/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "interpreter.h" #include #include #include "common_dex_operations.h" #include "common_throws.h" #include "dex/dex_file_types.h" #include "interpreter_common.h" #include "interpreter_mterp_impl.h" #include "interpreter_switch_impl.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jvalue-inl.h" #include "mirror/string-inl.h" #include "mterp/mterp.h" #include "nativehelper/scoped_local_ref.h" #include "scoped_thread_state_change-inl.h" #include "shadow_frame-inl.h" #include "stack.h" #include "thread-inl.h" #include "unstarted_runtime.h" namespace art { namespace interpreter { ALWAYS_INLINE static ObjPtr ObjArg(uint32_t arg) REQUIRES_SHARED(Locks::mutator_lock_) { return reinterpret_cast(arg); } static void InterpreterJni(Thread* self, ArtMethod* method, std::string_view shorty, ObjPtr receiver, uint32_t* args, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // TODO: The following enters JNI code using a typedef-ed function rather than the JNI compiler, // it should be removed and JNI compiled stubs used instead. ScopedObjectAccessUnchecked soa(self); if (method->IsStatic()) { if (shorty == "L") { using fntype = jobject(JNIEnv*, jclass); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), klass.get()); } result->SetL(soa.Decode(jresult)); } else if (shorty == "V") { using fntype = void(JNIEnv*, jclass); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get()); } else if (shorty == "Z") { using fntype = jboolean(JNIEnv*, jclass); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get())); } else if (shorty == "BI") { using fntype = jbyte(JNIEnv*, jclass, jint); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetB(fn(soa.Env(), klass.get(), args[0])); } else if (shorty == "II") { using fntype = jint(JNIEnv*, jclass, jint); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), args[0])); } else if (shorty == "LL") { using fntype = jobject(JNIEnv*, jclass, jobject); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedLocalRef arg0(soa.Env(), soa.AddLocalReference(ObjArg(args[0]))); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), klass.get(), arg0.get()); } result->SetL(soa.Decode(jresult)); } else if (shorty == "IIZ") { using fntype = jint(JNIEnv*, jclass, jint, jboolean); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), args[0], args[1])); } else if (shorty == "ILI") { using fntype = jint(JNIEnv*, jclass, jobject, jint); fntype* const fn = reinterpret_cast(const_cast( method->GetEntryPointFromJni())); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedLocalRef arg0(soa.Env(), soa.AddLocalReference(ObjArg(args[0]))); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), arg0.get(), args[1])); } else if (shorty == "SIZ") { using fntype = jshort(JNIEnv*, jclass, jint, jboolean); fntype* const fn = reinterpret_cast(const_cast(method->GetEntryPointFromJni())); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetS(fn(soa.Env(), klass.get(), args[0], args[1])); } else if (shorty == "VIZ") { using fntype = void(JNIEnv*, jclass, jint, jboolean); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), args[0], args[1]); } else if (shorty == "ZLL") { using fntype = jboolean(JNIEnv*, jclass, jobject, jobject); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedLocalRef arg0(soa.Env(), soa.AddLocalReference(ObjArg(args[0]))); ScopedLocalRef arg1(soa.Env(), soa.AddLocalReference(ObjArg(args[1]))); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get(), arg0.get(), arg1.get())); } else if (shorty == "ZILL") { using fntype = jboolean(JNIEnv*, jclass, jint, jobject, jobject); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedLocalRef arg1(soa.Env(), soa.AddLocalReference(ObjArg(args[1]))); ScopedLocalRef arg2(soa.Env(), soa.AddLocalReference(ObjArg(args[2]))); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get(), args[0], arg1.get(), arg2.get())); } else if (shorty == "VILII") { using fntype = void(JNIEnv*, jclass, jint, jobject, jint, jint); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedLocalRef arg1(soa.Env(), soa.AddLocalReference(ObjArg(args[1]))); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), args[0], arg1.get(), args[2], args[3]); } else if (shorty == "VLILII") { using fntype = void(JNIEnv*, jclass, jobject, jint, jobject, jint, jint); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef klass(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass())); ScopedLocalRef arg0(soa.Env(), soa.AddLocalReference(ObjArg(args[0]))); ScopedLocalRef arg2(soa.Env(), soa.AddLocalReference(ObjArg(args[2]))); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), arg0.get(), args[1], arg2.get(), args[3], args[4]); } else { LOG(FATAL) << "Do something with static native method: " << method->PrettyMethod() << " shorty: " << shorty; } } else { if (shorty == "L") { using fntype = jobject(JNIEnv*, jobject); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef rcvr(soa.Env(), soa.AddLocalReference(receiver)); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), rcvr.get()); } result->SetL(soa.Decode(jresult)); } else if (shorty == "V") { using fntype = void(JNIEnv*, jobject); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef rcvr(soa.Env(), soa.AddLocalReference(receiver)); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), rcvr.get()); } else if (shorty == "LL") { using fntype = jobject(JNIEnv*, jobject, jobject); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef rcvr(soa.Env(), soa.AddLocalReference(receiver)); ScopedLocalRef arg0(soa.Env(), soa.AddLocalReference(ObjArg(args[0]))); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), rcvr.get(), arg0.get()); } result->SetL(soa.Decode(jresult)); ScopedThreadStateChange tsc(self, kNative); } else if (shorty == "III") { using fntype = jint(JNIEnv*, jobject, jint, jint); fntype* const fn = reinterpret_cast(method->GetEntryPointFromJni()); ScopedLocalRef rcvr(soa.Env(), soa.AddLocalReference(receiver)); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), rcvr.get(), args[0], args[1])); } else { LOG(FATAL) << "Do something with native method: " << method->PrettyMethod() << " shorty: " << shorty; } } } enum InterpreterImplKind { kSwitchImplKind, // Switch-based interpreter implementation. kMterpImplKind // Assembly interpreter }; #if ART_USE_CXX_INTERPRETER static constexpr InterpreterImplKind kInterpreterImplKind = kSwitchImplKind; #else static constexpr InterpreterImplKind kInterpreterImplKind = kMterpImplKind; #endif static inline JValue Execute( Thread* self, const CodeItemDataAccessor& accessor, ShadowFrame& shadow_frame, JValue result_register, bool stay_in_interpreter = false, bool from_deoptimize = false) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!shadow_frame.GetMethod()->IsAbstract()); DCHECK(!shadow_frame.GetMethod()->IsNative()); // Check that we are using the right interpreter. if (kIsDebugBuild && self->UseMterp() != CanUseMterp()) { // The flag might be currently being updated on all threads. Retry with lock. MutexLock tll_mu(self, *Locks::thread_list_lock_); DCHECK_EQ(self->UseMterp(), CanUseMterp()); } if (LIKELY(!from_deoptimize)) { // Entering the method, but not via deoptimization. if (kIsDebugBuild) { CHECK_EQ(shadow_frame.GetDexPC(), 0u); self->AssertNoPendingException(); } instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); ArtMethod *method = shadow_frame.GetMethod(); if (UNLIKELY(instrumentation->HasMethodEntryListeners())) { instrumentation->MethodEnterEvent(self, shadow_frame.GetThisObject(accessor.InsSize()), method, 0); if (UNLIKELY(shadow_frame.GetForcePopFrame())) { // The caller will retry this invoke or ignore the result. Just return immediately without // any value. DCHECK(Runtime::Current()->AreNonStandardExitsEnabled()); JValue ret = JValue(); bool res = PerformNonStandardReturn( self, shadow_frame, ret, instrumentation, accessor.InsSize(), 0); DCHECK(res) << "Expected to perform non-standard return!"; return ret; } if (UNLIKELY(self->IsExceptionPending())) { instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(accessor.InsSize()), method, 0); JValue ret = JValue(); if (UNLIKELY(shadow_frame.GetForcePopFrame())) { DCHECK(Runtime::Current()->AreNonStandardExitsEnabled()); bool res = PerformNonStandardReturn( self, shadow_frame, ret, instrumentation, accessor.InsSize(), 0); DCHECK(res) << "Expected to perform non-standard return!"; } return ret; } } if (!stay_in_interpreter && !self->IsForceInterpreter()) { jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit->MethodEntered(self, shadow_frame.GetMethod()); if (jit->CanInvokeCompiledCode(method)) { JValue result; // Pop the shadow frame before calling into compiled code. self->PopShadowFrame(); // Calculate the offset of the first input reg. The input registers are in the high regs. // It's ok to access the code item here since JIT code will have been touched by the // interpreter and compiler already. uint16_t arg_offset = accessor.RegistersSize() - accessor.InsSize(); ArtInterpreterToCompiledCodeBridge(self, nullptr, &shadow_frame, arg_offset, &result); // Push the shadow frame back as the caller will expect it. self->PushShadowFrame(&shadow_frame); return result; } } } } ArtMethod* method = shadow_frame.GetMethod(); DCheckStaticState(self, method); // Lock counting is a special version of accessibility checks, and for simplicity and // reduction of template parameters, we gate it behind access-checks mode. DCHECK(!method->SkipAccessChecks() || !method->MustCountLocks()); bool transaction_active = Runtime::Current()->IsActiveTransaction(); VLOG(interpreter) << "Interpreting " << method->PrettyMethod(); if (LIKELY(method->SkipAccessChecks())) { // Enter the "without access check" interpreter. if (kInterpreterImplKind == kMterpImplKind) { if (transaction_active) { // No Mterp variant - just use the switch interpreter. return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } else if (UNLIKELY(!Runtime::Current()->IsStarted())) { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } else { while (true) { // Mterp does not support all instrumentation/debugging. if (!self->UseMterp()) { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } bool returned = ExecuteMterpImpl(self, accessor.Insns(), &shadow_frame, &result_register); if (returned) { return result_register; } else { // Mterp didn't like that instruction. Single-step it with the reference interpreter. result_register = ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, true); if (shadow_frame.GetDexPC() == dex::kDexNoIndex) { // Single-stepped a return or an exception not handled locally. Return to caller. return result_register; } } } } } else { DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind); if (transaction_active) { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } else { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } } } else { // Enter the "with access check" interpreter. if (kInterpreterImplKind == kMterpImplKind) { // No access check variants for Mterp. Just use the switch version. if (transaction_active) { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } else { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } } else { DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind); if (transaction_active) { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } else { return ExecuteSwitchImpl(self, accessor, shadow_frame, result_register, false); } } } } void EnterInterpreterFromInvoke(Thread* self, ArtMethod* method, ObjPtr receiver, uint32_t* args, JValue* result, bool stay_in_interpreter) { DCHECK_EQ(self, Thread::Current()); bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { ThrowStackOverflowError(self); return; } // This can happen if we are in forced interpreter mode and an obsolete method is called using // reflection. if (UNLIKELY(method->IsObsolete())) { ThrowInternalError("Attempting to invoke obsolete version of '%s'.", method->PrettyMethod().c_str()); return; } const char* old_cause = self->StartAssertNoThreadSuspension("EnterInterpreterFromInvoke"); CodeItemDataAccessor accessor(method->DexInstructionData()); uint16_t num_regs; uint16_t num_ins; if (accessor.HasCodeItem()) { num_regs = accessor.RegistersSize(); num_ins = accessor.InsSize(); } else if (!method->IsInvokable()) { self->EndAssertNoThreadSuspension(old_cause); method->ThrowInvocationTimeError(); return; } else { DCHECK(method->IsNative()); num_regs = num_ins = ArtMethod::NumArgRegisters(method->GetShorty()); if (!method->IsStatic()) { num_regs++; num_ins++; } } // Set up shadow frame with matching number of reference slots to vregs. ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame(); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, last_shadow_frame, method, /* dex pc */ 0); ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); self->PushShadowFrame(shadow_frame); size_t cur_reg = num_regs - num_ins; if (!method->IsStatic()) { CHECK(receiver != nullptr); shadow_frame->SetVRegReference(cur_reg, receiver); ++cur_reg; } uint32_t shorty_len = 0; const char* shorty = method->GetShorty(&shorty_len); for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) { DCHECK_LT(shorty_pos + 1, shorty_len); switch (shorty[shorty_pos + 1]) { case 'L': { ObjPtr o = reinterpret_cast*>(&args[arg_pos])->AsMirrorPtr(); shadow_frame->SetVRegReference(cur_reg, o); break; } case 'J': case 'D': { uint64_t wide_value = (static_cast(args[arg_pos + 1]) << 32) | args[arg_pos]; shadow_frame->SetVRegLong(cur_reg, wide_value); cur_reg++; arg_pos++; break; } default: shadow_frame->SetVReg(cur_reg, args[arg_pos]); break; } } self->EndAssertNoThreadSuspension(old_cause); // Do this after populating the shadow frame in case EnsureInitialized causes a GC. if (method->IsStatic()) { ObjPtr declaring_class = method->GetDeclaringClass(); if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) { StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(declaring_class)); if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized( self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true))) { CHECK(self->IsExceptionPending()); self->PopShadowFrame(); return; } DCHECK(h_class->IsInitializing()); } } if (LIKELY(!method->IsNative())) { JValue r = Execute(self, accessor, *shadow_frame, JValue(), stay_in_interpreter); if (result != nullptr) { *result = r; } } else { // We don't expect to be asked to interpret native code (which is entered via a JNI compiler // generated stub) except during testing and image writing. // Update args to be the args in the shadow frame since the input ones could hold stale // references pointers due to moving GC. args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1); if (!Runtime::Current()->IsStarted()) { UnstartedRuntime::Jni(self, method, receiver.Ptr(), args, result); } else { InterpreterJni(self, method, shorty, receiver, args, result); } } self->PopShadowFrame(); } static int16_t GetReceiverRegisterForStringInit(const Instruction* instr) { DCHECK(instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE || instr->Opcode() == Instruction::INVOKE_DIRECT); return (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ? instr->VRegC_3rc() : instr->VRegC_35c(); } void EnterInterpreterFromDeoptimize(Thread* self, ShadowFrame* shadow_frame, JValue* ret_val, bool from_code, DeoptimizationMethodType deopt_method_type) REQUIRES_SHARED(Locks::mutator_lock_) { JValue value; // Set value to last known result in case the shadow frame chain is empty. value.SetJ(ret_val->GetJ()); // How many frames we have executed. size_t frame_cnt = 0; while (shadow_frame != nullptr) { // We do not want to recover lock state for lock counting when deoptimizing. Currently, // the compiler should not have compiled a method that failed structured-locking checks. DCHECK(!shadow_frame->GetMethod()->MustCountLocks()); self->SetTopOfShadowStack(shadow_frame); CodeItemDataAccessor accessor(shadow_frame->GetMethod()->DexInstructionData()); const uint32_t dex_pc = shadow_frame->GetDexPC(); uint32_t new_dex_pc = dex_pc; if (UNLIKELY(self->IsExceptionPending())) { // If we deoptimize from the QuickExceptionHandler, we already reported the exception to // the instrumentation. To prevent from reporting it a second time, we simply pass a // null Instrumentation*. const instrumentation::Instrumentation* const instrumentation = frame_cnt == 0 ? nullptr : Runtime::Current()->GetInstrumentation(); new_dex_pc = MoveToExceptionHandler( self, *shadow_frame, instrumentation) ? shadow_frame->GetDexPC() : dex::kDexNoIndex; } else if (!from_code) { // Deoptimization is not called from code directly. const Instruction* instr = &accessor.InstructionAt(dex_pc); if (deopt_method_type == DeoptimizationMethodType::kKeepDexPc || shadow_frame->GetForceRetryInstruction()) { DCHECK(frame_cnt == 0 || (frame_cnt == 1 && shadow_frame->GetForceRetryInstruction())) << "frame_cnt: " << frame_cnt << " force-retry: " << shadow_frame->GetForceRetryInstruction(); // Need to re-execute the dex instruction. // (1) An invocation might be split into class initialization and invoke. // In this case, the invoke should not be skipped. // (2) A suspend check should also execute the dex instruction at the // corresponding dex pc. // If the ForceRetryInstruction bit is set this must be the second frame (the first being // the one that is being popped). DCHECK_EQ(new_dex_pc, dex_pc); shadow_frame->SetForceRetryInstruction(false); } else if (instr->Opcode() == Instruction::MONITOR_ENTER || instr->Opcode() == Instruction::MONITOR_EXIT) { DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault); DCHECK_EQ(frame_cnt, 0u); // Non-idempotent dex instruction should not be re-executed. // On the other hand, if a MONITOR_ENTER is at the dex_pc of a suspend // check, that MONITOR_ENTER should be executed. That case is handled // above. new_dex_pc = dex_pc + instr->SizeInCodeUnits(); } else if (instr->IsInvoke()) { DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault); if (IsStringInit(instr, shadow_frame->GetMethod())) { uint16_t this_obj_vreg = GetReceiverRegisterForStringInit(instr); // Move the StringFactory.newStringFromChars() result into the register representing // "this object" when invoking the string constructor in the original dex instruction. // Also move the result into all aliases. DCHECK(value.GetL()->IsString()); SetStringInitValueToAllAliases(shadow_frame, this_obj_vreg, value); // Calling string constructor in the original dex code doesn't generate a result value. value.SetJ(0); } new_dex_pc = dex_pc + instr->SizeInCodeUnits(); } else if (instr->Opcode() == Instruction::NEW_INSTANCE) { // A NEW_INSTANCE is simply re-executed, including // "new-instance String" which is compiled into a call into // StringFactory.newEmptyString(). DCHECK_EQ(new_dex_pc, dex_pc); } else { DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault); DCHECK_EQ(frame_cnt, 0u); // By default, we re-execute the dex instruction since if they are not // an invoke, so that we don't have to decode the dex instruction to move // result into the right vreg. All slow paths have been audited to be // idempotent except monitor-enter/exit and invocation stubs. // TODO: move result and advance dex pc. That also requires that we // can tell the return type of a runtime method, possibly by decoding // the dex instruction at the caller. DCHECK_EQ(new_dex_pc, dex_pc); } } else { // Nothing to do, the dex_pc is the one at which the code requested // the deoptimization. DCHECK_EQ(frame_cnt, 0u); DCHECK_EQ(new_dex_pc, dex_pc); } if (new_dex_pc != dex::kDexNoIndex) { shadow_frame->SetDexPC(new_dex_pc); value = Execute(self, accessor, *shadow_frame, value, /* stay_in_interpreter= */ true, /* from_deoptimize= */ true); } ShadowFrame* old_frame = shadow_frame; shadow_frame = shadow_frame->GetLink(); ShadowFrame::DeleteDeoptimizedFrame(old_frame); // Following deoptimizations of shadow frames must be at invocation point // and should advance dex pc past the invoke instruction. from_code = false; deopt_method_type = DeoptimizationMethodType::kDefault; frame_cnt++; } ret_val->SetJ(value.GetJ()); } JValue EnterInterpreterFromEntryPoint(Thread* self, const CodeItemDataAccessor& accessor, ShadowFrame* shadow_frame) { DCHECK_EQ(self, Thread::Current()); bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { ThrowStackOverflowError(self); return JValue(); } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { jit->NotifyCompiledCodeToInterpreterTransition(self, shadow_frame->GetMethod()); } return Execute(self, accessor, *shadow_frame, JValue()); } void ArtInterpreterToInterpreterBridge(Thread* self, const CodeItemDataAccessor& accessor, ShadowFrame* shadow_frame, JValue* result) { bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) { ThrowStackOverflowError(self); return; } self->PushShadowFrame(shadow_frame); ArtMethod* method = shadow_frame->GetMethod(); // Ensure static methods are initialized. const bool is_static = method->IsStatic(); if (is_static) { ObjPtr declaring_class = method->GetDeclaringClass(); if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) { StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(declaring_class)); if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized( self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true))) { DCHECK(self->IsExceptionPending()); self->PopShadowFrame(); return; } DCHECK(h_class->IsInitializing()); } } if (LIKELY(!shadow_frame->GetMethod()->IsNative())) { result->SetJ(Execute(self, accessor, *shadow_frame, JValue()).GetJ()); } else { // We don't expect to be asked to interpret native code (which is entered via a JNI compiler // generated stub) except during testing and image writing. CHECK(!Runtime::Current()->IsStarted()); ObjPtr receiver = is_static ? nullptr : shadow_frame->GetVRegReference(0); uint32_t* args = shadow_frame->GetVRegArgs(is_static ? 0 : 1); UnstartedRuntime::Jni(self, shadow_frame->GetMethod(), receiver.Ptr(), args, result); } self->PopShadowFrame(); } void CheckInterpreterAsmConstants() { CheckMterpAsmConstants(); CheckNterpAsmConstants(); } void InitInterpreterTls(Thread* self) { InitMterpTls(self); } bool PrevFrameWillRetry(Thread* self, const ShadowFrame& frame) { ShadowFrame* prev_frame = frame.GetLink(); if (prev_frame == nullptr) { NthCallerVisitor vis(self, 1, false); vis.WalkStack(); prev_frame = vis.GetCurrentShadowFrame(); if (prev_frame == nullptr) { prev_frame = self->FindDebuggerShadowFrame(vis.GetFrameId()); } } return prev_frame != nullptr && prev_frame->GetForceRetryInstruction(); } } // namespace interpreter } // namespace art