/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread_pool.h" #include #include #include #include #include #include #include "base/bit_utils.h" #include "base/casts.h" #include "base/stl_util.h" #include "base/time_utils.h" #include "base/utils.h" #include "runtime.h" #include "thread-current-inl.h" namespace art { using android::base::StringPrintf; static constexpr bool kMeasureWaitTime = false; #if defined(__BIONIC__) static constexpr bool kUseCustomThreadPoolStack = false; #else static constexpr bool kUseCustomThreadPoolStack = true; #endif ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name, size_t stack_size) : thread_pool_(thread_pool), name_(name) { std::string error_msg; // On Bionic, we know pthreads will give us a big-enough stack with // a guard page, so don't do anything special on Bionic libc. if (kUseCustomThreadPoolStack) { // Add an inaccessible page to catch stack overflow. stack_size += kPageSize; stack_ = MemMap::MapAnonymous(name.c_str(), stack_size, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); CHECK(stack_.IsValid()) << error_msg; CHECK_ALIGNED(stack_.Begin(), kPageSize); CheckedCall(mprotect, "mprotect bottom page of thread pool worker stack", stack_.Begin(), kPageSize, PROT_NONE); } const char* reason = "new thread pool worker thread"; pthread_attr_t attr; CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason); if (kUseCustomThreadPoolStack) { CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_.Begin(), stack_.Size()), reason); } CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason); } ThreadPoolWorker::~ThreadPoolWorker() { CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown"); } void ThreadPoolWorker::SetPthreadPriority(int priority) { CHECK_GE(priority, PRIO_MIN); CHECK_LE(priority, PRIO_MAX); #if defined(ART_TARGET_ANDROID) int result = setpriority(PRIO_PROCESS, pthread_gettid_np(pthread_), priority); if (result != 0) { PLOG(ERROR) << "Failed to setpriority to :" << priority; } #else UNUSED(priority); #endif } void ThreadPoolWorker::Run() { Thread* self = Thread::Current(); Task* task = nullptr; thread_pool_->creation_barier_.Pass(self); while ((task = thread_pool_->GetTask(self)) != nullptr) { task->Run(self); task->Finalize(); } } void* ThreadPoolWorker::Callback(void* arg) { ThreadPoolWorker* worker = reinterpret_cast(arg); Runtime* runtime = Runtime::Current(); CHECK(runtime->AttachCurrentThread( worker->name_.c_str(), true, // Thread-groups are only tracked by the peer j.l.Thread objects. If we aren't creating peers // we don't need to specify the thread group. We want to place these threads in the System // thread group because that thread group is where important threads that debuggers and // similar tools should not mess with are placed. As this is an internal-thread-pool we might // rely on being able to (for example) wait for all threads to finish some task. If debuggers // are suspending these threads that might not be possible. worker->thread_pool_->create_peers_ ? runtime->GetSystemThreadGroup() : nullptr, worker->thread_pool_->create_peers_)); worker->thread_ = Thread::Current(); // Mark thread pool workers as runtime-threads. worker->thread_->SetIsRuntimeThread(true); // Do work until its time to shut down. worker->Run(); runtime->DetachCurrentThread(); return nullptr; } void ThreadPool::AddTask(Thread* self, Task* task) { MutexLock mu(self, task_queue_lock_); tasks_.push_back(task); // If we have any waiters, signal one. if (started_ && waiting_count_ != 0) { task_queue_condition_.Signal(self); } } void ThreadPool::RemoveAllTasks(Thread* self) { // The ThreadPool is responsible for calling Finalize (which usually delete // the task memory) on all the tasks. Task* task = nullptr; while ((task = TryGetTask(self)) != nullptr) { task->Finalize(); } MutexLock mu(self, task_queue_lock_); tasks_.clear(); } ThreadPool::ThreadPool(const char* name, size_t num_threads, bool create_peers, size_t worker_stack_size) : name_(name), task_queue_lock_("task queue lock"), task_queue_condition_("task queue condition", task_queue_lock_), completion_condition_("task completion condition", task_queue_lock_), started_(false), shutting_down_(false), waiting_count_(0), start_time_(0), total_wait_time_(0), creation_barier_(0), max_active_workers_(num_threads), create_peers_(create_peers), worker_stack_size_(worker_stack_size) { CreateThreads(); } void ThreadPool::CreateThreads() { CHECK(threads_.empty()); Thread* self = Thread::Current(); { MutexLock mu(self, task_queue_lock_); shutting_down_ = false; // Add one since the caller of constructor waits on the barrier too. creation_barier_.Init(self, max_active_workers_); while (GetThreadCount() < max_active_workers_) { const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(), GetThreadCount()); threads_.push_back( new ThreadPoolWorker(this, worker_name, worker_stack_size_)); } } } void ThreadPool::WaitForWorkersToBeCreated() { creation_barier_.Increment(Thread::Current(), 0); } const std::vector& ThreadPool::GetWorkers() { // Wait for all the workers to be created before returning them. WaitForWorkersToBeCreated(); return threads_; } void ThreadPool::DeleteThreads() { { Thread* self = Thread::Current(); MutexLock mu(self, task_queue_lock_); // Tell any remaining workers to shut down. shutting_down_ = true; // Broadcast to everyone waiting. task_queue_condition_.Broadcast(self); completion_condition_.Broadcast(self); } // Wait for the threads to finish. We expect the user of the pool // not to run multi-threaded calls to `CreateThreads` and `DeleteThreads`, // so we don't guard the field here. STLDeleteElements(&threads_); } void ThreadPool::SetMaxActiveWorkers(size_t max_workers) { MutexLock mu(Thread::Current(), task_queue_lock_); CHECK_LE(max_workers, GetThreadCount()); max_active_workers_ = max_workers; } ThreadPool::~ThreadPool() { DeleteThreads(); RemoveAllTasks(Thread::Current()); } void ThreadPool::StartWorkers(Thread* self) { MutexLock mu(self, task_queue_lock_); started_ = true; task_queue_condition_.Broadcast(self); start_time_ = NanoTime(); total_wait_time_ = 0; } void ThreadPool::StopWorkers(Thread* self) { MutexLock mu(self, task_queue_lock_); started_ = false; } Task* ThreadPool::GetTask(Thread* self) { MutexLock mu(self, task_queue_lock_); while (!IsShuttingDown()) { const size_t thread_count = GetThreadCount(); // Ensure that we don't use more threads than the maximum active workers. const size_t active_threads = thread_count - waiting_count_; // <= since self is considered an active worker. if (active_threads <= max_active_workers_) { Task* task = TryGetTaskLocked(); if (task != nullptr) { return task; } } ++waiting_count_; if (waiting_count_ == GetThreadCount() && !HasOutstandingTasks()) { // We may be done, lets broadcast to the completion condition. completion_condition_.Broadcast(self); } const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0; task_queue_condition_.Wait(self); if (kMeasureWaitTime) { const uint64_t wait_end = NanoTime(); total_wait_time_ += wait_end - std::max(wait_start, start_time_); } --waiting_count_; } // We are shutting down, return null to tell the worker thread to stop looping. return nullptr; } Task* ThreadPool::TryGetTask(Thread* self) { MutexLock mu(self, task_queue_lock_); return TryGetTaskLocked(); } Task* ThreadPool::TryGetTaskLocked() { if (HasOutstandingTasks()) { Task* task = tasks_.front(); tasks_.pop_front(); return task; } return nullptr; } void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) { if (do_work) { CHECK(!create_peers_); Task* task = nullptr; while ((task = TryGetTask(self)) != nullptr) { task->Run(self); task->Finalize(); } } // Wait until each thread is waiting and the task list is empty. MutexLock mu(self, task_queue_lock_); while (!shutting_down_ && (waiting_count_ != GetThreadCount() || HasOutstandingTasks())) { if (!may_hold_locks) { completion_condition_.Wait(self); } else { completion_condition_.WaitHoldingLocks(self); } } } size_t ThreadPool::GetTaskCount(Thread* self) { MutexLock mu(self, task_queue_lock_); return tasks_.size(); } void ThreadPool::SetPthreadPriority(int priority) { for (ThreadPoolWorker* worker : threads_) { worker->SetPthreadPriority(priority); } } } // namespace art