/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "runtime_common.h" #include #include #include #include #include #include #include #include "base/aborting.h" #include "base/file_utils.h" #include "base/logging.h" // For LogHelper, GetCmdLine. #include "base/macros.h" #include "base/mutex.h" #include "native_stack_dump.h" #include "runtime.h" #include "thread-current-inl.h" #include "thread_list.h" namespace art { using android::base::StringPrintf; static constexpr bool kUseSigRTTimeout = true; static constexpr bool kDumpNativeStackOnTimeout = true; const char* GetSignalName(int signal_number) { switch (signal_number) { case SIGABRT: return "SIGABRT"; case SIGBUS: return "SIGBUS"; case SIGFPE: return "SIGFPE"; case SIGILL: return "SIGILL"; case SIGPIPE: return "SIGPIPE"; case SIGSEGV: return "SIGSEGV"; #if defined(SIGSTKFLT) case SIGSTKFLT: return "SIGSTKFLT"; #endif case SIGTRAP: return "SIGTRAP"; } return "??"; } const char* GetSignalCodeName(int signal_number, int signal_code) { // Try the signal-specific codes... switch (signal_number) { case SIGILL: switch (signal_code) { case ILL_ILLOPC: return "ILL_ILLOPC"; case ILL_ILLOPN: return "ILL_ILLOPN"; case ILL_ILLADR: return "ILL_ILLADR"; case ILL_ILLTRP: return "ILL_ILLTRP"; case ILL_PRVOPC: return "ILL_PRVOPC"; case ILL_PRVREG: return "ILL_PRVREG"; case ILL_COPROC: return "ILL_COPROC"; case ILL_BADSTK: return "ILL_BADSTK"; } break; case SIGBUS: switch (signal_code) { case BUS_ADRALN: return "BUS_ADRALN"; case BUS_ADRERR: return "BUS_ADRERR"; case BUS_OBJERR: return "BUS_OBJERR"; } break; case SIGFPE: switch (signal_code) { case FPE_INTDIV: return "FPE_INTDIV"; case FPE_INTOVF: return "FPE_INTOVF"; case FPE_FLTDIV: return "FPE_FLTDIV"; case FPE_FLTOVF: return "FPE_FLTOVF"; case FPE_FLTUND: return "FPE_FLTUND"; case FPE_FLTRES: return "FPE_FLTRES"; case FPE_FLTINV: return "FPE_FLTINV"; case FPE_FLTSUB: return "FPE_FLTSUB"; } break; case SIGSEGV: switch (signal_code) { case SEGV_MAPERR: return "SEGV_MAPERR"; case SEGV_ACCERR: return "SEGV_ACCERR"; #if defined(SEGV_BNDERR) case SEGV_BNDERR: return "SEGV_BNDERR"; #endif } break; case SIGTRAP: switch (signal_code) { case TRAP_BRKPT: return "TRAP_BRKPT"; case TRAP_TRACE: return "TRAP_TRACE"; } break; } // Then the other codes... switch (signal_code) { case SI_USER: return "SI_USER"; #if defined(SI_KERNEL) case SI_KERNEL: return "SI_KERNEL"; #endif case SI_QUEUE: return "SI_QUEUE"; case SI_TIMER: return "SI_TIMER"; case SI_MESGQ: return "SI_MESGQ"; case SI_ASYNCIO: return "SI_ASYNCIO"; #if defined(SI_SIGIO) case SI_SIGIO: return "SI_SIGIO"; #endif #if defined(SI_TKILL) case SI_TKILL: return "SI_TKILL"; #endif } // Then give up... return "?"; } struct UContext { explicit UContext(void* raw_context) : context(reinterpret_cast(raw_context)->uc_mcontext) {} void Dump(std::ostream& os) const; void DumpRegister32(std::ostream& os, const char* name, uint32_t value) const; void DumpRegister64(std::ostream& os, const char* name, uint64_t value) const; void DumpX86Flags(std::ostream& os, uint32_t flags) const; // Print some of the information from the status register (CPSR on ARMv7, PSTATE on ARMv8). template void DumpArmStatusRegister(std::ostream& os, RegisterType status_register) const; mcontext_t& context; }; void UContext::Dump(std::ostream& os) const { #if defined(__APPLE__) && defined(__i386__) DumpRegister32(os, "eax", context->__ss.__eax); DumpRegister32(os, "ebx", context->__ss.__ebx); DumpRegister32(os, "ecx", context->__ss.__ecx); DumpRegister32(os, "edx", context->__ss.__edx); os << '\n'; DumpRegister32(os, "edi", context->__ss.__edi); DumpRegister32(os, "esi", context->__ss.__esi); DumpRegister32(os, "ebp", context->__ss.__ebp); DumpRegister32(os, "esp", context->__ss.__esp); os << '\n'; DumpRegister32(os, "eip", context->__ss.__eip); os << " "; DumpRegister32(os, "eflags", context->__ss.__eflags); DumpX86Flags(os, context->__ss.__eflags); os << '\n'; DumpRegister32(os, "cs", context->__ss.__cs); DumpRegister32(os, "ds", context->__ss.__ds); DumpRegister32(os, "es", context->__ss.__es); DumpRegister32(os, "fs", context->__ss.__fs); os << '\n'; DumpRegister32(os, "gs", context->__ss.__gs); DumpRegister32(os, "ss", context->__ss.__ss); #elif defined(__linux__) && defined(__i386__) DumpRegister32(os, "eax", context.gregs[REG_EAX]); DumpRegister32(os, "ebx", context.gregs[REG_EBX]); DumpRegister32(os, "ecx", context.gregs[REG_ECX]); DumpRegister32(os, "edx", context.gregs[REG_EDX]); os << '\n'; DumpRegister32(os, "edi", context.gregs[REG_EDI]); DumpRegister32(os, "esi", context.gregs[REG_ESI]); DumpRegister32(os, "ebp", context.gregs[REG_EBP]); DumpRegister32(os, "esp", context.gregs[REG_ESP]); os << '\n'; DumpRegister32(os, "eip", context.gregs[REG_EIP]); os << " "; DumpRegister32(os, "eflags", context.gregs[REG_EFL]); DumpX86Flags(os, context.gregs[REG_EFL]); os << '\n'; DumpRegister32(os, "cs", context.gregs[REG_CS]); DumpRegister32(os, "ds", context.gregs[REG_DS]); DumpRegister32(os, "es", context.gregs[REG_ES]); DumpRegister32(os, "fs", context.gregs[REG_FS]); os << '\n'; DumpRegister32(os, "gs", context.gregs[REG_GS]); DumpRegister32(os, "ss", context.gregs[REG_SS]); #elif defined(__linux__) && defined(__x86_64__) DumpRegister64(os, "rax", context.gregs[REG_RAX]); DumpRegister64(os, "rbx", context.gregs[REG_RBX]); DumpRegister64(os, "rcx", context.gregs[REG_RCX]); DumpRegister64(os, "rdx", context.gregs[REG_RDX]); os << '\n'; DumpRegister64(os, "rdi", context.gregs[REG_RDI]); DumpRegister64(os, "rsi", context.gregs[REG_RSI]); DumpRegister64(os, "rbp", context.gregs[REG_RBP]); DumpRegister64(os, "rsp", context.gregs[REG_RSP]); os << '\n'; DumpRegister64(os, "r8 ", context.gregs[REG_R8]); DumpRegister64(os, "r9 ", context.gregs[REG_R9]); DumpRegister64(os, "r10", context.gregs[REG_R10]); DumpRegister64(os, "r11", context.gregs[REG_R11]); os << '\n'; DumpRegister64(os, "r12", context.gregs[REG_R12]); DumpRegister64(os, "r13", context.gregs[REG_R13]); DumpRegister64(os, "r14", context.gregs[REG_R14]); DumpRegister64(os, "r15", context.gregs[REG_R15]); os << '\n'; DumpRegister64(os, "rip", context.gregs[REG_RIP]); os << " "; DumpRegister32(os, "eflags", context.gregs[REG_EFL]); DumpX86Flags(os, context.gregs[REG_EFL]); os << '\n'; DumpRegister32(os, "cs", (context.gregs[REG_CSGSFS]) & 0x0FFFF); DumpRegister32(os, "gs", (context.gregs[REG_CSGSFS] >> 16) & 0x0FFFF); DumpRegister32(os, "fs", (context.gregs[REG_CSGSFS] >> 32) & 0x0FFFF); os << '\n'; #elif defined(__linux__) && defined(__arm__) DumpRegister32(os, "r0", context.arm_r0); DumpRegister32(os, "r1", context.arm_r1); DumpRegister32(os, "r2", context.arm_r2); DumpRegister32(os, "r3", context.arm_r3); os << '\n'; DumpRegister32(os, "r4", context.arm_r4); DumpRegister32(os, "r5", context.arm_r5); DumpRegister32(os, "r6", context.arm_r6); DumpRegister32(os, "r7", context.arm_r7); os << '\n'; DumpRegister32(os, "r8", context.arm_r8); DumpRegister32(os, "r9", context.arm_r9); DumpRegister32(os, "r10", context.arm_r10); DumpRegister32(os, "fp", context.arm_fp); os << '\n'; DumpRegister32(os, "ip", context.arm_ip); DumpRegister32(os, "sp", context.arm_sp); DumpRegister32(os, "lr", context.arm_lr); DumpRegister32(os, "pc", context.arm_pc); os << '\n'; DumpRegister32(os, "cpsr", context.arm_cpsr); DumpArmStatusRegister(os, context.arm_cpsr); os << '\n'; #elif defined(__linux__) && defined(__aarch64__) for (size_t i = 0; i <= 30; ++i) { std::string reg_name = "x" + std::to_string(i); DumpRegister64(os, reg_name.c_str(), context.regs[i]); if (i % 4 == 3) { os << '\n'; } } os << '\n'; DumpRegister64(os, "sp", context.sp); DumpRegister64(os, "pc", context.pc); os << '\n'; DumpRegister64(os, "pstate", context.pstate); DumpArmStatusRegister(os, context.pstate); os << '\n'; #else os << "Unknown architecture/word size/OS in ucontext dump"; #endif } void UContext::DumpRegister32(std::ostream& os, const char* name, uint32_t value) const { os << StringPrintf(" %6s: 0x%08x", name, value); } void UContext::DumpRegister64(std::ostream& os, const char* name, uint64_t value) const { os << StringPrintf(" %6s: 0x%016" PRIx64, name, value); } void UContext::DumpX86Flags(std::ostream& os, uint32_t flags) const { os << " ["; if ((flags & (1 << 0)) != 0) { os << " CF"; } if ((flags & (1 << 2)) != 0) { os << " PF"; } if ((flags & (1 << 4)) != 0) { os << " AF"; } if ((flags & (1 << 6)) != 0) { os << " ZF"; } if ((flags & (1 << 7)) != 0) { os << " SF"; } if ((flags & (1 << 8)) != 0) { os << " TF"; } if ((flags & (1 << 9)) != 0) { os << " IF"; } if ((flags & (1 << 10)) != 0) { os << " DF"; } if ((flags & (1 << 11)) != 0) { os << " OF"; } os << " ]"; } template void UContext::DumpArmStatusRegister(std::ostream& os, RegisterType status_register) const { // Condition flags. constexpr RegisterType kFlagV = 1U << 28; constexpr RegisterType kFlagC = 1U << 29; constexpr RegisterType kFlagZ = 1U << 30; constexpr RegisterType kFlagN = 1U << 31; os << " ["; if ((status_register & kFlagN) != 0) { os << " N"; } if ((status_register & kFlagZ) != 0) { os << " Z"; } if ((status_register & kFlagC) != 0) { os << " C"; } if ((status_register & kFlagV) != 0) { os << " V"; } os << " ]"; } int GetTimeoutSignal() { #if defined(__APPLE__) // Mac does not support realtime signals. UNUSED(kUseSigRTTimeout); return -1; #else return kUseSigRTTimeout ? (SIGRTMIN + 2) : -1; #endif } static bool IsTimeoutSignal(int signal_number) { return signal_number == GetTimeoutSignal(); } #if defined(__APPLE__) // On macOS, clang complains about art::HandleUnexpectedSignalCommon's // stack frame size being too large; disable that warning locally. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wframe-larger-than=" #endif std::string GetFaultMessageForAbortLogging() { Runtime* runtime = Runtime::Current(); return (runtime != nullptr) ? runtime->GetFaultMessage() : ""; } static std::atomic gIsRuntimeAbort = false; void FlagRuntimeAbort() { gIsRuntimeAbort = true; } static void HandleUnexpectedSignalCommonDump(int signal_number, siginfo_t* info, void* raw_context, bool handle_timeout_signal, bool dump_on_stderr) { auto logger = [&](auto& stream) { bool has_address = (signal_number == SIGILL || signal_number == SIGBUS || signal_number == SIGFPE || signal_number == SIGSEGV); OsInfo os_info; const char* cmd_line = GetCmdLine(); if (cmd_line == nullptr) { cmd_line = ""; // Because no-one called InitLogging. } pid_t tid = GetTid(); std::string thread_name(GetThreadName(tid)); UContext thread_context(raw_context); Backtrace thread_backtrace(raw_context); stream << "*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***" << std::endl << StringPrintf("Fatal signal %d (%s), code %d (%s)", signal_number, GetSignalName(signal_number), info->si_code, GetSignalCodeName(signal_number, info->si_code)) << (has_address ? StringPrintf(" fault addr %p", info->si_addr) : "") << std::endl << "OS: " << Dumpable(os_info) << std::endl << "Cmdline: " << cmd_line << std::endl << "Thread: " << tid << " \"" << thread_name << "\"" << std::endl << "Registers:\n" << Dumpable(thread_context) << std::endl << "Backtrace:\n" << Dumpable(thread_backtrace) << std::endl; stream << std::flush; }; if (dump_on_stderr) { // Note: We are using cerr directly instead of LOG macros to ensure even just partial output // makes it out. That means we lose the "dalvikvm..." prefix, but that is acceptable // considering this is an abort situation. logger(std::cerr); } else { logger(LOG_STREAM(FATAL_WITHOUT_ABORT)); } if (kIsDebugBuild && signal_number == SIGSEGV) { PrintFileToLog("/proc/self/maps", android::base::LogSeverity::FATAL_WITHOUT_ABORT); } Runtime* runtime = Runtime::Current(); if (runtime != nullptr) { if (handle_timeout_signal && IsTimeoutSignal(signal_number)) { // Special timeout signal. Try to dump all threads. // Note: Do not use DumpForSigQuit, as that might disable native unwind, but the native parts // are of value here. runtime->GetThreadList()->Dump(std::cerr, kDumpNativeStackOnTimeout); std::cerr << std::endl; } if (dump_on_stderr) { std::cerr << "Fault message: " << GetFaultMessageForAbortLogging() << std::endl; } else { LOG(FATAL_WITHOUT_ABORT) << "Fault message: " << GetFaultMessageForAbortLogging(); } } } void HandleUnexpectedSignalCommon(int signal_number, siginfo_t* info, void* raw_context, bool handle_timeout_signal, bool dump_on_stderr) { bool runtime_abort = gIsRuntimeAbort.exchange(false); if (runtime_abort) { return; } // Local _static_ storing the currently handled signal (or -1). static int handling_unexpected_signal = -1; // Whether the dump code should be run under the unexpected-signal lock. For diagnostics we // allow recursive unexpected-signals in certain cases - avoid a deadlock. bool grab_lock = true; if (handling_unexpected_signal != -1) { LogHelper::LogLineLowStack(__FILE__, __LINE__, ::android::base::FATAL_WITHOUT_ABORT, "HandleUnexpectedSignal reentered\n"); // Print the signal number. Don't use any standard functions, just some arithmetic. Just best // effort, with a minimal buffer. if (0 < signal_number && signal_number < 100) { char buf[] = { ' ', 'S', static_cast('0' + (signal_number / 10)), static_cast('0' + (signal_number % 10)), '\n', 0 }; LogHelper::LogLineLowStack(__FILE__, __LINE__, ::android::base::FATAL_WITHOUT_ABORT, buf); } if (handle_timeout_signal) { if (IsTimeoutSignal(signal_number)) { // Ignore a recursive timeout. return; } } // If we were handling a timeout signal, try to go on. Otherwise hard-exit. // This relies on the expectation that we'll only ever get one timeout signal. if (!handle_timeout_signal || handling_unexpected_signal != GetTimeoutSignal()) { _exit(1); } grab_lock = false; // The "outer" handling instance already holds the lock. } handling_unexpected_signal = signal_number; gAborting++; // set before taking any locks if (grab_lock) { MutexLock mu(Thread::Current(), *Locks::unexpected_signal_lock_); HandleUnexpectedSignalCommonDump(signal_number, info, raw_context, handle_timeout_signal, dump_on_stderr); } else { HandleUnexpectedSignalCommonDump(signal_number, info, raw_context, handle_timeout_signal, dump_on_stderr); } } #if defined(__APPLE__) #pragma GCC diagnostic pop #endif void InitPlatformSignalHandlersCommon(void (*newact)(int, siginfo_t*, void*), struct sigaction* oldact, bool handle_timeout_signal) { struct sigaction action; memset(&action, 0, sizeof(action)); sigemptyset(&action.sa_mask); action.sa_sigaction = newact; // Use the three-argument sa_sigaction handler. action.sa_flags |= SA_SIGINFO; // Use the alternate signal stack so we can catch stack overflows. action.sa_flags |= SA_ONSTACK; int rc = 0; rc += sigaction(SIGABRT, &action, oldact); rc += sigaction(SIGBUS, &action, oldact); rc += sigaction(SIGFPE, &action, oldact); rc += sigaction(SIGILL, &action, oldact); rc += sigaction(SIGPIPE, &action, oldact); rc += sigaction(SIGSEGV, &action, oldact); #if defined(SIGSTKFLT) rc += sigaction(SIGSTKFLT, &action, oldact); #endif rc += sigaction(SIGTRAP, &action, oldact); // Special dump-all timeout. if (handle_timeout_signal && GetTimeoutSignal() != -1) { rc += sigaction(GetTimeoutSignal(), &action, oldact); } CHECK_EQ(rc, 0); } } // namespace art