/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread.h" #include // for INT_MAX #include #include #include #include #if __has_feature(hwaddress_sanitizer) #include #else #define __hwasan_tag_pointer(p, t) (p) #endif #include #include #include #include #include #include #include "android-base/file.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "arch/context-inl.h" #include "arch/context.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/atomic.h" #include "base/bit_utils.h" #include "base/casts.h" #include "arch/context.h" #include "base/file_utils.h" #include "base/memory_tool.h" #include "base/mutex.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/timing_logger.h" #include "base/to_str.h" #include "base/utils.h" #include "class_linker-inl.h" #include "class_root-inl.h" #include "debugger.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_annotations.h" #include "dex/dex_file_types.h" #include "entrypoints/entrypoint_utils.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/allocator/rosalloc.h" #include "gc/heap.h" #include "gc/space/space-inl.h" #include "gc_root.h" #include "handle_scope-inl.h" #include "indirect_reference_table-inl.h" #include "instrumentation.h" #include "interpreter/interpreter.h" #include "interpreter/mterp/mterp.h" #include "interpreter/shadow_frame-inl.h" #include "java_frame_root_info.h" #include "jni/java_vm_ext.h" #include "jni/jni_internal.h" #include "mirror/class-alloc-inl.h" #include "mirror/class_loader.h" #include "mirror/object_array-alloc-inl.h" #include "mirror/object_array-inl.h" #include "mirror/stack_trace_element.h" #include "monitor.h" #include "monitor_objects_stack_visitor.h" #include "native_stack_dump.h" #include "nativehelper/scoped_local_ref.h" #include "nativehelper/scoped_utf_chars.h" #include "nterp_helpers.h" #include "nth_caller_visitor.h" #include "oat_quick_method_header.h" #include "obj_ptr-inl.h" #include "object_lock.h" #include "palette/palette.h" #include "quick/quick_method_frame_info.h" #include "quick_exception_handler.h" #include "read_barrier-inl.h" #include "reflection.h" #include "reflective_handle_scope-inl.h" #include "runtime-inl.h" #include "runtime.h" #include "runtime_callbacks.h" #include "scoped_thread_state_change-inl.h" #include "stack.h" #include "stack_map.h" #include "thread-inl.h" #include "thread_list.h" #include "verifier/method_verifier.h" #include "verify_object.h" #include "well_known_classes.h" #if ART_USE_FUTEXES #include "linux/futex.h" #include "sys/syscall.h" #ifndef SYS_futex #define SYS_futex __NR_futex #endif #endif // ART_USE_FUTEXES namespace art { using android::base::StringAppendV; using android::base::StringPrintf; extern "C" NO_RETURN void artDeoptimize(Thread* self); bool Thread::is_started_ = false; pthread_key_t Thread::pthread_key_self_; ConditionVariable* Thread::resume_cond_ = nullptr; const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA); bool (*Thread::is_sensitive_thread_hook_)() = nullptr; Thread* Thread::jit_sensitive_thread_ = nullptr; #ifndef __BIONIC__ thread_local Thread* Thread::self_tls_ = nullptr; #endif static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild; // For implicit overflow checks we reserve an extra piece of memory at the bottom // of the stack (lowest memory). The higher portion of the memory // is protected against reads and the lower is available for use while // throwing the StackOverflow exception. constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB; static const char* kThreadNameDuringStartup = ""; void Thread::InitCardTable() { tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); } static void UnimplementedEntryPoint() { UNIMPLEMENTED(FATAL); } void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints); void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active); void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) { CHECK(kUseReadBarrier); tls32_.is_gc_marking = is_marking; UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking); } void Thread::InitTlsEntryPoints() { ScopedTrace trace("InitTlsEntryPoints"); // Insert a placeholder so we can easily tell if we call an unimplemented entry point. uintptr_t* begin = reinterpret_cast(&tlsPtr_.jni_entrypoints); uintptr_t* end = reinterpret_cast( reinterpret_cast(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints)); for (uintptr_t* it = begin; it != end; ++it) { *it = reinterpret_cast(UnimplementedEntryPoint); } InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints); } void Thread::ResetQuickAllocEntryPointsForThread() { ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints); } class DeoptimizationContextRecord { public: DeoptimizationContextRecord(const JValue& ret_val, bool is_reference, bool from_code, ObjPtr pending_exception, DeoptimizationMethodType method_type, DeoptimizationContextRecord* link) : ret_val_(ret_val), is_reference_(is_reference), from_code_(from_code), pending_exception_(pending_exception.Ptr()), deopt_method_type_(method_type), link_(link) {} JValue GetReturnValue() const { return ret_val_; } bool IsReference() const { return is_reference_; } bool GetFromCode() const { return from_code_; } ObjPtr GetPendingException() const { return pending_exception_; } DeoptimizationContextRecord* GetLink() const { return link_; } mirror::Object** GetReturnValueAsGCRoot() { DCHECK(is_reference_); return ret_val_.GetGCRoot(); } mirror::Object** GetPendingExceptionAsGCRoot() { return reinterpret_cast(&pending_exception_); } DeoptimizationMethodType GetDeoptimizationMethodType() const { return deopt_method_type_; } private: // The value returned by the method at the top of the stack before deoptimization. JValue ret_val_; // Indicates whether the returned value is a reference. If so, the GC will visit it. const bool is_reference_; // Whether the context was created from an explicit deoptimization in the code. const bool from_code_; // The exception that was pending before deoptimization (or null if there was no pending // exception). mirror::Throwable* pending_exception_; // Whether the context was created for an (idempotent) runtime method. const DeoptimizationMethodType deopt_method_type_; // A link to the previous DeoptimizationContextRecord. DeoptimizationContextRecord* const link_; DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord); }; class StackedShadowFrameRecord { public: StackedShadowFrameRecord(ShadowFrame* shadow_frame, StackedShadowFrameType type, StackedShadowFrameRecord* link) : shadow_frame_(shadow_frame), type_(type), link_(link) {} ShadowFrame* GetShadowFrame() const { return shadow_frame_; } StackedShadowFrameType GetType() const { return type_; } StackedShadowFrameRecord* GetLink() const { return link_; } private: ShadowFrame* const shadow_frame_; const StackedShadowFrameType type_; StackedShadowFrameRecord* const link_; DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord); }; void Thread::PushDeoptimizationContext(const JValue& return_value, bool is_reference, ObjPtr exception, bool from_code, DeoptimizationMethodType method_type) { DeoptimizationContextRecord* record = new DeoptimizationContextRecord( return_value, is_reference, from_code, exception, method_type, tlsPtr_.deoptimization_context_stack); tlsPtr_.deoptimization_context_stack = record; } void Thread::PopDeoptimizationContext(JValue* result, ObjPtr* exception, bool* from_code, DeoptimizationMethodType* method_type) { AssertHasDeoptimizationContext(); DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; tlsPtr_.deoptimization_context_stack = record->GetLink(); result->SetJ(record->GetReturnValue().GetJ()); *exception = record->GetPendingException(); *from_code = record->GetFromCode(); *method_type = record->GetDeoptimizationMethodType(); delete record; } void Thread::AssertHasDeoptimizationContext() { CHECK(tlsPtr_.deoptimization_context_stack != nullptr) << "No deoptimization context for thread " << *this; } enum { kPermitAvailable = 0, // Incrementing consumes the permit kNoPermit = 1, // Incrementing marks as waiter waiting kNoPermitWaiterWaiting = 2 }; void Thread::Park(bool is_absolute, int64_t time) { DCHECK(this == Thread::Current()); #if ART_USE_FUTEXES // Consume the permit, or mark as waiting. This cannot cause park_state to go // outside of its valid range (0, 1, 2), because in all cases where 2 is // assigned it is set back to 1 before returning, and this method cannot run // concurrently with itself since it operates on the current thread. int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed); if (old_state == kNoPermit) { // no permit was available. block thread until later. Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time); bool timed_out = false; if (!is_absolute && time == 0) { // Thread.getState() is documented to return waiting for untimed parks. ScopedThreadSuspension sts(this, ThreadState::kWaiting); DCHECK_EQ(NumberOfHeldMutexes(), 0u); int result = futex(tls32_.park_state_.Address(), FUTEX_WAIT_PRIVATE, /* sleep if val = */ kNoPermitWaiterWaiting, /* timeout */ nullptr, nullptr, 0); // This errno check must happen before the scope is closed, to ensure that // no destructors (such as ScopedThreadSuspension) overwrite errno. if (result == -1) { switch (errno) { case EAGAIN: FALLTHROUGH_INTENDED; case EINTR: break; // park() is allowed to spuriously return default: PLOG(FATAL) << "Failed to park"; } } } else if (time > 0) { // Only actually suspend and futex_wait if we're going to wait for some // positive amount of time - the kernel will reject negative times with // EINVAL, and a zero time will just noop. // Thread.getState() is documented to return timed wait for timed parks. ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting); DCHECK_EQ(NumberOfHeldMutexes(), 0u); timespec timespec; int result = 0; if (is_absolute) { // Time is millis when scheduled for an absolute time timespec.tv_nsec = (time % 1000) * 1000000; timespec.tv_sec = time / 1000; // This odd looking pattern is recommended by futex documentation to // wait until an absolute deadline, with otherwise identical behavior to // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the // correct time when the system clock changes. result = futex(tls32_.park_state_.Address(), FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME, /* sleep if val = */ kNoPermitWaiterWaiting, ×pec, nullptr, FUTEX_BITSET_MATCH_ANY); } else { // Time is nanos when scheduled for a relative time timespec.tv_sec = time / 1000000000; timespec.tv_nsec = time % 1000000000; result = futex(tls32_.park_state_.Address(), FUTEX_WAIT_PRIVATE, /* sleep if val = */ kNoPermitWaiterWaiting, ×pec, nullptr, 0); } // This errno check must happen before the scope is closed, to ensure that // no destructors (such as ScopedThreadSuspension) overwrite errno. if (result == -1) { switch (errno) { case ETIMEDOUT: timed_out = true; FALLTHROUGH_INTENDED; case EAGAIN: case EINTR: break; // park() is allowed to spuriously return default: PLOG(FATAL) << "Failed to park"; } } } // Mark as no longer waiting, and consume permit if there is one. tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed); // TODO: Call to signal jvmti here Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out); } else { // the fetch_add has consumed the permit. immediately return. DCHECK_EQ(old_state, kPermitAvailable); } #else #pragma clang diagnostic push #pragma clang diagnostic warning "-W#warnings" #warning "LockSupport.park/unpark implemented as noops without FUTEX support." #pragma clang diagnostic pop UNUSED(is_absolute, time); UNIMPLEMENTED(WARNING); sched_yield(); #endif } void Thread::Unpark() { #if ART_USE_FUTEXES // Set permit available; will be consumed either by fetch_add (when the thread // tries to park) or store (when the parked thread is woken up) if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed) == kNoPermitWaiterWaiting) { int result = futex(tls32_.park_state_.Address(), FUTEX_WAKE_PRIVATE, /* number of waiters = */ 1, nullptr, nullptr, 0); if (result == -1) { PLOG(FATAL) << "Failed to unpark"; } } #else UNIMPLEMENTED(WARNING); #endif } void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) { StackedShadowFrameRecord* record = new StackedShadowFrameRecord( sf, type, tlsPtr_.stacked_shadow_frame_record); tlsPtr_.stacked_shadow_frame_record = record; } ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) { StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; if (must_be_present) { DCHECK(record != nullptr); } else { if (record == nullptr || record->GetType() != type) { return nullptr; } } tlsPtr_.stacked_shadow_frame_record = record->GetLink(); ShadowFrame* shadow_frame = record->GetShadowFrame(); delete record; return shadow_frame; } class FrameIdToShadowFrame { public: static FrameIdToShadowFrame* Create(size_t frame_id, ShadowFrame* shadow_frame, FrameIdToShadowFrame* next, size_t num_vregs) { // Append a bool array at the end to keep track of what vregs are updated by the debugger. uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs]; return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next); } static void Delete(FrameIdToShadowFrame* f) { uint8_t* memory = reinterpret_cast(f); delete[] memory; } size_t GetFrameId() const { return frame_id_; } ShadowFrame* GetShadowFrame() const { return shadow_frame_; } FrameIdToShadowFrame* GetNext() const { return next_; } void SetNext(FrameIdToShadowFrame* next) { next_ = next; } bool* GetUpdatedVRegFlags() { return updated_vreg_flags_; } private: FrameIdToShadowFrame(size_t frame_id, ShadowFrame* shadow_frame, FrameIdToShadowFrame* next) : frame_id_(frame_id), shadow_frame_(shadow_frame), next_(next) {} const size_t frame_id_; ShadowFrame* const shadow_frame_; FrameIdToShadowFrame* next_; bool updated_vreg_flags_[0]; DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame); }; static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head, size_t frame_id) { FrameIdToShadowFrame* found = nullptr; for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) { if (record->GetFrameId() == frame_id) { if (kIsDebugBuild) { // Check we have at most one record for this frame. CHECK(found == nullptr) << "Multiple records for the frame " << frame_id; found = record; } else { return record; } } } return found; } ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) { FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( tlsPtr_.frame_id_to_shadow_frame, frame_id); if (record != nullptr) { return record->GetShadowFrame(); } return nullptr; } // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr. bool* Thread::GetUpdatedVRegFlags(size_t frame_id) { FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( tlsPtr_.frame_id_to_shadow_frame, frame_id); CHECK(record != nullptr); return record->GetUpdatedVRegFlags(); } ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id, uint32_t num_vregs, ArtMethod* method, uint32_t dex_pc) { ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id); if (shadow_frame != nullptr) { return shadow_frame; } VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method); shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc); FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id, shadow_frame, tlsPtr_.frame_id_to_shadow_frame, num_vregs); for (uint32_t i = 0; i < num_vregs; i++) { // Do this to clear all references for root visitors. shadow_frame->SetVRegReference(i, nullptr); // This flag will be changed to true if the debugger modifies the value. record->GetUpdatedVRegFlags()[i] = false; } tlsPtr_.frame_id_to_shadow_frame = record; return shadow_frame; } TLSData* Thread::GetCustomTLS(const char* key) { MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_); auto it = custom_tls_.find(key); return (it != custom_tls_.end()) ? it->second.get() : nullptr; } void Thread::SetCustomTLS(const char* key, TLSData* data) { // We will swap the old data (which might be nullptr) with this and then delete it outside of the // custom_tls_lock_. std::unique_ptr old_data(data); { MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_); custom_tls_.GetOrCreate(key, []() { return std::unique_ptr(); }).swap(old_data); } } void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) { FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame; if (head->GetFrameId() == frame_id) { tlsPtr_.frame_id_to_shadow_frame = head->GetNext(); FrameIdToShadowFrame::Delete(head); return; } FrameIdToShadowFrame* prev = head; for (FrameIdToShadowFrame* record = head->GetNext(); record != nullptr; prev = record, record = record->GetNext()) { if (record->GetFrameId() == frame_id) { prev->SetNext(record->GetNext()); FrameIdToShadowFrame::Delete(record); return; } } LOG(FATAL) << "No shadow frame for frame " << frame_id; UNREACHABLE(); } void Thread::InitTid() { tls32_.tid = ::art::GetTid(); } void Thread::InitAfterFork() { // One thread (us) survived the fork, but we have a new tid so we need to // update the value stashed in this Thread*. InitTid(); } void Thread::DeleteJPeer(JNIEnv* env) { // Make sure nothing can observe both opeer and jpeer set at the same time. jobject old_jpeer = tlsPtr_.jpeer; CHECK(old_jpeer != nullptr); tlsPtr_.jpeer = nullptr; env->DeleteGlobalRef(old_jpeer); } void* Thread::CreateCallback(void* arg) { Thread* self = reinterpret_cast(arg); Runtime* runtime = Runtime::Current(); if (runtime == nullptr) { LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; return nullptr; } { // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true // after self->Init(). MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); // Check that if we got here we cannot be shutting down (as shutdown should never have started // while threads are being born). CHECK(!runtime->IsShuttingDownLocked()); // Note: given that the JNIEnv is created in the parent thread, the only failure point here is // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort // the runtime in such a case. In case this ever changes, we need to make sure here to // delete the tmp_jni_env, as we own it at this point. CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env)); self->tlsPtr_.tmp_jni_env = nullptr; Runtime::Current()->EndThreadBirth(); } { ScopedObjectAccess soa(self); self->InitStringEntryPoints(); // Copy peer into self, deleting global reference when done. CHECK(self->tlsPtr_.jpeer != nullptr); self->tlsPtr_.opeer = soa.Decode(self->tlsPtr_.jpeer).Ptr(); // Make sure nothing can observe both opeer and jpeer set at the same time. self->DeleteJPeer(self->GetJniEnv()); self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str()); ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority); self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer)); runtime->GetRuntimeCallbacks()->ThreadStart(self); // Unpark ourselves if the java peer was unparked before it started (see // b/28845097#comment49 for more information) ArtField* unparkedField = jni::DecodeArtField( WellKnownClasses::java_lang_Thread_unparkedBeforeStart); bool should_unpark = false; { // Hold the lock here, so that if another thread calls unpark before the thread starts // we don't observe the unparkedBeforeStart field before the unparker writes to it, // which could cause a lost unpark. art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_); should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE; } if (should_unpark) { self->Unpark(); } // Invoke the 'run' method of our java.lang.Thread. ObjPtr receiver = self->tlsPtr_.opeer; jmethodID mid = WellKnownClasses::java_lang_Thread_run; ScopedLocalRef ref(soa.Env(), soa.AddLocalReference(receiver)); InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr); } // Detach and delete self. Runtime::Current()->GetThreadList()->Unregister(self); return nullptr; } Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, ObjPtr thread_peer) { ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer); Thread* result = reinterpret_cast64(f->GetLong(thread_peer)); // Check that if we have a result it is either suspended or we hold the thread_list_lock_ // to stop it from going away. if (kIsDebugBuild) { MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); if (result != nullptr && !result->IsSuspended()) { Locks::thread_list_lock_->AssertHeld(soa.Self()); } } return result; } Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, jobject java_thread) { return FromManagedThread(soa, soa.Decode(java_thread)); } static size_t FixStackSize(size_t stack_size) { // A stack size of zero means "use the default". if (stack_size == 0) { stack_size = Runtime::Current()->GetDefaultStackSize(); } // Dalvik used the bionic pthread default stack size for native threads, // so include that here to support apps that expect large native stacks. stack_size += 1 * MB; // Under sanitization, frames of the interpreter may become bigger, both for C code as // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization // of all core classes cannot be done in all test circumstances. if (kMemoryToolIsAvailable) { stack_size = std::max(2 * MB, stack_size); } // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. if (stack_size < PTHREAD_STACK_MIN) { stack_size = PTHREAD_STACK_MIN; } if (Runtime::Current()->ExplicitStackOverflowChecks()) { // It's likely that callers are trying to ensure they have at least a certain amount of // stack space, so we should add our reserved space on top of what they requested, rather // than implicitly take it away from them. stack_size += GetStackOverflowReservedBytes(kRuntimeISA); } else { // If we are going to use implicit stack checks, allocate space for the protected // region at the bottom of the stack. stack_size += Thread::kStackOverflowImplicitCheckSize + GetStackOverflowReservedBytes(kRuntimeISA); } // Some systems require the stack size to be a multiple of the system page size, so round up. stack_size = RoundUp(stack_size, kPageSize); return stack_size; } // Return the nearest page-aligned address below the current stack top. NO_INLINE static uint8_t* FindStackTop() { return reinterpret_cast( AlignDown(__builtin_frame_address(0), kPageSize)); } // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack // overflow is detected. It is located right below the stack_begin_. ATTRIBUTE_NO_SANITIZE_ADDRESS void Thread::InstallImplicitProtection() { uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; // Page containing current top of stack. uint8_t* stack_top = FindStackTop(); // Try to directly protect the stack. VLOG(threads) << "installing stack protected region at " << std::hex << static_cast(pregion) << " to " << static_cast(pregion + kStackOverflowProtectedSize - 1); if (ProtectStack(/* fatal_on_error= */ false)) { // Tell the kernel that we won't be needing these pages any more. // NB. madvise will probably write zeroes into the memory (on linux it does). uint32_t unwanted_size = stack_top - pregion - kPageSize; madvise(pregion, unwanted_size, MADV_DONTNEED); return; } // There is a little complexity here that deserves a special mention. On some // architectures, the stack is created using a VM_GROWSDOWN flag // to prevent memory being allocated when it's not needed. This flag makes the // kernel only allocate memory for the stack by growing down in memory. Because we // want to put an mprotected region far away from that at the stack top, we need // to make sure the pages for the stack are mapped in before we call mprotect. // // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN // with a non-mapped stack (usually only the main thread). // // We map in the stack by reading every page from the stack bottom (highest address) // to the stack top. (We then madvise this away.) This must be done by reading from the // current stack pointer downwards. // // Accesses too far below the current machine register corresponding to the stack pointer (e.g., // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We // thus have to move the stack pointer. We do this portably by using a recursive function with a // large stack frame size. // (Defensively) first remove the protection on the protected region as we'll want to read // and write it. Ignore errors. UnprotectStack(); VLOG(threads) << "Need to map in stack for thread at " << std::hex << static_cast(pregion); struct RecurseDownStack { // This function has an intentionally large stack size. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wframe-larger-than=" NO_INLINE static void Touch(uintptr_t target) { volatile size_t zero = 0; // Use a large local volatile array to ensure a large frame size. Do not use anything close // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but // there is no pragma support for this. // Note: for ASAN we need to shrink the array a bit, as there's other overhead. constexpr size_t kAsanMultiplier = #ifdef ADDRESS_SANITIZER 2u; #else 1u; #endif // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually // auto-initialize this local variable). volatile char space[kPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized)); char sink ATTRIBUTE_UNUSED = space[zero]; // NOLINT // Remove tag from the pointer. Nop in non-hwasan builds. uintptr_t addr = reinterpret_cast(__hwasan_tag_pointer(space, 0)); if (addr >= target + kPageSize) { Touch(target); } zero *= 2; // Try to avoid tail recursion. } #pragma GCC diagnostic pop }; RecurseDownStack::Touch(reinterpret_cast(pregion)); VLOG(threads) << "(again) installing stack protected region at " << std::hex << static_cast(pregion) << " to " << static_cast(pregion + kStackOverflowProtectedSize - 1); // Protect the bottom of the stack to prevent read/write to it. ProtectStack(/* fatal_on_error= */ true); // Tell the kernel that we won't be needing these pages any more. // NB. madvise will probably write zeroes into the memory (on linux it does). uint32_t unwanted_size = stack_top - pregion - kPageSize; madvise(pregion, unwanted_size, MADV_DONTNEED); } void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { CHECK(java_peer != nullptr); Thread* self = static_cast(env)->GetSelf(); if (VLOG_IS_ON(threads)) { ScopedObjectAccess soa(env); ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name); ObjPtr java_name = f->GetObject(soa.Decode(java_peer))->AsString(); std::string thread_name; if (java_name != nullptr) { thread_name = java_name->ToModifiedUtf8(); } else { thread_name = "(Unnamed)"; } VLOG(threads) << "Creating native thread for " << thread_name; self->Dump(LOG_STREAM(INFO)); } Runtime* runtime = Runtime::Current(); // Atomically start the birth of the thread ensuring the runtime isn't shutting down. bool thread_start_during_shutdown = false; { MutexLock mu(self, *Locks::runtime_shutdown_lock_); if (runtime->IsShuttingDownLocked()) { thread_start_during_shutdown = true; } else { runtime->StartThreadBirth(); } } if (thread_start_during_shutdown) { ScopedLocalRef error_class(env, env->FindClass("java/lang/InternalError")); env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); return; } Thread* child_thread = new Thread(is_daemon); // Use global JNI ref to hold peer live while child thread starts. child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); stack_size = FixStackSize(stack_size); // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing // to assign it. env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, reinterpret_cast(child_thread)); // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and // do not have a good way to report this on the child's side. std::string error_msg; std::unique_ptr child_jni_env_ext( JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg)); int pthread_create_result = 0; if (child_jni_env_ext.get() != nullptr) { pthread_t new_pthread; pthread_attr_t attr; child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get(); CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); if (pthread_create_result == 0) { // pthread_create started the new thread. The child is now responsible for managing the // JNIEnvExt we created. // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization // between the threads. child_jni_env_ext.release(); // NOLINT pthreads API. return; } } // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up. { MutexLock mu(self, *Locks::runtime_shutdown_lock_); runtime->EndThreadBirth(); } // Manually delete the global reference since Thread::Init will not have been run. Make sure // nothing can observe both opeer and jpeer set at the same time. child_thread->DeleteJPeer(env); delete child_thread; child_thread = nullptr; // TODO: remove from thread group? env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); { std::string msg(child_jni_env_ext.get() == nullptr ? StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) : StringPrintf("pthread_create (%s stack) failed: %s", PrettySize(stack_size).c_str(), strerror(pthread_create_result))); ScopedObjectAccess soa(env); soa.Self()->ThrowOutOfMemoryError(msg.c_str()); } } bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) { // This function does all the initialization that must be run by the native thread it applies to. // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so // we can handshake with the corresponding native thread when it's ready.) Check this native // thread hasn't been through here already... CHECK(Thread::Current() == nullptr); // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). tlsPtr_.pthread_self = pthread_self(); CHECK(is_started_); ScopedTrace trace("Thread::Init"); SetUpAlternateSignalStack(); if (!InitStackHwm()) { return false; } InitCpu(); InitTlsEntryPoints(); RemoveSuspendTrigger(); InitCardTable(); InitTid(); { ScopedTrace trace2("InitInterpreterTls"); interpreter::InitInterpreterTls(this); } #ifdef __BIONIC__ __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this; #else CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); Thread::self_tls_ = this; #endif DCHECK_EQ(Thread::Current(), this); tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); if (jni_env_ext != nullptr) { DCHECK_EQ(jni_env_ext->GetVm(), java_vm); DCHECK_EQ(jni_env_ext->GetSelf(), this); tlsPtr_.jni_env = jni_env_ext; } else { std::string error_msg; tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg); if (tlsPtr_.jni_env == nullptr) { LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg; return false; } } ScopedTrace trace3("ThreadList::Register"); thread_list->Register(this); return true; } template Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) { Runtime* runtime = Runtime::Current(); ScopedTrace trace("Thread::Attach"); if (runtime == nullptr) { LOG(ERROR) << "Thread attaching to non-existent runtime: " << ((thread_name != nullptr) ? thread_name : "(Unnamed)"); return nullptr; } Thread* self; { ScopedTrace trace2("Thread birth"); MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); if (runtime->IsShuttingDownLocked()) { LOG(WARNING) << "Thread attaching while runtime is shutting down: " << ((thread_name != nullptr) ? thread_name : "(Unnamed)"); return nullptr; } else { Runtime::Current()->StartThreadBirth(); self = new Thread(as_daemon); bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); Runtime::Current()->EndThreadBirth(); if (!init_success) { delete self; return nullptr; } } } self->InitStringEntryPoints(); CHECK_NE(self->GetState(), kRunnable); self->SetState(kNative); // Run the action that is acting on the peer. if (!peer_action(self)) { runtime->GetThreadList()->Unregister(self); // Unregister deletes self, no need to do this here. return nullptr; } if (VLOG_IS_ON(threads)) { if (thread_name != nullptr) { VLOG(threads) << "Attaching thread " << thread_name; } else { VLOG(threads) << "Attaching unnamed thread."; } ScopedObjectAccess soa(self); self->Dump(LOG_STREAM(INFO)); } { ScopedObjectAccess soa(self); runtime->GetRuntimeCallbacks()->ThreadStart(self); } return self; } Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer) { auto create_peer_action = [&](Thread* self) { // If we're the main thread, ClassLinker won't be created until after we're attached, // so that thread needs a two-stage attach. Regular threads don't need this hack. // In the compiler, all threads need this hack, because no-one's going to be getting // a native peer! if (create_peer) { self->CreatePeer(thread_name, as_daemon, thread_group); if (self->IsExceptionPending()) { // We cannot keep the exception around, as we're deleting self. Try to be helpful and log // it. { ScopedObjectAccess soa(self); LOG(ERROR) << "Exception creating thread peer:"; LOG(ERROR) << self->GetException()->Dump(); self->ClearException(); } return false; } } else { // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. if (thread_name != nullptr) { self->tlsPtr_.name->assign(thread_name); ::art::SetThreadName(thread_name); } else if (self->GetJniEnv()->IsCheckJniEnabled()) { LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; } } return true; }; return Attach(thread_name, as_daemon, create_peer_action); } Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) { auto set_peer_action = [&](Thread* self) { // Install the given peer. { DCHECK(self == Thread::Current()); ScopedObjectAccess soa(self); self->tlsPtr_.opeer = soa.Decode(thread_peer).Ptr(); } self->GetJniEnv()->SetLongField(thread_peer, WellKnownClasses::java_lang_Thread_nativePeer, reinterpret_cast64(self)); return true; }; return Attach(thread_name, as_daemon, set_peer_action); } void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); JNIEnv* env = tlsPtr_.jni_env; if (thread_group == nullptr) { thread_group = runtime->GetMainThreadGroup(); } ScopedLocalRef thread_name(env, env->NewStringUTF(name)); // Add missing null check in case of OOM b/18297817 if (name != nullptr && thread_name.get() == nullptr) { CHECK(IsExceptionPending()); return; } jint thread_priority = GetNativePriority(); jboolean thread_is_daemon = as_daemon; ScopedLocalRef peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); if (peer.get() == nullptr) { CHECK(IsExceptionPending()); return; } { ScopedObjectAccess soa(this); tlsPtr_.opeer = soa.Decode(peer.get()).Ptr(); } env->CallNonvirtualVoidMethod(peer.get(), WellKnownClasses::java_lang_Thread, WellKnownClasses::java_lang_Thread_init, thread_group, thread_name.get(), thread_priority, thread_is_daemon); if (IsExceptionPending()) { return; } Thread* self = this; DCHECK_EQ(self, Thread::Current()); env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, reinterpret_cast64(self)); ScopedObjectAccess soa(self); StackHandleScope<1> hs(self); MutableHandle peer_thread_name(hs.NewHandle(GetThreadName())); if (peer_thread_name == nullptr) { // The Thread constructor should have set the Thread.name to a // non-null value. However, because we can run without code // available (in the compiler, in tests), we manually assign the // fields the constructor should have set. if (runtime->IsActiveTransaction()) { InitPeer(soa, tlsPtr_.opeer, thread_is_daemon, thread_group, thread_name.get(), thread_priority); } else { InitPeer(soa, tlsPtr_.opeer, thread_is_daemon, thread_group, thread_name.get(), thread_priority); } peer_thread_name.Assign(GetThreadName()); } // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. if (peer_thread_name != nullptr) { SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); } } jobject Thread::CreateCompileTimePeer(JNIEnv* env, const char* name, bool as_daemon, jobject thread_group) { Runtime* runtime = Runtime::Current(); CHECK(!runtime->IsStarted()); if (thread_group == nullptr) { thread_group = runtime->GetMainThreadGroup(); } ScopedLocalRef thread_name(env, env->NewStringUTF(name)); // Add missing null check in case of OOM b/18297817 if (name != nullptr && thread_name.get() == nullptr) { CHECK(Thread::Current()->IsExceptionPending()); return nullptr; } jint thread_priority = kNormThreadPriority; // Always normalize to NORM priority. jboolean thread_is_daemon = as_daemon; ScopedLocalRef peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); if (peer.get() == nullptr) { CHECK(Thread::Current()->IsExceptionPending()); return nullptr; } // We cannot call Thread.init, as it will recursively ask for currentThread. // The Thread constructor should have set the Thread.name to a // non-null value. However, because we can run without code // available (in the compiler, in tests), we manually assign the // fields the constructor should have set. ScopedObjectAccessUnchecked soa(Thread::Current()); if (runtime->IsActiveTransaction()) { InitPeer(soa, soa.Decode(peer.get()), thread_is_daemon, thread_group, thread_name.get(), thread_priority); } else { InitPeer(soa, soa.Decode(peer.get()), thread_is_daemon, thread_group, thread_name.get(), thread_priority); } return peer.release(); } template void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa, ObjPtr peer, jboolean thread_is_daemon, jobject thread_group, jobject thread_name, jint thread_priority) { jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)-> SetBoolean(peer, thread_is_daemon); jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)-> SetObject(peer, soa.Decode(thread_group)); jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)-> SetObject(peer, soa.Decode(thread_name)); jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)-> SetInt(peer, thread_priority); } void Thread::SetThreadName(const char* name) { tlsPtr_.name->assign(name); ::art::SetThreadName(name); Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); } static void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) { #if defined(__APPLE__) *stack_size = pthread_get_stacksize_np(thread); void* stack_addr = pthread_get_stackaddr_np(thread); // Check whether stack_addr is the base or end of the stack. // (On Mac OS 10.7, it's the end.) int stack_variable; if (stack_addr > &stack_variable) { *stack_base = reinterpret_cast(stack_addr) - *stack_size; } else { *stack_base = stack_addr; } // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac. pthread_attr_t attributes; CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); #else pthread_attr_t attributes; CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); #if defined(__GLIBC__) // If we're the main thread, check whether we were run with an unlimited stack. In that case, // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection // will be broken because we'll die long before we get close to 2GB. bool is_main_thread = (::art::GetTid() == getpid()); if (is_main_thread) { rlimit stack_limit; if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; } if (stack_limit.rlim_cur == RLIM_INFINITY) { size_t old_stack_size = *stack_size; // Use the kernel default limit as our size, and adjust the base to match. *stack_size = 8 * MB; *stack_base = reinterpret_cast(*stack_base) + (old_stack_size - *stack_size); VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" << " to " << PrettySize(*stack_size) << " with base " << *stack_base; } } #endif #endif } bool Thread::InitStackHwm() { ScopedTrace trace("InitStackHwm"); void* read_stack_base; size_t read_stack_size; size_t read_guard_size; GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size); tlsPtr_.stack_begin = reinterpret_cast(read_stack_base); tlsPtr_.stack_size = read_stack_size; // The minimum stack size we can cope with is the overflow reserved bytes (typically // 8K) + the protected region size (4K) + another page (4K). Typically this will // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes // between 8K and 12K. uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize + 4 * KB; if (read_stack_size <= min_stack) { // Note, as we know the stack is small, avoid operations that could use a lot of stack. LogHelper::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ::android::base::ERROR, "Attempt to attach a thread with a too-small stack"); return false; } // This is included in the SIGQUIT output, but it's useful here for thread debugging. VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)", read_stack_base, PrettySize(read_stack_size).c_str(), PrettySize(read_guard_size).c_str()); // Set stack_end_ to the bottom of the stack saving space of stack overflows Runtime* runtime = Runtime::Current(); bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler(); ResetDefaultStackEnd(); // Install the protected region if we are doing implicit overflow checks. if (implicit_stack_check) { // The thread might have protected region at the bottom. We need // to install our own region so we need to move the limits // of the stack to make room for it. tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize; tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize; tlsPtr_.stack_size -= read_guard_size; InstallImplicitProtection(); } // Consistency check. CHECK_GT(FindStackTop(), reinterpret_cast(tlsPtr_.stack_end)); return true; } void Thread::ShortDump(std::ostream& os) const { os << "Thread["; if (GetThreadId() != 0) { // If we're in kStarting, we won't have a thin lock id or tid yet. os << GetThreadId() << ",tid=" << GetTid() << ','; } os << GetState() << ",Thread*=" << this << ",peer=" << tlsPtr_.opeer << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\"" << "]"; } void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map, bool force_dump_stack) const { DumpState(os); DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack); } ObjPtr Thread::GetThreadName() const { ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name); if (tlsPtr_.opeer == nullptr) { return nullptr; } ObjPtr name = f->GetObject(tlsPtr_.opeer); return name == nullptr ? nullptr : name->AsString(); } void Thread::GetThreadName(std::string& name) const { name.assign(*tlsPtr_.name); } uint64_t Thread::GetCpuMicroTime() const { #if defined(__linux__) clockid_t cpu_clock_id; pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); timespec now; clock_gettime(cpu_clock_id, &now); return static_cast(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); #else // __APPLE__ UNIMPLEMENTED(WARNING); return -1; #endif } // Attempt to rectify locks so that we dump thread list with required locks before exiting. static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { LOG(ERROR) << *thread << " suspend count already zero."; Locks::thread_suspend_count_lock_->Unlock(self); if (!Locks::mutator_lock_->IsSharedHeld(self)) { Locks::mutator_lock_->SharedTryLock(self); if (!Locks::mutator_lock_->IsSharedHeld(self)) { LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; } } if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { Locks::thread_list_lock_->TryLock(self); if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; } } std::ostringstream ss; Runtime::Current()->GetThreadList()->Dump(ss); LOG(FATAL) << ss.str(); } bool Thread::ModifySuspendCountInternal(Thread* self, int delta, AtomicInteger* suspend_barrier, SuspendReason reason) { if (kIsDebugBuild) { DCHECK(delta == -1 || delta == +1) << reason << " " << delta << " " << this; Locks::thread_suspend_count_lock_->AssertHeld(self); if (this != self && !IsSuspended()) { Locks::thread_list_lock_->AssertHeld(self); } } // User code suspensions need to be checked more closely since they originate from code outside of // the runtime's control. if (UNLIKELY(reason == SuspendReason::kForUserCode)) { Locks::user_code_suspension_lock_->AssertHeld(self); if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) { LOG(ERROR) << "attempting to modify suspend count in an illegal way."; return false; } } if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) { UnsafeLogFatalForSuspendCount(self, this); return false; } if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) { // Force retry of a suspend request if it's in the middle of a thread flip to avoid a // deadlock. b/31683379. return false; } uint16_t flags = kSuspendRequest; if (delta > 0 && suspend_barrier != nullptr) { uint32_t available_barrier = kMaxSuspendBarriers; for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { if (tlsPtr_.active_suspend_barriers[i] == nullptr) { available_barrier = i; break; } } if (available_barrier == kMaxSuspendBarriers) { // No barrier spaces available, we can't add another. return false; } tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier; flags |= kActiveSuspendBarrier; } tls32_.suspend_count += delta; switch (reason) { case SuspendReason::kForUserCode: tls32_.user_code_suspend_count += delta; break; case SuspendReason::kInternal: break; } if (tls32_.suspend_count == 0) { AtomicClearFlag(kSuspendRequest); } else { // Two bits might be set simultaneously. tls32_.state_and_flags.as_atomic_int.fetch_or(flags, std::memory_order_seq_cst); TriggerSuspend(); } return true; } bool Thread::PassActiveSuspendBarriers(Thread* self) { // Grab the suspend_count lock and copy the current set of // barriers. Then clear the list and the flag. The ModifySuspendCount // function requires the lock so we prevent a race between setting // the kActiveSuspendBarrier flag and clearing it. AtomicInteger* pass_barriers[kMaxSuspendBarriers]; { MutexLock mu(self, *Locks::thread_suspend_count_lock_); if (!ReadFlag(kActiveSuspendBarrier)) { // quick exit test: the barriers have already been claimed - this is // possible as there may be a race to claim and it doesn't matter // who wins. // All of the callers of this function (except the SuspendAllInternal) // will first test the kActiveSuspendBarrier flag without lock. Here // double-check whether the barrier has been passed with the // suspend_count lock. return false; } for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { pass_barriers[i] = tlsPtr_.active_suspend_barriers[i]; tlsPtr_.active_suspend_barriers[i] = nullptr; } AtomicClearFlag(kActiveSuspendBarrier); } uint32_t barrier_count = 0; for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) { AtomicInteger* pending_threads = pass_barriers[i]; if (pending_threads != nullptr) { bool done = false; do { int32_t cur_val = pending_threads->load(std::memory_order_relaxed); CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val; // Reduce value by 1. done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1); #if ART_USE_FUTEXES if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously. futex(pending_threads->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0); } #endif } while (!done); ++barrier_count; } } CHECK_GT(barrier_count, 0U); return true; } void Thread::ClearSuspendBarrier(AtomicInteger* target) { CHECK(ReadFlag(kActiveSuspendBarrier)); bool clear_flag = true; for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i]; if (ptr == target) { tlsPtr_.active_suspend_barriers[i] = nullptr; } else if (ptr != nullptr) { clear_flag = false; } } if (LIKELY(clear_flag)) { AtomicClearFlag(kActiveSuspendBarrier); } } void Thread::RunCheckpointFunction() { // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If // there are no more checkpoints we will also clear the kCheckpointRequest flag. Closure* checkpoint; { MutexLock mu(this, *Locks::thread_suspend_count_lock_); checkpoint = tlsPtr_.checkpoint_function; if (!checkpoint_overflow_.empty()) { // Overflow list not empty, copy the first one out and continue. tlsPtr_.checkpoint_function = checkpoint_overflow_.front(); checkpoint_overflow_.pop_front(); } else { // No overflow checkpoints. Clear the kCheckpointRequest flag tlsPtr_.checkpoint_function = nullptr; AtomicClearFlag(kCheckpointRequest); } } // Outside the lock, run the checkpoint function. ScopedTrace trace("Run checkpoint function"); CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint"; checkpoint->Run(this); } void Thread::RunEmptyCheckpoint() { DCHECK_EQ(Thread::Current(), this); AtomicClearFlag(kEmptyCheckpointRequest); Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this); } bool Thread::RequestCheckpoint(Closure* function) { union StateAndFlags old_state_and_flags; old_state_and_flags.as_int = tls32_.state_and_flags.as_int; if (old_state_and_flags.as_struct.state != kRunnable) { return false; // Fail, thread is suspended and so can't run a checkpoint. } // We must be runnable to request a checkpoint. DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); union StateAndFlags new_state_and_flags; new_state_and_flags.as_int = old_state_and_flags.as_int; new_state_and_flags.as_struct.flags |= kCheckpointRequest; bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent( old_state_and_flags.as_int, new_state_and_flags.as_int); if (success) { // Succeeded setting checkpoint flag, now insert the actual checkpoint. if (tlsPtr_.checkpoint_function == nullptr) { tlsPtr_.checkpoint_function = function; } else { checkpoint_overflow_.push_back(function); } CHECK_EQ(ReadFlag(kCheckpointRequest), true); TriggerSuspend(); } return success; } bool Thread::RequestEmptyCheckpoint() { union StateAndFlags old_state_and_flags; old_state_and_flags.as_int = tls32_.state_and_flags.as_int; if (old_state_and_flags.as_struct.state != kRunnable) { // If it's not runnable, we don't need to do anything because it won't be in the middle of a // heap access (eg. the read barrier). return false; } // We must be runnable to request a checkpoint. DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); union StateAndFlags new_state_and_flags; new_state_and_flags.as_int = old_state_and_flags.as_int; new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest; bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent( old_state_and_flags.as_int, new_state_and_flags.as_int); if (success) { TriggerSuspend(); } return success; } class BarrierClosure : public Closure { public: explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {} void Run(Thread* self) override { wrapped_->Run(self); barrier_.Pass(self); } void Wait(Thread* self, ThreadState suspend_state) { if (suspend_state != ThreadState::kRunnable) { barrier_.Increment(self, 1); } else { barrier_.Increment(self, 1); } } private: Closure* wrapped_; Barrier barrier_; }; // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution. bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) { Thread* self = Thread::Current(); if (this == Thread::Current()) { Locks::thread_list_lock_->AssertExclusiveHeld(self); // Unlock the tll before running so that the state is the same regardless of thread. Locks::thread_list_lock_->ExclusiveUnlock(self); // Asked to run on this thread. Just run. function->Run(this); return true; } // The current thread is not this thread. if (GetState() == ThreadState::kTerminated) { Locks::thread_list_lock_->ExclusiveUnlock(self); return false; } struct ScopedThreadListLockUnlock { explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_) : self_thread(self_in) { Locks::thread_list_lock_->AssertHeld(self_thread); Locks::thread_list_lock_->Unlock(self_thread); } ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) { Locks::thread_list_lock_->AssertNotHeld(self_thread); Locks::thread_list_lock_->Lock(self_thread); } Thread* self_thread; }; for (;;) { Locks::thread_list_lock_->AssertExclusiveHeld(self); // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the // suspend-count lock for too long. if (GetState() == ThreadState::kRunnable) { BarrierClosure barrier_closure(function); bool installed = false; { MutexLock mu(self, *Locks::thread_suspend_count_lock_); installed = RequestCheckpoint(&barrier_closure); } if (installed) { // Relinquish the thread-list lock. We should not wait holding any locks. We cannot // reacquire it since we don't know if 'this' hasn't been deleted yet. Locks::thread_list_lock_->ExclusiveUnlock(self); ScopedThreadStateChange sts(self, suspend_state); barrier_closure.Wait(self, suspend_state); return true; } // Fall-through. } // This thread is not runnable, make sure we stay suspended, then run the checkpoint. // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in // certain situations. { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) { // Just retry the loop. sched_yield(); continue; } } { // Release for the wait. The suspension will keep us from being deleted. Reacquire after so // that we can call ModifySuspendCount without racing against ThreadList::Unregister. ScopedThreadListLockUnlock stllu(self); { ScopedThreadStateChange sts(self, suspend_state); while (GetState() == ThreadState::kRunnable) { // We became runnable again. Wait till the suspend triggered in ModifySuspendCount // moves us to suspended. sched_yield(); } } function->Run(this); } { MutexLock mu2(self, *Locks::thread_suspend_count_lock_); DCHECK_NE(GetState(), ThreadState::kRunnable); bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); DCHECK(updated); } { // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its // suspend count. Now the suspend_count_ is lowered so we must do the broadcast. MutexLock mu2(self, *Locks::thread_suspend_count_lock_); Thread::resume_cond_->Broadcast(self); } // Release the thread_list_lock_ to be consistent with the barrier-closure path. Locks::thread_list_lock_->ExclusiveUnlock(self); return true; // We're done, break out of the loop. } } Closure* Thread::GetFlipFunction() { Atomic* atomic_func = reinterpret_cast*>(&tlsPtr_.flip_function); Closure* func; do { func = atomic_func->load(std::memory_order_relaxed); if (func == nullptr) { return nullptr; } } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr)); DCHECK(func != nullptr); return func; } void Thread::SetFlipFunction(Closure* function) { CHECK(function != nullptr); Atomic* atomic_func = reinterpret_cast*>(&tlsPtr_.flip_function); atomic_func->store(function, std::memory_order_seq_cst); } void Thread::FullSuspendCheck() { ScopedTrace trace(__FUNCTION__); VLOG(threads) << this << " self-suspending"; // Make thread appear suspended to other threads, release mutator_lock_. // Transition to suspended and back to runnable, re-acquire share on mutator_lock_. ScopedThreadSuspension(this, kSuspended); // NOLINT VLOG(threads) << this << " self-reviving"; } static std::string GetSchedulerGroupName(pid_t tid) { // /proc//cgroup looks like this: // 2:devices:/ // 1:cpuacct,cpu:/ // We want the third field from the line whose second field contains the "cpu" token. std::string cgroup_file; if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) { return ""; } std::vector cgroup_lines; Split(cgroup_file, '\n', &cgroup_lines); for (size_t i = 0; i < cgroup_lines.size(); ++i) { std::vector cgroup_fields; Split(cgroup_lines[i], ':', &cgroup_fields); std::vector cgroups; Split(cgroup_fields[1], ',', &cgroups); for (size_t j = 0; j < cgroups.size(); ++j) { if (cgroups[j] == "cpu") { return cgroup_fields[2].substr(1); // Skip the leading slash. } } } return ""; } void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { std::string group_name; int priority; bool is_daemon = false; Thread* self = Thread::Current(); // If flip_function is not null, it means we have run a checkpoint // before the thread wakes up to execute the flip function and the // thread roots haven't been forwarded. So the following access to // the roots (opeer or methods in the frames) would be bad. Run it // here. TODO: clean up. if (thread != nullptr) { ScopedObjectAccessUnchecked soa(self); Thread* this_thread = const_cast(thread); Closure* flip_func = this_thread->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(this_thread); } } // Don't do this if we are aborting since the GC may have all the threads suspended. This will // cause ScopedObjectAccessUnchecked to deadlock. if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { ScopedObjectAccessUnchecked soa(self); priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority) ->GetInt(thread->tlsPtr_.opeer); is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon) ->GetBoolean(thread->tlsPtr_.opeer); ObjPtr thread_group = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group) ->GetObject(thread->tlsPtr_.opeer); if (thread_group != nullptr) { ArtField* group_name_field = jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name); ObjPtr group_name_string = group_name_field->GetObject(thread_group)->AsString(); group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : ""; } } else if (thread != nullptr) { priority = thread->GetNativePriority(); } else { PaletteStatus status = PaletteSchedGetPriority(tid, &priority); CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno); } std::string scheduler_group_name(GetSchedulerGroupName(tid)); if (scheduler_group_name.empty()) { scheduler_group_name = "default"; } if (thread != nullptr) { os << '"' << *thread->tlsPtr_.name << '"'; if (is_daemon) { os << " daemon"; } os << " prio=" << priority << " tid=" << thread->GetThreadId() << " " << thread->GetState(); if (thread->IsStillStarting()) { os << " (still starting up)"; } os << "\n"; } else { os << '"' << ::art::GetThreadName(tid) << '"' << " prio=" << priority << " (not attached)\n"; } if (thread != nullptr) { auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) { os << " | group=\"" << group_name << "\"" << " sCount=" << thread->tls32_.suspend_count << " ucsCount=" << thread->tls32_.user_code_suspend_count << " flags=" << thread->tls32_.state_and_flags.as_struct.flags << " obj=" << reinterpret_cast(thread->tlsPtr_.opeer) << " self=" << reinterpret_cast(thread) << "\n"; }; if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) { Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self); // For annotalysis. suspend_log_fn(); } else { MutexLock mu(self, *Locks::thread_suspend_count_lock_); suspend_log_fn(); } } os << " | sysTid=" << tid << " nice=" << getpriority(PRIO_PROCESS, tid) << " cgrp=" << scheduler_group_name; if (thread != nullptr) { int policy; sched_param sp; #if !defined(__APPLE__) // b/36445592 Don't use pthread_getschedparam since pthread may have exited. policy = sched_getscheduler(tid); if (policy == -1) { PLOG(WARNING) << "sched_getscheduler(" << tid << ")"; } int sched_getparam_result = sched_getparam(tid, &sp); if (sched_getparam_result == -1) { PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)"; sp.sched_priority = -1; } #else CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), __FUNCTION__); #endif os << " sched=" << policy << "/" << sp.sched_priority << " handle=" << reinterpret_cast(thread->tlsPtr_.pthread_self); } os << "\n"; // Grab the scheduler stats for this thread. std::string scheduler_stats; if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats) && !scheduler_stats.empty()) { scheduler_stats = android::base::Trim(scheduler_stats); // Lose the trailing '\n'. } else { scheduler_stats = "0 0 0"; } char native_thread_state = '?'; int utime = 0; int stime = 0; int task_cpu = 0; GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); os << " | state=" << native_thread_state << " schedstat=( " << scheduler_stats << " )" << " utm=" << utime << " stm=" << stime << " core=" << task_cpu << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; if (thread != nullptr) { os << " | stack=" << reinterpret_cast(thread->tlsPtr_.stack_begin) << "-" << reinterpret_cast(thread->tlsPtr_.stack_end) << " stackSize=" << PrettySize(thread->tlsPtr_.stack_size) << "\n"; // Dump the held mutexes. os << " | held mutexes="; for (size_t i = 0; i < kLockLevelCount; ++i) { if (i != kMonitorLock) { BaseMutex* mutex = thread->GetHeldMutex(static_cast(i)); if (mutex != nullptr) { os << " \"" << mutex->GetName() << "\""; if (mutex->IsReaderWriterMutex()) { ReaderWriterMutex* rw_mutex = down_cast(mutex); if (rw_mutex->GetExclusiveOwnerTid() == tid) { os << "(exclusive held)"; } else { os << "(shared held)"; } } } } } os << "\n"; } } void Thread::DumpState(std::ostream& os) const { Thread::DumpState(os, this, GetTid()); } struct StackDumpVisitor : public MonitorObjectsStackVisitor { StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate, bool check_suspended = true, bool dump_locks = true) REQUIRES_SHARED(Locks::mutator_lock_) : MonitorObjectsStackVisitor(thread_in, context, check_suspended, can_allocate && dump_locks), os(os_in), last_method(nullptr), last_line_number(0), repetition_count(0) {} virtual ~StackDumpVisitor() { if (frame_count == 0) { os << " (no managed stack frames)\n"; } } static constexpr size_t kMaxRepetition = 3u; VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize); ObjPtr dex_cache = m->GetDexCache(); int line_number = -1; if (dex_cache != nullptr) { // be tolerant of bad input const DexFile* dex_file = dex_cache->GetDexFile(); line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false)); } if (line_number == last_line_number && last_method == m) { ++repetition_count; } else { if (repetition_count >= kMaxRepetition) { os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; } repetition_count = 0; last_line_number = line_number; last_method = m; } if (repetition_count >= kMaxRepetition) { // Skip visiting=printing anything. return VisitMethodResult::kSkipMethod; } os << " at " << m->PrettyMethod(false); if (m->IsNative()) { os << "(Native method)"; } else { const char* source_file(m->GetDeclaringClassSourceFile()); os << "(" << (source_file != nullptr ? source_file : "unavailable") << ":" << line_number << ")"; } os << "\n"; // Go and visit locks. return VisitMethodResult::kContinueMethod; } VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override { return VisitMethodResult::kContinueMethod; } void VisitWaitingObject(ObjPtr obj, ThreadState state ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { PrintObject(obj, " - waiting on ", ThreadList::kInvalidThreadId); } void VisitSleepingObject(ObjPtr obj) override REQUIRES_SHARED(Locks::mutator_lock_) { PrintObject(obj, " - sleeping on ", ThreadList::kInvalidThreadId); } void VisitBlockedOnObject(ObjPtr obj, ThreadState state, uint32_t owner_tid) override REQUIRES_SHARED(Locks::mutator_lock_) { const char* msg; switch (state) { case kBlocked: msg = " - waiting to lock "; break; case kWaitingForLockInflation: msg = " - waiting for lock inflation of "; break; default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } PrintObject(obj, msg, owner_tid); } void VisitLockedObject(ObjPtr obj) override REQUIRES_SHARED(Locks::mutator_lock_) { PrintObject(obj, " - locked ", ThreadList::kInvalidThreadId); } void PrintObject(ObjPtr obj, const char* msg, uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) { if (obj == nullptr) { os << msg << "an unknown object"; } else { if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) && Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { // Getting the identity hashcode here would result in lock inflation and suspension of the // current thread, which isn't safe if this is the only runnable thread. os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast(obj.Ptr()), obj->PrettyTypeOf().c_str()); } else { // - waiting on <0x6008c468> (a java.lang.Class) // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread // suspension and move pretty_object. const std::string pretty_type(obj->PrettyTypeOf()); os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str()); } } if (owner_tid != ThreadList::kInvalidThreadId) { os << " held by thread " << owner_tid; } os << "\n"; } std::ostream& os; ArtMethod* last_method; int last_line_number; size_t repetition_count; }; static bool ShouldShowNativeStack(const Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) { ThreadState state = thread->GetState(); // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. if (state > kWaiting && state < kStarting) { return true; } // In an Object.wait variant or Thread.sleep? That's not interesting. if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { return false; } // Threads with no managed stack frames should be shown. if (!thread->HasManagedStack()) { return true; } // In some other native method? That's interesting. // We don't just check kNative because native methods will be in state kSuspended if they're // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the // thread-startup states if it's early enough in their life cycle (http://b/7432159). ArtMethod* current_method = thread->GetCurrentMethod(nullptr); return current_method != nullptr && current_method->IsNative(); } void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const { // If flip_function is not null, it means we have run a checkpoint // before the thread wakes up to execute the flip function and the // thread roots haven't been forwarded. So the following access to // the roots (locks or methods in the frames) would be bad. Run it // here. TODO: clean up. { Thread* this_thread = const_cast(this); Closure* flip_func = this_thread->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(this_thread); } } // Dumping the Java stack involves the verifier for locks. The verifier operates under the // assumption that there is no exception pending on entry. Thus, stash any pending exception. // Thread::Current() instead of this in case a thread is dumping the stack of another suspended // thread. ScopedExceptionStorage ses(Thread::Current()); std::unique_ptr context(Context::Create()); StackDumpVisitor dumper(os, const_cast(this), context.get(), !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks); dumper.WalkStack(); } void Thread::DumpStack(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map, bool force_dump_stack) const { // TODO: we call this code when dying but may not have suspended the thread ourself. The // IsSuspended check is therefore racy with the use for dumping (normally we inhibit // the race with the thread_suspend_count_lock_). bool dump_for_abort = (gAborting > 0); bool safe_to_dump = (this == Thread::Current() || IsSuspended()); if (!kIsDebugBuild) { // We always want to dump the stack for an abort, however, there is no point dumping another // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. safe_to_dump = (safe_to_dump || dump_for_abort); } if (safe_to_dump || force_dump_stack) { // If we're currently in native code, dump that stack before dumping the managed stack. if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) { ArtMethod* method = GetCurrentMethod(nullptr, /*check_suspended=*/ !force_dump_stack, /*abort_on_error=*/ !(dump_for_abort || force_dump_stack)); DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method); } DumpJavaStack(os, /*check_suspended=*/ !force_dump_stack, /*dump_locks=*/ !force_dump_stack); } else { os << "Not able to dump stack of thread that isn't suspended"; } } void Thread::ThreadExitCallback(void* arg) { Thread* self = reinterpret_cast(arg); if (self->tls32_.thread_exit_check_count == 0) { LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " "going to use a pthread_key_create destructor?): " << *self; CHECK(is_started_); #ifdef __BIONIC__ __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self; #else CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); Thread::self_tls_ = self; #endif self->tls32_.thread_exit_check_count = 1; } else { LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; } } void Thread::Startup() { CHECK(!is_started_); is_started_ = true; { // MutexLock to keep annotalysis happy. // // Note we use null for the thread because Thread::Current can // return garbage since (is_started_ == true) and // Thread::pthread_key_self_ is not yet initialized. // This was seen on glibc. MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); resume_cond_ = new ConditionVariable("Thread resumption condition variable", *Locks::thread_suspend_count_lock_); } // Allocate a TLS slot. CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); // Double-check the TLS slot allocation. if (pthread_getspecific(pthread_key_self_) != nullptr) { LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; } #ifndef __BIONIC__ CHECK(Thread::self_tls_ == nullptr); #endif } void Thread::FinishStartup() { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); // Finish attaching the main thread. ScopedObjectAccess soa(Thread::Current()); soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup()); soa.Self()->AssertNoPendingException(); runtime->RunRootClinits(soa.Self()); // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular // threads, this is done in Thread.start() on the Java side. soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup()); soa.Self()->AssertNoPendingException(); } void Thread::Shutdown() { CHECK(is_started_); is_started_ = false; CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); if (resume_cond_ != nullptr) { delete resume_cond_; resume_cond_ = nullptr; } } void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) { ScopedLocalRef thread_jobject( soa.Env(), soa.Env()->AddLocalReference(Thread::Current()->GetPeer())); ScopedLocalRef thread_group_jobject_scoped( soa.Env(), nullptr); jobject thread_group_jobject = thread_group; if (thread_group == nullptr || kIsDebugBuild) { // There is always a group set. Retrieve it. thread_group_jobject_scoped.reset( soa.Env()->GetObjectField(thread_jobject.get(), WellKnownClasses::java_lang_Thread_group)); thread_group_jobject = thread_group_jobject_scoped.get(); if (kIsDebugBuild && thread_group != nullptr) { CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject)); } } soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject, WellKnownClasses::java_lang_ThreadGroup, WellKnownClasses::java_lang_ThreadGroup_add, thread_jobject.get()); } Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), is_runtime_thread_(false) { wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock); wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); tlsPtr_.instrumentation_stack = new std::map; tlsPtr_.name = new std::string(kThreadNameDuringStartup); static_assert((sizeof(Thread) % 4) == 0U, "art::Thread has a size which is not a multiple of 4."); tls32_.state_and_flags.as_struct.flags = 0; tls32_.state_and_flags.as_struct.state = kNative; tls32_.interrupted.store(false, std::memory_order_relaxed); // Initialize with no permit; if the java Thread was unparked before being // started, it will unpark itself before calling into java code. tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed); memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); std::fill(tlsPtr_.rosalloc_runs, tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread, gc::allocator::RosAlloc::GetDedicatedFullRun()); tlsPtr_.checkpoint_function = nullptr; for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { tlsPtr_.active_suspend_barriers[i] = nullptr; } tlsPtr_.flip_function = nullptr; tlsPtr_.thread_local_mark_stack = nullptr; tls32_.is_transitioning_to_runnable = false; tls32_.use_mterp = false; ResetTlab(); } void Thread::NotifyInTheadList() { tls32_.use_mterp = interpreter::CanUseMterp(); } bool Thread::CanLoadClasses() const { return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable(); } bool Thread::IsStillStarting() const { // You might think you can check whether the state is kStarting, but for much of thread startup, // the thread is in kNative; it might also be in kVmWait. // You might think you can check whether the peer is null, but the peer is actually created and // assigned fairly early on, and needs to be. // It turns out that the last thing to change is the thread name; that's a good proxy for "has // this thread _ever_ entered kRunnable". return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || (*tlsPtr_.name == kThreadNameDuringStartup); } void Thread::AssertPendingException() const { CHECK(IsExceptionPending()) << "Pending exception expected."; } void Thread::AssertPendingOOMException() const { AssertPendingException(); auto* e = GetException(); CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass()) << e->Dump(); } void Thread::AssertNoPendingException() const { if (UNLIKELY(IsExceptionPending())) { ScopedObjectAccess soa(Thread::Current()); LOG(FATAL) << "No pending exception expected: " << GetException()->Dump(); } } void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { if (UNLIKELY(IsExceptionPending())) { ScopedObjectAccess soa(Thread::Current()); LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: " << GetException()->Dump(); } } class MonitorExitVisitor : public SingleRootVisitor { public: explicit MonitorExitVisitor(Thread* self) : self_(self) { } // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit. void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED) override NO_THREAD_SAFETY_ANALYSIS { if (self_->HoldsLock(entered_monitor)) { LOG(WARNING) << "Calling MonitorExit on object " << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")" << " left locked by native thread " << *Thread::Current() << " which is detaching"; entered_monitor->MonitorExit(self_); } } private: Thread* const self_; }; void Thread::Destroy() { Thread* self = this; DCHECK_EQ(self, Thread::Current()); if (tlsPtr_.jni_env != nullptr) { { ScopedObjectAccess soa(self); MonitorExitVisitor visitor(self); // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal)); } // Release locally held global references which releasing may require the mutator lock. if (tlsPtr_.jpeer != nullptr) { // If pthread_create fails we don't have a jni env here. tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); tlsPtr_.jpeer = nullptr; } if (tlsPtr_.class_loader_override != nullptr) { tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override); tlsPtr_.class_loader_override = nullptr; } } if (tlsPtr_.opeer != nullptr) { ScopedObjectAccess soa(self); // We may need to call user-supplied managed code, do this before final clean-up. HandleUncaughtExceptions(soa); RemoveFromThreadGroup(soa); Runtime* runtime = Runtime::Current(); if (runtime != nullptr) { runtime->GetRuntimeCallbacks()->ThreadDeath(self); } // this.nativePeer = 0; if (Runtime::Current()->IsActiveTransaction()) { jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer) ->SetLong(tlsPtr_.opeer, 0); } else { jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer) ->SetLong(tlsPtr_.opeer, 0); } // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone // who is waiting. ObjPtr lock = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer); // (This conditional is only needed for tests, where Thread.lock won't have been set.) if (lock != nullptr) { StackHandleScope<1> hs(self); Handle h_obj(hs.NewHandle(lock)); ObjectLock locker(self, h_obj); locker.NotifyAll(); } tlsPtr_.opeer = nullptr; } { ScopedObjectAccess soa(self); Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); } // Mark-stack revocation must be performed at the very end. No // checkpoint/flip-function or read-barrier should be called after this. if (kUseReadBarrier) { Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this); } } Thread::~Thread() { CHECK(tlsPtr_.class_loader_override == nullptr); CHECK(tlsPtr_.jpeer == nullptr); CHECK(tlsPtr_.opeer == nullptr); bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? if (initialized) { delete tlsPtr_.jni_env; tlsPtr_.jni_env = nullptr; } CHECK_NE(GetState(), kRunnable); CHECK(!ReadFlag(kCheckpointRequest)); CHECK(!ReadFlag(kEmptyCheckpointRequest)); CHECK(tlsPtr_.checkpoint_function == nullptr); CHECK_EQ(checkpoint_overflow_.size(), 0u); CHECK(tlsPtr_.flip_function == nullptr); CHECK_EQ(tls32_.is_transitioning_to_runnable, false); // Make sure we processed all deoptimization requests. CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization"; CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) << "Not all deoptimized frames have been consumed by the debugger."; // We may be deleting a still born thread. SetStateUnsafe(kTerminated); delete wait_cond_; delete wait_mutex_; if (tlsPtr_.long_jump_context != nullptr) { delete tlsPtr_.long_jump_context; } if (initialized) { CleanupCpu(); } delete tlsPtr_.instrumentation_stack; delete tlsPtr_.name; delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample; Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this); TearDownAlternateSignalStack(); } void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) { if (!IsExceptionPending()) { return; } ScopedLocalRef peer(tlsPtr_.jni_env, soa.AddLocalReference(tlsPtr_.opeer)); ScopedThreadStateChange tsc(this, kNative); // Get and clear the exception. ScopedLocalRef exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred()); tlsPtr_.jni_env->ExceptionClear(); // Call the Thread instance's dispatchUncaughtException(Throwable) tlsPtr_.jni_env->CallVoidMethod(peer.get(), WellKnownClasses::java_lang_Thread_dispatchUncaughtException, exception.get()); // If the dispatchUncaughtException threw, clear that exception too. tlsPtr_.jni_env->ExceptionClear(); } void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) { // this.group.removeThread(this); // group can be null if we're in the compiler or a test. ObjPtr ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group) ->GetObject(tlsPtr_.opeer); if (ogroup != nullptr) { ScopedLocalRef group(soa.Env(), soa.AddLocalReference(ogroup)); ScopedLocalRef peer(soa.Env(), soa.AddLocalReference(tlsPtr_.opeer)); ScopedThreadStateChange tsc(soa.Self(), kNative); tlsPtr_.jni_env->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread, peer.get()); } } bool Thread::HandleScopeContains(jobject obj) const { StackReference* hs_entry = reinterpret_cast*>(obj); for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) { if (cur->Contains(hs_entry)) { return true; } } // JNI code invoked from portable code uses shadow frames rather than the handle scope. return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry); } void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) { BufferedRootVisitor buffered_visitor( visitor, RootInfo(kRootNativeStack, thread_id)); for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { cur->VisitRoots(buffered_visitor); } } ObjPtr Thread::DecodeJObject(jobject obj) const { if (obj == nullptr) { return nullptr; } IndirectRef ref = reinterpret_cast(obj); IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref); ObjPtr result; bool expect_null = false; // The "kinds" below are sorted by the frequency we expect to encounter them. if (kind == kLocal) { IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_; // Local references do not need a read barrier. result = locals.Get(ref); } else if (kind == kHandleScopeOrInvalid) { // TODO: make stack indirect reference table lookup more efficient. // Check if this is a local reference in the handle scope. if (LIKELY(HandleScopeContains(obj))) { // Read from handle scope. result = reinterpret_cast*>(obj)->AsMirrorPtr(); VerifyObject(result); } else { tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj); expect_null = true; result = nullptr; } } else if (kind == kGlobal) { result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref); } else { DCHECK_EQ(kind, kWeakGlobal); result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast(this), ref); if (Runtime::Current()->IsClearedJniWeakGlobal(result)) { // This is a special case where it's okay to return null. expect_null = true; result = nullptr; } } if (UNLIKELY(!expect_null && result == nullptr)) { tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p", ToStr(kind).c_str(), obj); } return result; } bool Thread::IsJWeakCleared(jweak obj) const { CHECK(obj != nullptr); IndirectRef ref = reinterpret_cast(obj); IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref); CHECK_EQ(kind, kWeakGlobal); return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast(this), ref); } // Implements java.lang.Thread.interrupted. bool Thread::Interrupted() { DCHECK_EQ(Thread::Current(), this); // No other thread can concurrently reset the interrupted flag. bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst); if (interrupted) { tls32_.interrupted.store(false, std::memory_order_seq_cst); } return interrupted; } // Implements java.lang.Thread.isInterrupted. bool Thread::IsInterrupted() { return tls32_.interrupted.load(std::memory_order_seq_cst); } void Thread::Interrupt(Thread* self) { { MutexLock mu(self, *wait_mutex_); if (tls32_.interrupted.load(std::memory_order_seq_cst)) { return; } tls32_.interrupted.store(true, std::memory_order_seq_cst); NotifyLocked(self); } Unpark(); } void Thread::Notify() { Thread* self = Thread::Current(); MutexLock mu(self, *wait_mutex_); NotifyLocked(self); } void Thread::NotifyLocked(Thread* self) { if (wait_monitor_ != nullptr) { wait_cond_->Signal(self); } } void Thread::SetClassLoaderOverride(jobject class_loader_override) { if (tlsPtr_.class_loader_override != nullptr) { GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override); } tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override); } using ArtMethodDexPcPair = std::pair; // Counts the stack trace depth and also fetches the first max_saved_frames frames. class FetchStackTraceVisitor : public StackVisitor { public: explicit FetchStackTraceVisitor(Thread* thread, ArtMethodDexPcPair* saved_frames = nullptr, size_t max_saved_frames = 0) REQUIRES_SHARED(Locks::mutator_lock_) : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), saved_frames_(saved_frames), max_saved_frames_(max_saved_frames) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { // We want to skip frames up to and including the exception's constructor. // Note we also skip the frame if it doesn't have a method (namely the callee // save frame) ArtMethod* m = GetMethod(); if (skipping_ && !m->IsRuntimeMethod() && !GetClassRoot()->IsAssignableFrom(m->GetDeclaringClass())) { skipping_ = false; } if (!skipping_) { if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). if (depth_ < max_saved_frames_) { saved_frames_[depth_].first = m; saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc(); } ++depth_; } } else { ++skip_depth_; } return true; } uint32_t GetDepth() const { return depth_; } uint32_t GetSkipDepth() const { return skip_depth_; } private: uint32_t depth_ = 0; uint32_t skip_depth_ = 0; bool skipping_ = true; ArtMethodDexPcPair* saved_frames_; const size_t max_saved_frames_; DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor); }; class BuildInternalStackTraceVisitor : public StackVisitor { public: BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), self_(self), skip_depth_(skip_depth), pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {} bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) { // Allocate method trace as an object array where the first element is a pointer array that // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring // class of the ArtMethod pointers. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); StackHandleScope<1> hs(self_); ObjPtr array_class = GetClassRoot>(class_linker); // The first element is the methods and dex pc array, the other elements are declaring classes // for the methods to ensure classes in the stack trace don't get unloaded. Handle> trace( hs.NewHandle( mirror::ObjectArray::Alloc(hs.Self(), array_class, depth + 1))); if (trace == nullptr) { // Acquire uninterruptible_ in all paths. self_->StartAssertNoThreadSuspension("Building internal stack trace"); self_->AssertPendingOOMException(); return false; } ObjPtr methods_and_pcs = class_linker->AllocPointerArray(self_, depth * 2); const char* last_no_suspend_cause = self_->StartAssertNoThreadSuspension("Building internal stack trace"); if (methods_and_pcs == nullptr) { self_->AssertPendingOOMException(); return false; } trace->Set(0, methods_and_pcs); trace_ = trace.Get(); // If We are called from native, use non-transactional mode. CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; return true; } virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) { self_->EndAssertNoThreadSuspension(nullptr); } bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { if (trace_ == nullptr) { return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. } if (skip_depth_ > 0) { skip_depth_--; return true; } ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { return true; // Ignore runtime frames (in particular callee save). } AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc()); return true; } void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr methods_and_pcs = GetTraceMethodsAndPCs(); methods_and_pcs->SetElementPtrSize( count_, method, pointer_size_); methods_and_pcs->SetElementPtrSize( methods_and_pcs->GetLength() / 2 + count_, dex_pc, pointer_size_); // Save the declaring class of the method to ensure that the declaring classes of the methods // do not get unloaded while the stack trace is live. trace_->Set( count_ + 1, method->GetDeclaringClass()); ++count_; } ObjPtr GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) { return ObjPtr::DownCast(trace_->Get(0)); } mirror::ObjectArray* GetInternalStackTrace() const { return trace_; } private: Thread* const self_; // How many more frames to skip. int32_t skip_depth_; // Current position down stack trace. uint32_t count_ = 0; // An object array where the first element is a pointer array that contains the ArtMethod // pointers on the stack and dex PCs. The rest of the elements are the declaring class of // the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of the // i'th frame. We're initializing a newly allocated trace, so we do not need to record that // under a transaction. If the transaction is aborted, the whole trace shall be unreachable. mirror::ObjectArray* trace_ = nullptr; // For cross compilation. const PointerSize pointer_size_; DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor); }; jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { // Compute depth of stack, save frames if possible to avoid needing to recompute many. constexpr size_t kMaxSavedFrames = 256; std::unique_ptr saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]); FetchStackTraceVisitor count_visitor(const_cast(this), &saved_frames[0], kMaxSavedFrames); count_visitor.WalkStack(); const uint32_t depth = count_visitor.GetDepth(); const uint32_t skip_depth = count_visitor.GetSkipDepth(); // Build internal stack trace. BuildInternalStackTraceVisitor build_trace_visitor( soa.Self(), const_cast(this), skip_depth); if (!build_trace_visitor.Init(depth)) { return nullptr; // Allocation failed. } // If we saved all of the frames we don't even need to do the actual stack walk. This is faster // than doing the stack walk twice. if (depth < kMaxSavedFrames) { for (size_t i = 0; i < depth; ++i) { build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second); } } else { build_trace_visitor.WalkStack(); } mirror::ObjectArray* trace = build_trace_visitor.GetInternalStackTrace(); if (kIsDebugBuild) { ObjPtr trace_methods = build_trace_visitor.GetTraceMethodsAndPCs(); // Second half of trace_methods is dex PCs. for (uint32_t i = 0; i < static_cast(trace_methods->GetLength() / 2); ++i) { auto* method = trace_methods->GetElementPtrSize( i, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); CHECK(method != nullptr); } } return soa.AddLocalReference(trace); } bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr exception) const { // Only count the depth since we do not pass a stack frame array as an argument. FetchStackTraceVisitor count_visitor(const_cast(this)); count_visitor.WalkStack(); return count_visitor.GetDepth() == static_cast(exception->GetStackDepth()); } static ObjPtr CreateStackTraceElement( const ScopedObjectAccessAlreadyRunnable& soa, ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { int32_t line_number; StackHandleScope<3> hs(soa.Self()); auto class_name_object(hs.NewHandle(nullptr)); auto source_name_object(hs.NewHandle(nullptr)); if (method->IsProxyMethod()) { line_number = -1; class_name_object.Assign(method->GetDeclaringClass()->GetName()); // source_name_object intentionally left null for proxy methods } else { line_number = method->GetLineNumFromDexPC(dex_pc); // Allocate element, potentially triggering GC // TODO: reuse class_name_object via Class::name_? const char* descriptor = method->GetDeclaringClassDescriptor(); CHECK(descriptor != nullptr); std::string class_name(PrettyDescriptor(descriptor)); class_name_object.Assign( mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); if (class_name_object == nullptr) { soa.Self()->AssertPendingOOMException(); return nullptr; } const char* source_file = method->GetDeclaringClassSourceFile(); if (line_number == -1) { // Make the line_number field of StackTraceElement hold the dex pc. // source_name_object is intentionally left null if we failed to map the dex pc to // a line number (most probably because there is no debug info). See b/30183883. line_number = dex_pc; } else { if (source_file != nullptr) { source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); if (source_name_object == nullptr) { soa.Self()->AssertPendingOOMException(); return nullptr; } } } } const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName(); CHECK(method_name != nullptr); Handle method_name_object( hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); if (method_name_object == nullptr) { return nullptr; } return mirror::StackTraceElement::Alloc(soa.Self(), class_name_object, method_name_object, source_name_object, line_number); } jobjectArray Thread::InternalStackTraceToStackTraceElementArray( const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array, int* stack_depth) { // Decode the internal stack trace into the depth, method trace and PC trace. // Subtract one for the methods and PC trace. int32_t depth = soa.Decode(internal)->GetLength() - 1; DCHECK_GE(depth, 0); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); jobjectArray result; if (output_array != nullptr) { // Reuse the array we were given. result = output_array; // ...adjusting the number of frames we'll write to not exceed the array length. const int32_t traces_length = soa.Decode>(result)->GetLength(); depth = std::min(depth, traces_length); } else { // Create java_trace array and place in local reference table ObjPtr> java_traces = class_linker->AllocStackTraceElementArray(soa.Self(), depth); if (java_traces == nullptr) { return nullptr; } result = soa.AddLocalReference(java_traces); } if (stack_depth != nullptr) { *stack_depth = depth; } for (int32_t i = 0; i < depth; ++i) { ObjPtr> decoded_traces = soa.Decode(internal)->AsObjectArray(); // Methods and dex PC trace is element 0. DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray()); const ObjPtr method_trace = ObjPtr::DownCast(decoded_traces->Get(0)); // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) ArtMethod* method = method_trace->GetElementPtrSize(i, kRuntimePointerSize); uint32_t dex_pc = method_trace->GetElementPtrSize( i + method_trace->GetLength() / 2, kRuntimePointerSize); const ObjPtr obj = CreateStackTraceElement(soa, method, dex_pc); if (obj == nullptr) { return nullptr; } // We are called from native: use non-transactional mode. soa.Decode>(result)->Set(i, obj); } return result; } jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { // This code allocates. Do not allow it to operate with a pending exception. if (IsExceptionPending()) { return nullptr; } // If flip_function is not null, it means we have run a checkpoint // before the thread wakes up to execute the flip function and the // thread roots haven't been forwarded. So the following access to // the roots (locks or methods in the frames) would be bad. Run it // here. TODO: clean up. // Note: copied from DumpJavaStack. { Thread* this_thread = const_cast(this); Closure* flip_func = this_thread->GetFlipFunction(); if (flip_func != nullptr) { flip_func->Run(this_thread); } } class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor { public: CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in, Thread* self, Context* context) : MonitorObjectsStackVisitor(self, context), wait_jobject_(soaa_in.Env(), nullptr), block_jobject_(soaa_in.Env(), nullptr), soaa_(soaa_in) {} protected: VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr obj = CreateStackTraceElement( soaa_, m, GetDexPc(/* abort on error */ false)); if (obj == nullptr) { return VisitMethodResult::kEndStackWalk; } stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference(obj.Ptr())); return VisitMethodResult::kContinueMethod; } VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override { lock_objects_.push_back({}); lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_); DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size()); return VisitMethodResult::kContinueMethod; } void VisitWaitingObject(ObjPtr obj, ThreadState state ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { wait_jobject_.reset(soaa_.AddLocalReference(obj)); } void VisitSleepingObject(ObjPtr obj) override REQUIRES_SHARED(Locks::mutator_lock_) { wait_jobject_.reset(soaa_.AddLocalReference(obj)); } void VisitBlockedOnObject(ObjPtr obj, ThreadState state ATTRIBUTE_UNUSED, uint32_t owner_tid ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { block_jobject_.reset(soaa_.AddLocalReference(obj)); } void VisitLockedObject(ObjPtr obj) override REQUIRES_SHARED(Locks::mutator_lock_) { frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference(obj)); } public: std::vector> stack_trace_elements_; ScopedLocalRef wait_jobject_; ScopedLocalRef block_jobject_; std::vector>> lock_objects_; private: const ScopedObjectAccessAlreadyRunnable& soaa_; std::vector> frame_lock_objects_; }; std::unique_ptr context(Context::Create()); CollectFramesAndLocksStackVisitor dumper(soa, const_cast(this), context.get()); dumper.WalkStack(); // There should not be a pending exception. Otherwise, return with it pending. if (IsExceptionPending()) { return nullptr; } // Now go and create Java arrays. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); StackHandleScope<6> hs(soa.Self()); Handle h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass( soa.Self(), "[Ldalvik/system/AnnotatedStackTraceElement;")); if (h_aste_array_class == nullptr) { return nullptr; } Handle h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType()); Handle h_o_array_class = hs.NewHandle(GetClassRoot>(class_linker)); DCHECK(h_o_array_class != nullptr); // Class roots must be already initialized. // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 . class_linker->EnsureInitialized(soa.Self(), h_aste_class, /* can_init_fields= */ true, /* can_init_parents= */ true); if (soa.Self()->IsExceptionPending()) { // This should not fail in a healthy runtime. return nullptr; } ArtField* stack_trace_element_field = h_aste_class->FindField( soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;"); DCHECK(stack_trace_element_field != nullptr); ArtField* held_locks_field = h_aste_class->FindField( soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;"); DCHECK(held_locks_field != nullptr); ArtField* blocked_on_field = h_aste_class->FindField( soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;"); DCHECK(blocked_on_field != nullptr); size_t length = dumper.stack_trace_elements_.size(); ObjPtr> array = mirror::ObjectArray::Alloc(soa.Self(), h_aste_array_class.Get(), length); if (array == nullptr) { soa.Self()->AssertPendingOOMException(); return nullptr; } ScopedLocalRef result(soa.Env(), soa.Env()->AddLocalReference(array)); MutableHandle handle(hs.NewHandle(nullptr)); MutableHandle> handle2( hs.NewHandle>(nullptr)); for (size_t i = 0; i != length; ++i) { handle.Assign(h_aste_class->AllocObject(soa.Self())); if (handle == nullptr) { soa.Self()->AssertPendingOOMException(); return nullptr; } // Set stack trace element. stack_trace_element_field->SetObject( handle.Get(), soa.Decode(dumper.stack_trace_elements_[i].get())); // Create locked-on array. if (!dumper.lock_objects_[i].empty()) { handle2.Assign(mirror::ObjectArray::Alloc(soa.Self(), h_o_array_class.Get(), dumper.lock_objects_[i].size())); if (handle2 == nullptr) { soa.Self()->AssertPendingOOMException(); return nullptr; } int32_t j = 0; for (auto& scoped_local : dumper.lock_objects_[i]) { if (scoped_local == nullptr) { continue; } handle2->Set(j, soa.Decode(scoped_local.get())); DCHECK(!soa.Self()->IsExceptionPending()); j++; } held_locks_field->SetObject(handle.Get(), handle2.Get()); } // Set blocked-on object. if (i == 0) { if (dumper.block_jobject_ != nullptr) { blocked_on_field->SetObject( handle.Get(), soa.Decode(dumper.block_jobject_.get())); } } ScopedLocalRef elem(soa.Env(), soa.AddLocalReference(handle.Get())); soa.Env()->SetObjectArrayElement(result.get(), i, elem.get()); DCHECK(!soa.Self()->IsExceptionPending()); } return result.release(); } void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { va_list args; va_start(args, fmt); ThrowNewExceptionV(exception_class_descriptor, fmt, args); va_end(args); } void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) { std::string msg; StringAppendV(&msg, fmt, ap); ThrowNewException(exception_class_descriptor, msg.c_str()); } void Thread::ThrowNewException(const char* exception_class_descriptor, const char* msg) { // Callers should either clear or call ThrowNewWrappedException. AssertNoPendingExceptionForNewException(msg); ThrowNewWrappedException(exception_class_descriptor, msg); } static ObjPtr GetCurrentClassLoader(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* method = self->GetCurrentMethod(nullptr); return method != nullptr ? method->GetDeclaringClass()->GetClassLoader() : nullptr; } void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) { DCHECK_EQ(this, Thread::Current()); ScopedObjectAccessUnchecked soa(this); StackHandleScope<3> hs(soa.Self()); Handle class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self()))); ScopedLocalRef cause(GetJniEnv(), soa.AddLocalReference(GetException())); ClearException(); Runtime* runtime = Runtime::Current(); auto* cl = runtime->GetClassLinker(); Handle exception_class( hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader))); if (UNLIKELY(exception_class == nullptr)) { CHECK(IsExceptionPending()); LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); return; } if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true, true))) { DCHECK(IsExceptionPending()); return; } DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); Handle exception( hs.NewHandle(ObjPtr::DownCast(exception_class->AllocObject(this)))); // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. if (exception == nullptr) { Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one. SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException()); return; } // Choose an appropriate constructor and set up the arguments. const char* signature; ScopedLocalRef msg_string(GetJniEnv(), nullptr); if (msg != nullptr) { // Ensure we remember this and the method over the String allocation. msg_string.reset( soa.AddLocalReference(mirror::String::AllocFromModifiedUtf8(this, msg))); if (UNLIKELY(msg_string.get() == nullptr)) { CHECK(IsExceptionPending()); // OOME. return; } if (cause.get() == nullptr) { signature = "(Ljava/lang/String;)V"; } else { signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; } } else { if (cause.get() == nullptr) { signature = "()V"; } else { signature = "(Ljava/lang/Throwable;)V"; } } ArtMethod* exception_init_method = exception_class->FindConstructor(signature, cl->GetImagePointerSize()); CHECK(exception_init_method != nullptr) << "No " << signature << " in " << PrettyDescriptor(exception_class_descriptor); if (UNLIKELY(!runtime->IsStarted())) { // Something is trying to throw an exception without a started runtime, which is the common // case in the compiler. We won't be able to invoke the constructor of the exception, so set // the exception fields directly. if (msg != nullptr) { exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString()); } if (cause.get() != nullptr) { exception->SetCause(DecodeJObject(cause.get())->AsThrowable()); } ScopedLocalRef trace(GetJniEnv(), CreateInternalStackTrace(soa)); if (trace.get() != nullptr) { exception->SetStackState(DecodeJObject(trace.get()).Ptr()); } SetException(exception.Get()); } else { jvalue jv_args[2]; size_t i = 0; if (msg != nullptr) { jv_args[i].l = msg_string.get(); ++i; } if (cause.get() != nullptr) { jv_args[i].l = cause.get(); ++i; } ScopedLocalRef ref(soa.Env(), soa.AddLocalReference(exception.Get())); InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args); if (LIKELY(!IsExceptionPending())) { SetException(exception.Get()); } } } void Thread::ThrowOutOfMemoryError(const char* msg) { LOG(WARNING) << "Throwing OutOfMemoryError " << '"' << msg << '"' << " (VmSize " << GetProcessStatus("VmSize") << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")"); if (!tls32_.throwing_OutOfMemoryError) { tls32_.throwing_OutOfMemoryError = true; ThrowNewException("Ljava/lang/OutOfMemoryError;", msg); tls32_.throwing_OutOfMemoryError = false; } else { Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one. SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME()); } } Thread* Thread::CurrentFromGdb() { return Thread::Current(); } void Thread::DumpFromGdb() const { std::ostringstream ss; Dump(ss); std::string str(ss.str()); // log to stderr for debugging command line processes std::cerr << str; #ifdef ART_TARGET_ANDROID // log to logcat for debugging frameworks processes LOG(INFO) << str; #endif } // Explicitly instantiate 32 and 64bit thread offset dumping support. template void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset); template void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset); template void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { #define DO_THREAD_OFFSET(x, y) \ if (offset == (x).Uint32Value()) { \ os << (y); \ return; \ } DO_THREAD_OFFSET(ThreadFlagsOffset(), "state_and_flags") DO_THREAD_OFFSET(CardTableOffset(), "card_table") DO_THREAD_OFFSET(ExceptionOffset(), "exception") DO_THREAD_OFFSET(PeerOffset(), "peer"); DO_THREAD_OFFSET(JniEnvOffset(), "jni_env") DO_THREAD_OFFSET(SelfOffset(), "self") DO_THREAD_OFFSET(StackEndOffset(), "stack_end") DO_THREAD_OFFSET(ThinLockIdOffset(), "thin_lock_thread_id") DO_THREAD_OFFSET(IsGcMarkingOffset(), "is_gc_marking") DO_THREAD_OFFSET(TopOfManagedStackOffset(), "top_quick_frame_method") DO_THREAD_OFFSET(TopShadowFrameOffset(), "top_shadow_frame") DO_THREAD_OFFSET(TopHandleScopeOffset(), "top_handle_scope") DO_THREAD_OFFSET(ThreadSuspendTriggerOffset(), "suspend_trigger") #undef DO_THREAD_OFFSET #define JNI_ENTRY_POINT_INFO(x) \ if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ os << #x; \ return; \ } JNI_ENTRY_POINT_INFO(pDlsymLookup) JNI_ENTRY_POINT_INFO(pDlsymLookupCritical) #undef JNI_ENTRY_POINT_INFO #define QUICK_ENTRY_POINT_INFO(x) \ if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ os << #x; \ return; \ } QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8) QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16) QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32) QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64) QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks) QUICK_ENTRY_POINT_INFO(pAllocStringObject) QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes) QUICK_ENTRY_POINT_INFO(pAllocStringFromChars) QUICK_ENTRY_POINT_INFO(pAllocStringFromString) QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) QUICK_ENTRY_POINT_INFO(pCheckInstanceOf) QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess) QUICK_ENTRY_POINT_INFO(pResolveType) QUICK_ENTRY_POINT_INFO(pResolveString) QUICK_ENTRY_POINT_INFO(pSet8Instance) QUICK_ENTRY_POINT_INFO(pSet8Static) QUICK_ENTRY_POINT_INFO(pSet16Instance) QUICK_ENTRY_POINT_INFO(pSet16Static) QUICK_ENTRY_POINT_INFO(pSet32Instance) QUICK_ENTRY_POINT_INFO(pSet32Static) QUICK_ENTRY_POINT_INFO(pSet64Instance) QUICK_ENTRY_POINT_INFO(pSet64Static) QUICK_ENTRY_POINT_INFO(pSetObjInstance) QUICK_ENTRY_POINT_INFO(pSetObjStatic) QUICK_ENTRY_POINT_INFO(pGetByteInstance) QUICK_ENTRY_POINT_INFO(pGetBooleanInstance) QUICK_ENTRY_POINT_INFO(pGetByteStatic) QUICK_ENTRY_POINT_INFO(pGetBooleanStatic) QUICK_ENTRY_POINT_INFO(pGetShortInstance) QUICK_ENTRY_POINT_INFO(pGetCharInstance) QUICK_ENTRY_POINT_INFO(pGetShortStatic) QUICK_ENTRY_POINT_INFO(pGetCharStatic) QUICK_ENTRY_POINT_INFO(pGet32Instance) QUICK_ENTRY_POINT_INFO(pGet32Static) QUICK_ENTRY_POINT_INFO(pGet64Instance) QUICK_ENTRY_POINT_INFO(pGet64Static) QUICK_ENTRY_POINT_INFO(pGetObjInstance) QUICK_ENTRY_POINT_INFO(pGetObjStatic) QUICK_ENTRY_POINT_INFO(pAputObject) QUICK_ENTRY_POINT_INFO(pJniMethodStart) QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized) QUICK_ENTRY_POINT_INFO(pJniMethodEnd) QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized) QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference) QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized) QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) QUICK_ENTRY_POINT_INFO(pLockObject) QUICK_ENTRY_POINT_INFO(pUnlockObject) QUICK_ENTRY_POINT_INFO(pCmpgDouble) QUICK_ENTRY_POINT_INFO(pCmpgFloat) QUICK_ENTRY_POINT_INFO(pCmplDouble) QUICK_ENTRY_POINT_INFO(pCmplFloat) QUICK_ENTRY_POINT_INFO(pCos) QUICK_ENTRY_POINT_INFO(pSin) QUICK_ENTRY_POINT_INFO(pAcos) QUICK_ENTRY_POINT_INFO(pAsin) QUICK_ENTRY_POINT_INFO(pAtan) QUICK_ENTRY_POINT_INFO(pAtan2) QUICK_ENTRY_POINT_INFO(pCbrt) QUICK_ENTRY_POINT_INFO(pCosh) QUICK_ENTRY_POINT_INFO(pExp) QUICK_ENTRY_POINT_INFO(pExpm1) QUICK_ENTRY_POINT_INFO(pHypot) QUICK_ENTRY_POINT_INFO(pLog) QUICK_ENTRY_POINT_INFO(pLog10) QUICK_ENTRY_POINT_INFO(pNextAfter) QUICK_ENTRY_POINT_INFO(pSinh) QUICK_ENTRY_POINT_INFO(pTan) QUICK_ENTRY_POINT_INFO(pTanh) QUICK_ENTRY_POINT_INFO(pFmod) QUICK_ENTRY_POINT_INFO(pL2d) QUICK_ENTRY_POINT_INFO(pFmodf) QUICK_ENTRY_POINT_INFO(pL2f) QUICK_ENTRY_POINT_INFO(pD2iz) QUICK_ENTRY_POINT_INFO(pF2iz) QUICK_ENTRY_POINT_INFO(pIdivmod) QUICK_ENTRY_POINT_INFO(pD2l) QUICK_ENTRY_POINT_INFO(pF2l) QUICK_ENTRY_POINT_INFO(pLdiv) QUICK_ENTRY_POINT_INFO(pLmod) QUICK_ENTRY_POINT_INFO(pLmul) QUICK_ENTRY_POINT_INFO(pShlLong) QUICK_ENTRY_POINT_INFO(pShrLong) QUICK_ENTRY_POINT_INFO(pUshrLong) QUICK_ENTRY_POINT_INFO(pIndexOf) QUICK_ENTRY_POINT_INFO(pStringCompareTo) QUICK_ENTRY_POINT_INFO(pMemcpy) QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) QUICK_ENTRY_POINT_INFO(pInvokePolymorphic) QUICK_ENTRY_POINT_INFO(pTestSuspend) QUICK_ENTRY_POINT_INFO(pDeliverException) QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) QUICK_ENTRY_POINT_INFO(pThrowDivZero) QUICK_ENTRY_POINT_INFO(pThrowNullPointer) QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) QUICK_ENTRY_POINT_INFO(pDeoptimize) QUICK_ENTRY_POINT_INFO(pA64Load) QUICK_ENTRY_POINT_INFO(pA64Store) QUICK_ENTRY_POINT_INFO(pNewEmptyString) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset) QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset) QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C) QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII) QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC) QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints) QUICK_ENTRY_POINT_INFO(pNewStringFromString) QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer) QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder) QUICK_ENTRY_POINT_INFO(pReadBarrierJni) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28) QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29) QUICK_ENTRY_POINT_INFO(pReadBarrierSlow) QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow) QUICK_ENTRY_POINT_INFO(pJniMethodFastStart) QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd) #undef QUICK_ENTRY_POINT_INFO os << offset; } void Thread::QuickDeliverException() { // Get exception from thread. ObjPtr exception = GetException(); CHECK(exception != nullptr); if (exception == GetDeoptimizationException()) { artDeoptimize(this); UNREACHABLE(); } ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr()); // This is a real exception: let the instrumentation know about it. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (instrumentation->HasExceptionThrownListeners() && IsExceptionThrownByCurrentMethod(exception)) { // Instrumentation may cause GC so keep the exception object safe. StackHandleScope<1> hs(this); HandleWrapperObjPtr h_exception(hs.NewHandleWrapper(&exception)); instrumentation->ExceptionThrownEvent(this, exception); } // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something? // Note: we do this *after* reporting the exception to instrumentation in case it now requires // deoptimization. It may happen if a debugger is attached and requests new events (single-step, // breakpoint, ...) when the exception is reported. // // Note we need to check for both force_frame_pop and force_retry_instruction. The first is // expected to happen fairly regularly but the second can only happen if we are using // instrumentation trampolines (for example with DDMS tracing). That forces us to do deopt later // and see every frame being popped. We don't need to handle it any differently. ShadowFrame* cf; bool force_deopt = false; if (Runtime::Current()->AreNonStandardExitsEnabled() || kIsDebugBuild) { NthCallerVisitor visitor(this, 0, false); visitor.WalkStack(); cf = visitor.GetCurrentShadowFrame(); if (cf == nullptr) { cf = FindDebuggerShadowFrame(visitor.GetFrameId()); } bool force_frame_pop = cf != nullptr && cf->GetForcePopFrame(); bool force_retry_instr = cf != nullptr && cf->GetForceRetryInstruction(); if (kIsDebugBuild && force_frame_pop) { DCHECK(Runtime::Current()->AreNonStandardExitsEnabled()); NthCallerVisitor penultimate_visitor(this, 1, false); penultimate_visitor.WalkStack(); ShadowFrame* penultimate_frame = penultimate_visitor.GetCurrentShadowFrame(); if (penultimate_frame == nullptr) { penultimate_frame = FindDebuggerShadowFrame(penultimate_visitor.GetFrameId()); } } if (force_retry_instr) { DCHECK(Runtime::Current()->AreNonStandardExitsEnabled()); } force_deopt = force_frame_pop || force_retry_instr; } if (Dbg::IsForcedInterpreterNeededForException(this) || force_deopt || IsForceInterpreter()) { NthCallerVisitor visitor(this, 0, false); visitor.WalkStack(); if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) { // method_type shouldn't matter due to exception handling. const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault; // Save the exception into the deoptimization context so it can be restored // before entering the interpreter. if (force_deopt) { VLOG(deopt) << "Deopting " << cf->GetMethod()->PrettyMethod() << " for frame-pop"; DCHECK(Runtime::Current()->AreNonStandardExitsEnabled()); // Get rid of the exception since we are doing a framepop instead. LOG(WARNING) << "Suppressing pending exception for retry-instruction/frame-pop: " << exception->Dump(); ClearException(); } PushDeoptimizationContext( JValue(), /* is_reference= */ false, (force_deopt ? nullptr : exception), /* from_code= */ false, method_type); artDeoptimize(this); UNREACHABLE(); } else if (visitor.caller != nullptr) { LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method " << visitor.caller->PrettyMethod(); } } // Don't leave exception visible while we try to find the handler, which may cause class // resolution. ClearException(); QuickExceptionHandler exception_handler(this, false); exception_handler.FindCatch(exception); if (exception_handler.GetClearException()) { // Exception was cleared as part of delivery. DCHECK(!IsExceptionPending()); } else { // Exception was put back with a throw location. DCHECK(IsExceptionPending()); // Check the to-space invariant on the re-installed exception (if applicable). ReadBarrier::MaybeAssertToSpaceInvariant(GetException()); } exception_handler.DoLongJump(); } Context* Thread::GetLongJumpContext() { Context* result = tlsPtr_.long_jump_context; if (result == nullptr) { result = Context::Create(); } else { tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. result->Reset(); } return result; } ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out, bool check_suspended, bool abort_on_error) const { // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is // so we don't abort in a special situation (thinlocked monitor) when dumping the Java // stack. ArtMethod* method = nullptr; uint32_t dex_pc = dex::kDexNoIndex; StackVisitor::WalkStack( [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = visitor->GetMethod(); if (m->IsRuntimeMethod()) { // Continue if this is a runtime method. return true; } method = m; dex_pc = visitor->GetDexPc(abort_on_error); return false; }, const_cast(this), /* context= */ nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames, check_suspended); if (dex_pc_out != nullptr) { *dex_pc_out = dex_pc; } return method; } bool Thread::HoldsLock(ObjPtr object) const { return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId(); } extern std::vector*> GetProxyReferenceArguments(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_); // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). template class ReferenceMapVisitor : public StackVisitor { public: ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor) REQUIRES_SHARED(Locks::mutator_lock_) // We are visiting the references in compiled frames, so we do not need // to know the inlined frames. : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames), visitor_(visitor) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { if (false) { LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod()) << StringPrintf("@ PC:%04x", GetDexPc()); } ShadowFrame* shadow_frame = GetCurrentShadowFrame(); if (shadow_frame != nullptr) { VisitShadowFrame(shadow_frame); } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) { VisitNterpFrame(); } else { VisitQuickFrame(); } return true; } void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = shadow_frame->GetMethod(); VisitDeclaringClass(m); DCHECK(m != nullptr); size_t num_regs = shadow_frame->NumberOfVRegs(); // handle scope for JNI or References for interpreter. for (size_t reg = 0; reg < num_regs; ++reg) { mirror::Object* ref = shadow_frame->GetVRegReference(reg); if (ref != nullptr) { mirror::Object* new_ref = ref; visitor_(&new_ref, reg, this); if (new_ref != ref) { shadow_frame->SetVRegReference(reg, new_ref); } } } // Mark lock count map required for structured locking checks. shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this); } private: // Visiting the declaring class is necessary so that we don't unload the class of a method that // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since // the threads do not all hold the heap bitmap lock for parallel GC. void VisitDeclaringClass(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) NO_THREAD_SAFETY_ANALYSIS { ObjPtr klass = method->GetDeclaringClassUnchecked(); // klass can be null for runtime methods. if (klass != nullptr) { if (kVerifyImageObjectsMarked) { gc::Heap* const heap = Runtime::Current()->GetHeap(); gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass, /*fail_ok=*/true); if (space != nullptr && space->IsImageSpace()) { bool failed = false; if (!space->GetLiveBitmap()->Test(klass.Ptr())) { failed = true; LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space; } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) { failed = true; LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space; } if (failed) { GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT)); LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method << " klass@" << klass.Ptr(); // Pretty info last in case it crashes. LOG(FATAL) << "Method " << method->PrettyMethod() << " klass " << klass->PrettyClass(); } } } mirror::Object* new_ref = klass.Ptr(); visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this); if (new_ref != klass) { method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass()); } } } void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); StackReference* vreg_ref_base = reinterpret_cast*>(NterpGetReferenceArray(cur_quick_frame)); StackReference* vreg_int_base = reinterpret_cast*>(NterpGetRegistersArray(cur_quick_frame)); CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData()); const uint16_t num_regs = accessor.RegistersSize(); // An nterp frame has two arrays: a dex register array and a reference array // that shadows the dex register array but only containing references // (non-reference dex registers have nulls). See nterp_helpers.cc. for (size_t reg = 0; reg < num_regs; ++reg) { StackReference* ref_addr = vreg_ref_base + reg; mirror::Object* ref = ref_addr->AsMirrorPtr(); if (ref != nullptr) { mirror::Object* new_ref = ref; visitor_(&new_ref, reg, this); if (new_ref != ref) { ref_addr->Assign(new_ref); StackReference* int_addr = vreg_int_base + reg; int_addr->Assign(new_ref); } } } } template ALWAYS_INLINE inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); DCHECK(cur_quick_frame != nullptr); ArtMethod* m = *cur_quick_frame; VisitDeclaringClass(m); // Process register map (which native and runtime methods don't have) if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) { const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); DCHECK(method_header->IsOptimized()); StackReference* vreg_base = reinterpret_cast*>(cur_quick_frame); uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc()); CodeInfo code_info = kPrecise ? CodeInfo(method_header) // We will need dex register maps. : CodeInfo::DecodeGcMasksOnly(method_header); StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset); DCHECK(map.IsValid()); T vreg_info(m, code_info, map, visitor_); // Visit stack entries that hold pointers. BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map); for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) { if (stack_mask.LoadBit(i)) { StackReference* ref_addr = vreg_base + i; mirror::Object* ref = ref_addr->AsMirrorPtr(); if (ref != nullptr) { mirror::Object* new_ref = ref; vreg_info.VisitStack(&new_ref, i, this); if (ref != new_ref) { ref_addr->Assign(new_ref); } } } } // Visit callee-save registers that hold pointers. uint32_t register_mask = code_info.GetRegisterMaskOf(map); for (size_t i = 0; i < BitSizeOf(); ++i) { if (register_mask & (1 << i)) { mirror::Object** ref_addr = reinterpret_cast(GetGPRAddress(i)); if (kIsDebugBuild && ref_addr == nullptr) { std::string thread_name; GetThread()->GetThreadName(thread_name); LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name; DescribeStack(GetThread()); LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) " << "set in register_mask=" << register_mask << " at " << DescribeLocation(); } if (*ref_addr != nullptr) { vreg_info.VisitRegister(ref_addr, i, this); } } } } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) { // If this is a proxy method, visit its reference arguments. DCHECK(!m->IsStatic()); DCHECK(!m->IsNative()); std::vector*> ref_addrs = GetProxyReferenceArguments(cur_quick_frame); for (StackReference* ref_addr : ref_addrs) { mirror::Object* ref = ref_addr->AsMirrorPtr(); if (ref != nullptr) { mirror::Object* new_ref = ref; visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this); if (ref != new_ref) { ref_addr->Assign(new_ref); } } } } } void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) { if (kPrecise) { VisitQuickFramePrecise(); } else { VisitQuickFrameNonPrecise(); } } void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) { struct UndefinedVRegInfo { UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED, const CodeInfo& code_info ATTRIBUTE_UNUSED, const StackMap& map ATTRIBUTE_UNUSED, RootVisitor& _visitor) : visitor(_visitor) { } ALWAYS_INLINE void VisitStack(mirror::Object** ref, size_t stack_index ATTRIBUTE_UNUSED, const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor); } ALWAYS_INLINE void VisitRegister(mirror::Object** ref, size_t register_index ATTRIBUTE_UNUSED, const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor); } RootVisitor& visitor; }; VisitQuickFrameWithVregCallback(); } void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) { struct StackMapVRegInfo { StackMapVRegInfo(ArtMethod* method, const CodeInfo& _code_info, const StackMap& map, RootVisitor& _visitor) : number_of_dex_registers(method->DexInstructionData().RegistersSize()), code_info(_code_info), dex_register_map(code_info.GetDexRegisterMapOf(map)), visitor(_visitor) { DCHECK_EQ(dex_register_map.size(), number_of_dex_registers); } // TODO: If necessary, we should consider caching a reverse map instead of the linear // lookups for each location. void FindWithType(const size_t index, const DexRegisterLocation::Kind kind, mirror::Object** ref, const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { bool found = false; for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) { DexRegisterLocation location = dex_register_map[dex_reg]; if (location.GetKind() == kind && static_cast(location.GetValue()) == index) { visitor(ref, dex_reg, stack_visitor); found = true; } } if (!found) { // If nothing found, report with unknown. visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor); } } void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { const size_t stack_offset = stack_index * kFrameSlotSize; FindWithType(stack_offset, DexRegisterLocation::Kind::kInStack, ref, stack_visitor); } void VisitRegister(mirror::Object** ref, size_t register_index, const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { FindWithType(register_index, DexRegisterLocation::Kind::kInRegister, ref, stack_visitor); } size_t number_of_dex_registers; const CodeInfo& code_info; DexRegisterMap dex_register_map; RootVisitor& visitor; }; VisitQuickFrameWithVregCallback(); } // Visitor for when we visit a root. RootVisitor& visitor_; }; class RootCallbackVisitor { public: RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {} void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const REQUIRES_SHARED(Locks::mutator_lock_) { visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg)); } private: RootVisitor* const visitor_; const uint32_t tid_; }; void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) { for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope(); brhs != nullptr; brhs = brhs->GetLink()) { brhs->VisitTargets(visitor); } } template void Thread::VisitRoots(RootVisitor* visitor) { const pid_t thread_id = GetThreadId(); visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id)); if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { visitor->VisitRoot(reinterpret_cast(&tlsPtr_.exception), RootInfo(kRootNativeStack, thread_id)); } if (tlsPtr_.async_exception != nullptr) { visitor->VisitRoot(reinterpret_cast(&tlsPtr_.async_exception), RootInfo(kRootNativeStack, thread_id)); } visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id)); tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id)); tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id)); HandleScopeVisitRoots(visitor, thread_id); // Visit roots for deoptimization. if (tlsPtr_.stacked_shadow_frame_record != nullptr) { RootCallbackVisitor visitor_to_callback(visitor, thread_id); ReferenceMapVisitor mapper(this, nullptr, visitor_to_callback); for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; record != nullptr; record = record->GetLink()) { for (ShadowFrame* shadow_frame = record->GetShadowFrame(); shadow_frame != nullptr; shadow_frame = shadow_frame->GetLink()) { mapper.VisitShadowFrame(shadow_frame); } } } for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; record != nullptr; record = record->GetLink()) { if (record->IsReference()) { visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(), RootInfo(kRootThreadObject, thread_id)); } visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(), RootInfo(kRootThreadObject, thread_id)); } if (tlsPtr_.frame_id_to_shadow_frame != nullptr) { RootCallbackVisitor visitor_to_callback(visitor, thread_id); ReferenceMapVisitor mapper(this, nullptr, visitor_to_callback); for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame; record != nullptr; record = record->GetNext()) { mapper.VisitShadowFrame(record->GetShadowFrame()); } } for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) { verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id)); } // Visit roots on this thread's stack RuntimeContextType context; RootCallbackVisitor visitor_to_callback(visitor, thread_id); ReferenceMapVisitor mapper(this, &context, visitor_to_callback); mapper.template WalkStack(false); for (auto& entry : *GetInstrumentationStack()) { visitor->VisitRootIfNonNull(&entry.second.this_object_, RootInfo(kRootVMInternal, thread_id)); } } void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) { for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) { const Instruction* inst = reinterpret_cast(entry.first); if (inst != nullptr) { if (inst->Opcode() == Instruction::NEW_INSTANCE || inst->Opcode() == Instruction::CHECK_CAST || inst->Opcode() == Instruction::INSTANCE_OF || inst->Opcode() == Instruction::NEW_ARRAY || inst->Opcode() == Instruction::CONST_CLASS) { mirror::Class* cls = reinterpret_cast(entry.second); if (cls == nullptr || cls == Runtime::GetWeakClassSentinel()) { // Entry got deleted in a previous sweep. continue; } Runtime::ProcessWeakClass( reinterpret_cast*>(&entry.second), visitor, Runtime::GetWeakClassSentinel()); } else if (inst->Opcode() == Instruction::CONST_STRING || inst->Opcode() == Instruction::CONST_STRING_JUMBO) { mirror::Object* object = reinterpret_cast(entry.second); mirror::Object* new_object = visitor->IsMarked(object); // We know the string is marked because it's a strongly-interned string that // is always alive (see b/117621117 for trying to make those strings weak). // The IsMarked implementation of the CMS collector returns // null for newly allocated objects, but we know those haven't moved. Therefore, // only update the entry if we get a different non-null string. if (new_object != nullptr && new_object != object) { entry.second = reinterpret_cast(new_object); } } } } } void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) { VisitRoots(visitor); } else { VisitRoots(visitor); } } class VerifyRootVisitor : public SingleRootVisitor { public: void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) override REQUIRES_SHARED(Locks::mutator_lock_) { VerifyObject(root); } }; void Thread::VerifyStackImpl() { if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) { VerifyRootVisitor visitor; std::unique_ptr context(Context::Create()); RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId()); ReferenceMapVisitor mapper(this, context.get(), visitor_to_callback); mapper.WalkStack(); } } // Set the stack end to that to be used during a stack overflow void Thread::SetStackEndForStackOverflow() { // During stack overflow we allow use of the full stack. if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { // However, we seem to have already extended to use the full stack. LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " << GetStackOverflowReservedBytes(kRuntimeISA) << ")?"; DumpStack(LOG_STREAM(ERROR)); LOG(FATAL) << "Recursive stack overflow."; } tlsPtr_.stack_end = tlsPtr_.stack_begin; // Remove the stack overflow protection if is it set up. bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks(); if (implicit_stack_check) { if (!UnprotectStack()) { LOG(ERROR) << "Unable to remove stack protection for stack overflow"; } } } void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) { DCHECK_LE(start, end); DCHECK_LE(end, limit); tlsPtr_.thread_local_start = start; tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; tlsPtr_.thread_local_end = end; tlsPtr_.thread_local_limit = limit; tlsPtr_.thread_local_objects = 0; } void Thread::ResetTlab() { SetTlab(nullptr, nullptr, nullptr); } bool Thread::HasTlab() const { const bool has_tlab = tlsPtr_.thread_local_pos != nullptr; if (has_tlab) { DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); } else { DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); } return has_tlab; } std::ostream& operator<<(std::ostream& os, const Thread& thread) { thread.ShortDump(os); return os; } bool Thread::ProtectStack(bool fatal_on_error) { void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; VLOG(threads) << "Protecting stack at " << pregion; if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) { if (fatal_on_error) { LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. " "Reason: " << strerror(errno) << " size: " << kStackOverflowProtectedSize; } return false; } return true; } bool Thread::UnprotectStack() { void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; VLOG(threads) << "Unprotecting stack at " << pregion; return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0; } void Thread::PushVerifier(verifier::MethodVerifier* verifier) { verifier->link_ = tlsPtr_.method_verifier; tlsPtr_.method_verifier = verifier; } void Thread::PopVerifier(verifier::MethodVerifier* verifier) { CHECK_EQ(tlsPtr_.method_verifier, verifier); tlsPtr_.method_verifier = verifier->link_; } size_t Thread::NumberOfHeldMutexes() const { size_t count = 0; for (BaseMutex* mu : tlsPtr_.held_mutexes) { count += mu != nullptr ? 1 : 0; } return count; } void Thread::DeoptimizeWithDeoptimizationException(JValue* result) { DCHECK_EQ(GetException(), Thread::GetDeoptimizationException()); ClearException(); ShadowFrame* shadow_frame = PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame); ObjPtr pending_exception; bool from_code = false; DeoptimizationMethodType method_type; PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type); SetTopOfStack(nullptr); SetTopOfShadowStack(shadow_frame); // Restore the exception that was pending before deoptimization then interpret the // deoptimized frames. if (pending_exception != nullptr) { SetException(pending_exception); } interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, result, from_code, method_type); } void Thread::SetAsyncException(ObjPtr new_exception) { CHECK(new_exception != nullptr); Runtime::Current()->SetAsyncExceptionsThrown(); if (kIsDebugBuild) { // Make sure we are in a checkpoint. MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); CHECK(this == Thread::Current() || GetSuspendCount() >= 1) << "It doesn't look like this was called in a checkpoint! this: " << this << " count: " << GetSuspendCount(); } tlsPtr_.async_exception = new_exception.Ptr(); } bool Thread::ObserveAsyncException() { DCHECK(this == Thread::Current()); if (tlsPtr_.async_exception != nullptr) { if (tlsPtr_.exception != nullptr) { LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: " << tlsPtr_.exception->Dump(); LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump(); } tlsPtr_.exception = tlsPtr_.async_exception; tlsPtr_.async_exception = nullptr; return true; } else { return IsExceptionPending(); } } void Thread::SetException(ObjPtr new_exception) { CHECK(new_exception != nullptr); // TODO: DCHECK(!IsExceptionPending()); tlsPtr_.exception = new_exception.Ptr(); } bool Thread::IsAotCompiler() { return Runtime::Current()->IsAotCompiler(); } mirror::Object* Thread::GetPeerFromOtherThread() const { DCHECK(tlsPtr_.jpeer == nullptr); mirror::Object* peer = tlsPtr_.opeer; if (kUseReadBarrier && Current()->GetIsGcMarking()) { // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly // mark/forward it here. peer = art::ReadBarrier::Mark(peer); } return peer; } void Thread::SetReadBarrierEntrypoints() { // Make sure entrypoints aren't null. UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true); } void Thread::ClearAllInterpreterCaches() { static struct ClearInterpreterCacheClosure : Closure { void Run(Thread* thread) override { thread->GetInterpreterCache()->Clear(thread); } } closure; Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); } void Thread::ReleaseLongJumpContextInternal() { // Each QuickExceptionHandler gets a long jump context and uses // it for doing the long jump, after finding catch blocks/doing deoptimization. // Both finding catch blocks and deoptimization can trigger another // exception such as a result of class loading. So there can be nested // cases of exception handling and multiple contexts being used. // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context // for reuse so there is no need to always allocate a new one each time when // getting a context. Since we only keep one context for reuse, delete the // existing one since the passed in context is yet to be used for longjump. delete tlsPtr_.long_jump_context; } void Thread::SetNativePriority(int new_priority) { PaletteStatus status = PaletteSchedSetPriority(GetTid(), new_priority); CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno); } int Thread::GetNativePriority() const { int priority = 0; PaletteStatus status = PaletteSchedGetPriority(GetTid(), &priority); CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno); return priority; } bool Thread::IsSystemDaemon() const { if (GetPeer() == nullptr) { return false; } return jni::DecodeArtField( WellKnownClasses::java_lang_Thread_systemDaemon)->GetBoolean(GetPeer()); } ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self) : self_(self), hs_(self_), excp_(hs_.NewHandle(self_->GetException())) { self_->ClearException(); } void ScopedExceptionStorage::SuppressOldException(const char* message) { CHECK(self_->IsExceptionPending()) << *self_; ObjPtr old_suppressed(excp_.Get()); excp_.Assign(self_->GetException()); LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump(); self_->ClearException(); } ScopedExceptionStorage::~ScopedExceptionStorage() { CHECK(!self_->IsExceptionPending()) << *self_; if (!excp_.IsNull()) { self_->SetException(excp_.Get()); } } } // namespace art