return. mirror::Object* ret = self->AllocTlab(alloc_size); DCHECK(ret != nullptr); *bytes_allocated = alloc_size; *usable_size = alloc_size; return ret; } const Verification* Heap::GetVerification() const { return verification_.get(); } void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) { VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to " << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation"; } class Heap::TriggerPostForkCCGcTask : public HeapTask { public: explicit TriggerPostForkCCGcTask(uint64_t target_time) : HeapTask(target_time) {} void Run(Thread* self) override { gc::Heap* heap = Runtime::Current()->GetHeap(); // Trigger a GC, if not already done. The first GC after fork, whenever it // takes place, will adjust the thresholds to normal levels. if (heap->target_footprint_.load(std::memory_order_relaxed) == heap->growth_limit_) { heap->RequestConcurrentGC(self, kGcCauseBackground, false); } } }; void Heap::PostForkChildAction(Thread* self) { // Temporarily increase target_footprint_ and concurrent_start_bytes_ to // max values to avoid GC during app launch. if (collector_type_ == kCollectorTypeCC && !IsLowMemoryMode()) { // Set target_footprint_ to the largest allowed value. SetIdealFootprint(growth_limit_); // Set concurrent_start_bytes_ to half of the heap size. size_t target_footprint = target_footprint_.load(std::memory_order_relaxed); concurrent_start_bytes_ = std::max(target_footprint / 2, GetBytesAllocated()); GetTaskProcessor()->AddTask( self, new TriggerPostForkCCGcTask(NanoTime() + MsToNs(kPostForkMaxHeapDurationMS))); } } void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) { VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS { art::ObjPtr klass(ref->GetClass()); // All these classes are in the BootstrapClassLoader. if (!klass->IsBootStrapClassLoaded()) { return; } if (GetClassRoot()->IsAssignableFrom(klass) || GetClassRoot()->IsAssignableFrom(klass)) { down_cast(ref)->VisitTarget(visit); } else if (art::GetClassRoot() == klass) { down_cast(ref)->VisitTarget(visit); } else if (art::GetClassRoot()->IsAssignableFrom(klass)) { down_cast(ref)->VisitTarget(visit); } else if (art::GetClassRoot()->IsAssignableFrom(klass)) { down_cast(ref)->VisitTarget(visit); } else if (art::GetClassRoot()->IsAssignableFrom(klass)) { down_cast(ref)->VisitReflectiveTargets(visit); } }); } bool Heap::AddHeapTask(gc::HeapTask* task) { Thread* const self = Thread::Current(); if (!CanAddHeapTask(self)) { return false; } GetTaskProcessor()->AddTask(self, task); return true; } } // namespace gc } // namespace art