/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "trace.h" #include #include #include "android-base/macros.h" #include "android-base/stringprintf.h" #include "art_method-inl.h" #include "base/casts.h" #include "base/enums.h" #include "base/os.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "class_linker.h" #include "common_throws.h" #include "debugger.h" #include "dex/descriptors_names.h" #include "dex/dex_file-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/scoped_gc_critical_section.h" #include "instrumentation.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "nativehelper/scoped_local_ref.h" #include "scoped_thread_state_change-inl.h" #include "stack.h" #include "thread.h" #include "thread_list.h" namespace art { using android::base::StringPrintf; static constexpr size_t TraceActionBits = MinimumBitsToStore( static_cast(kTraceMethodActionMask)); static constexpr uint8_t kOpNewMethod = 1U; static constexpr uint8_t kOpNewThread = 2U; static constexpr uint8_t kOpTraceSummary = 3U; static const char kTraceTokenChar = '*'; static const uint16_t kTraceHeaderLength = 32; static const uint32_t kTraceMagicValue = 0x574f4c53; static const uint16_t kTraceVersionSingleClock = 2; static const uint16_t kTraceVersionDualClock = 3; static const uint16_t kTraceRecordSizeSingleClock = 10; // using v2 static const uint16_t kTraceRecordSizeDualClock = 14; // using v3 with two timestamps TraceClockSource Trace::default_clock_source_ = kDefaultTraceClockSource; Trace* volatile Trace::the_trace_ = nullptr; pthread_t Trace::sampling_pthread_ = 0U; std::unique_ptr> Trace::temp_stack_trace_; // The key identifying the tracer to update instrumentation. static constexpr const char* kTracerInstrumentationKey = "Tracer"; static TraceAction DecodeTraceAction(uint32_t tmid) { return static_cast(tmid & kTraceMethodActionMask); } ArtMethod* Trace::DecodeTraceMethod(uint32_t tmid) { MutexLock mu(Thread::Current(), *unique_methods_lock_); return unique_methods_[tmid >> TraceActionBits]; } uint32_t Trace::EncodeTraceMethod(ArtMethod* method) { MutexLock mu(Thread::Current(), *unique_methods_lock_); uint32_t idx; auto it = art_method_id_map_.find(method); if (it != art_method_id_map_.end()) { idx = it->second; } else { unique_methods_.push_back(method); idx = unique_methods_.size() - 1; art_method_id_map_.emplace(method, idx); } DCHECK_LT(idx, unique_methods_.size()); DCHECK_EQ(unique_methods_[idx], method); return idx; } uint32_t Trace::EncodeTraceMethodAndAction(ArtMethod* method, TraceAction action) { uint32_t tmid = (EncodeTraceMethod(method) << TraceActionBits) | action; DCHECK_EQ(method, DecodeTraceMethod(tmid)); return tmid; } std::vector* Trace::AllocStackTrace() { return (temp_stack_trace_.get() != nullptr) ? temp_stack_trace_.release() : new std::vector(); } void Trace::FreeStackTrace(std::vector* stack_trace) { stack_trace->clear(); temp_stack_trace_.reset(stack_trace); } void Trace::SetDefaultClockSource(TraceClockSource clock_source) { #if defined(__linux__) default_clock_source_ = clock_source; #else if (clock_source != TraceClockSource::kWall) { LOG(WARNING) << "Ignoring tracing request to use CPU time."; } #endif } static uint16_t GetTraceVersion(TraceClockSource clock_source) { return (clock_source == TraceClockSource::kDual) ? kTraceVersionDualClock : kTraceVersionSingleClock; } static uint16_t GetRecordSize(TraceClockSource clock_source) { return (clock_source == TraceClockSource::kDual) ? kTraceRecordSizeDualClock : kTraceRecordSizeSingleClock; } bool Trace::UseThreadCpuClock() { return (clock_source_ == TraceClockSource::kThreadCpu) || (clock_source_ == TraceClockSource::kDual); } bool Trace::UseWallClock() { return (clock_source_ == TraceClockSource::kWall) || (clock_source_ == TraceClockSource::kDual); } void Trace::MeasureClockOverhead() { if (UseThreadCpuClock()) { Thread::Current()->GetCpuMicroTime(); } if (UseWallClock()) { MicroTime(); } } // Compute an average time taken to measure clocks. uint32_t Trace::GetClockOverheadNanoSeconds() { Thread* self = Thread::Current(); uint64_t start = self->GetCpuMicroTime(); for (int i = 4000; i > 0; i--) { MeasureClockOverhead(); MeasureClockOverhead(); MeasureClockOverhead(); MeasureClockOverhead(); MeasureClockOverhead(); MeasureClockOverhead(); MeasureClockOverhead(); MeasureClockOverhead(); } uint64_t elapsed_us = self->GetCpuMicroTime() - start; return static_cast(elapsed_us / 32); } // TODO: put this somewhere with the big-endian equivalent used by JDWP. static void Append2LE(uint8_t* buf, uint16_t val) { *buf++ = static_cast(val); *buf++ = static_cast(val >> 8); } // TODO: put this somewhere with the big-endian equivalent used by JDWP. static void Append4LE(uint8_t* buf, uint32_t val) { *buf++ = static_cast(val); *buf++ = static_cast(val >> 8); *buf++ = static_cast(val >> 16); *buf++ = static_cast(val >> 24); } // TODO: put this somewhere with the big-endian equivalent used by JDWP. static void Append8LE(uint8_t* buf, uint64_t val) { *buf++ = static_cast(val); *buf++ = static_cast(val >> 8); *buf++ = static_cast(val >> 16); *buf++ = static_cast(val >> 24); *buf++ = static_cast(val >> 32); *buf++ = static_cast(val >> 40); *buf++ = static_cast(val >> 48); *buf++ = static_cast(val >> 56); } static void GetSample(Thread* thread, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) { std::vector* const stack_trace = Trace::AllocStackTrace(); StackVisitor::WalkStack( [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = stack_visitor->GetMethod(); // Ignore runtime frames (in particular callee save). if (!m->IsRuntimeMethod()) { stack_trace->push_back(m); } return true; }, thread, /* context= */ nullptr, art::StackVisitor::StackWalkKind::kIncludeInlinedFrames); Trace* the_trace = reinterpret_cast(arg); the_trace->CompareAndUpdateStackTrace(thread, stack_trace); } static void ClearThreadStackTraceAndClockBase(Thread* thread, void* arg ATTRIBUTE_UNUSED) { thread->SetTraceClockBase(0); std::vector* stack_trace = thread->GetStackTraceSample(); thread->SetStackTraceSample(nullptr); delete stack_trace; } void Trace::CompareAndUpdateStackTrace(Thread* thread, std::vector* stack_trace) { CHECK_EQ(pthread_self(), sampling_pthread_); std::vector* old_stack_trace = thread->GetStackTraceSample(); // Update the thread's stack trace sample. thread->SetStackTraceSample(stack_trace); // Read timer clocks to use for all events in this trace. uint32_t thread_clock_diff = 0; uint32_t wall_clock_diff = 0; ReadClocks(thread, &thread_clock_diff, &wall_clock_diff); if (old_stack_trace == nullptr) { // If there's no previous stack trace sample for this thread, log an entry event for all // methods in the trace. for (auto rit = stack_trace->rbegin(); rit != stack_trace->rend(); ++rit) { LogMethodTraceEvent(thread, *rit, instrumentation::Instrumentation::kMethodEntered, thread_clock_diff, wall_clock_diff); } } else { // If there's a previous stack trace for this thread, diff the traces and emit entry and exit // events accordingly. auto old_rit = old_stack_trace->rbegin(); auto rit = stack_trace->rbegin(); // Iterate bottom-up over both traces until there's a difference between them. while (old_rit != old_stack_trace->rend() && rit != stack_trace->rend() && *old_rit == *rit) { old_rit++; rit++; } // Iterate top-down over the old trace until the point where they differ, emitting exit events. for (auto old_it = old_stack_trace->begin(); old_it != old_rit.base(); ++old_it) { LogMethodTraceEvent(thread, *old_it, instrumentation::Instrumentation::kMethodExited, thread_clock_diff, wall_clock_diff); } // Iterate bottom-up over the new trace from the point where they differ, emitting entry events. for (; rit != stack_trace->rend(); ++rit) { LogMethodTraceEvent(thread, *rit, instrumentation::Instrumentation::kMethodEntered, thread_clock_diff, wall_clock_diff); } FreeStackTrace(old_stack_trace); } } void* Trace::RunSamplingThread(void* arg) { Runtime* runtime = Runtime::Current(); intptr_t interval_us = reinterpret_cast(arg); CHECK_GE(interval_us, 0); CHECK(runtime->AttachCurrentThread("Sampling Profiler", true, runtime->GetSystemThreadGroup(), !runtime->IsAotCompiler())); while (true) { usleep(interval_us); ScopedTrace trace("Profile sampling"); Thread* self = Thread::Current(); Trace* the_trace; { MutexLock mu(self, *Locks::trace_lock_); the_trace = the_trace_; if (the_trace == nullptr) { break; } } { // Avoid a deadlock between a thread doing garbage collection // and the profile sampling thread, by blocking GC when sampling // thread stacks (see b/73624630). gc::ScopedGCCriticalSection gcs(self, art::gc::kGcCauseInstrumentation, art::gc::kCollectorTypeInstrumentation); ScopedSuspendAll ssa(__FUNCTION__); MutexLock mu(self, *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(GetSample, the_trace); } } runtime->DetachCurrentThread(); return nullptr; } void Trace::Start(const char* trace_filename, size_t buffer_size, int flags, TraceOutputMode output_mode, TraceMode trace_mode, int interval_us) { std::unique_ptr file(OS::CreateEmptyFileWriteOnly(trace_filename)); if (file == nullptr) { std::string msg = android::base::StringPrintf("Unable to open trace file '%s'", trace_filename); PLOG(ERROR) << msg; ScopedObjectAccess soa(Thread::Current()); Thread::Current()->ThrowNewException("Ljava/lang/RuntimeException;", msg.c_str()); return; } Start(std::move(file), buffer_size, flags, output_mode, trace_mode, interval_us); } void Trace::Start(int trace_fd, size_t buffer_size, int flags, TraceOutputMode output_mode, TraceMode trace_mode, int interval_us) { if (trace_fd < 0) { std::string msg = android::base::StringPrintf("Unable to start tracing with invalid fd %d", trace_fd); LOG(ERROR) << msg; ScopedObjectAccess soa(Thread::Current()); Thread::Current()->ThrowNewException("Ljava/lang/RuntimeException;", msg.c_str()); return; } std::unique_ptr file(new File(trace_fd, /* path= */ "tracefile", /* check_usage= */ true)); Start(std::move(file), buffer_size, flags, output_mode, trace_mode, interval_us); } void Trace::StartDDMS(size_t buffer_size, int flags, TraceMode trace_mode, int interval_us) { Start(std::unique_ptr(), buffer_size, flags, TraceOutputMode::kDDMS, trace_mode, interval_us); } void Trace::Start(std::unique_ptr&& trace_file_in, size_t buffer_size, int flags, TraceOutputMode output_mode, TraceMode trace_mode, int interval_us) { // We own trace_file now and are responsible for closing it. To account for error situations, use // a specialized unique_ptr to ensure we close it on the way out (if it hasn't been passed to a // Trace instance). auto deleter = [](File* file) { if (file != nullptr) { file->MarkUnchecked(); // Don't deal with flushing requirements. int result ATTRIBUTE_UNUSED = file->Close(); delete file; } }; std::unique_ptr trace_file(trace_file_in.release(), deleter); Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::trace_lock_); if (the_trace_ != nullptr) { LOG(ERROR) << "Trace already in progress, ignoring this request"; return; } } // Check interval if sampling is enabled if (trace_mode == TraceMode::kSampling && interval_us <= 0) { LOG(ERROR) << "Invalid sampling interval: " << interval_us; ScopedObjectAccess soa(self); ThrowRuntimeException("Invalid sampling interval: %d", interval_us); return; } Runtime* runtime = Runtime::Current(); // Enable count of allocs if specified in the flags. bool enable_stats = false; if (runtime->GetJit() != nullptr) { // TODO b/110263880 It would be better if we didn't need to do this. // Since we need to hold the method entrypoint across a suspend to ensure instrumentation // hooks are called correctly we have to disable jit-gc to ensure that the entrypoint doesn't // go away. Furthermore we need to leave this off permanently since one could get the same // effect by causing this to be toggled on and off. runtime->GetJit()->GetCodeCache()->SetGarbageCollectCode(false); } // Create Trace object. { // Required since EnableMethodTracing calls ConfigureStubs which visits class linker classes. gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseInstrumentation, gc::kCollectorTypeInstrumentation); ScopedSuspendAll ssa(__FUNCTION__); MutexLock mu(self, *Locks::trace_lock_); if (the_trace_ != nullptr) { LOG(ERROR) << "Trace already in progress, ignoring this request"; } else { enable_stats = (flags & kTraceCountAllocs) != 0; the_trace_ = new Trace(trace_file.release(), buffer_size, flags, output_mode, trace_mode); if (trace_mode == TraceMode::kSampling) { CHECK_PTHREAD_CALL(pthread_create, (&sampling_pthread_, nullptr, &RunSamplingThread, reinterpret_cast(interval_us)), "Sampling profiler thread"); the_trace_->interval_us_ = interval_us; } else { runtime->GetInstrumentation()->AddListener(the_trace_, instrumentation::Instrumentation::kMethodEntered | instrumentation::Instrumentation::kMethodExited | instrumentation::Instrumentation::kMethodUnwind); // TODO: In full-PIC mode, we don't need to fully deopt. // TODO: We can only use trampoline entrypoints if we are java-debuggable since in that case // we know that inlining and other problematic optimizations are disabled. We might just // want to use the trampolines anyway since it is faster. It makes the story with disabling // jit-gc more complex though. runtime->GetInstrumentation()->EnableMethodTracing( kTracerInstrumentationKey, /*needs_interpreter=*/!runtime->IsJavaDebuggable()); } } } // Can't call this when holding the mutator lock. if (enable_stats) { runtime->SetStatsEnabled(true); } } void Trace::StopTracing(bool finish_tracing, bool flush_file) { bool stop_alloc_counting = false; Runtime* const runtime = Runtime::Current(); Trace* the_trace = nullptr; Thread* const self = Thread::Current(); pthread_t sampling_pthread = 0U; { MutexLock mu(self, *Locks::trace_lock_); if (the_trace_ == nullptr) { LOG(ERROR) << "Trace stop requested, but no trace currently running"; } else { the_trace = the_trace_; the_trace_ = nullptr; sampling_pthread = sampling_pthread_; } } // Make sure that we join before we delete the trace since we don't want to have // the sampling thread access a stale pointer. This finishes since the sampling thread exits when // the_trace_ is null. if (sampling_pthread != 0U) { CHECK_PTHREAD_CALL(pthread_join, (sampling_pthread, nullptr), "sampling thread shutdown"); sampling_pthread_ = 0U; } if (the_trace != nullptr) { stop_alloc_counting = (the_trace->flags_ & Trace::kTraceCountAllocs) != 0; // Stop the trace sources adding more entries to the trace buffer and synchronise stores. { gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseInstrumentation, gc::kCollectorTypeInstrumentation); ScopedSuspendAll ssa(__FUNCTION__); if (the_trace->trace_mode_ == TraceMode::kSampling) { MutexLock mu(self, *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(ClearThreadStackTraceAndClockBase, nullptr); } else { runtime->GetInstrumentation()->RemoveListener( the_trace, instrumentation::Instrumentation::kMethodEntered | instrumentation::Instrumentation::kMethodExited | instrumentation::Instrumentation::kMethodUnwind); runtime->GetInstrumentation()->DisableMethodTracing(kTracerInstrumentationKey); } } // At this point, code may read buf_ as it's writers are shutdown // and the ScopedSuspendAll above has ensured all stores to buf_ // are now visible. if (finish_tracing) { the_trace->FinishTracing(); } if (the_trace->trace_file_.get() != nullptr) { // Do not try to erase, so flush and close explicitly. if (flush_file) { if (the_trace->trace_file_->Flush() != 0) { PLOG(WARNING) << "Could not flush trace file."; } } else { the_trace->trace_file_->MarkUnchecked(); // Do not trigger guard. } if (the_trace->trace_file_->Close() != 0) { PLOG(ERROR) << "Could not close trace file."; } } delete the_trace; } if (stop_alloc_counting) { // Can be racy since SetStatsEnabled is not guarded by any locks. runtime->SetStatsEnabled(false); } } void Trace::Abort() { // Do not write anything anymore. StopTracing(false, false); } void Trace::Stop() { // Finish writing. StopTracing(true, true); } void Trace::Shutdown() { if (GetMethodTracingMode() != kTracingInactive) { Stop(); } } TracingMode Trace::GetMethodTracingMode() { MutexLock mu(Thread::Current(), *Locks::trace_lock_); if (the_trace_ == nullptr) { return kTracingInactive; } else { switch (the_trace_->trace_mode_) { case TraceMode::kSampling: return kSampleProfilingActive; case TraceMode::kMethodTracing: return kMethodTracingActive; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } } static constexpr size_t kMinBufSize = 18U; // Trace header is up to 18B. Trace::Trace(File* trace_file, size_t buffer_size, int flags, TraceOutputMode output_mode, TraceMode trace_mode) : trace_file_(trace_file), buf_(new uint8_t[std::max(kMinBufSize, buffer_size)]()), flags_(flags), trace_output_mode_(output_mode), trace_mode_(trace_mode), clock_source_(default_clock_source_), buffer_size_(std::max(kMinBufSize, buffer_size)), start_time_(MicroTime()), clock_overhead_ns_(GetClockOverheadNanoSeconds()), overflow_(false), interval_us_(0), streaming_lock_(nullptr), unique_methods_lock_(new Mutex("unique methods lock", kTracingUniqueMethodsLock)) { CHECK(trace_file != nullptr || output_mode == TraceOutputMode::kDDMS); uint16_t trace_version = GetTraceVersion(clock_source_); if (output_mode == TraceOutputMode::kStreaming) { trace_version |= 0xF0U; } // Set up the beginning of the trace. memset(buf_.get(), 0, kTraceHeaderLength); Append4LE(buf_.get(), kTraceMagicValue); Append2LE(buf_.get() + 4, trace_version); Append2LE(buf_.get() + 6, kTraceHeaderLength); Append8LE(buf_.get() + 8, start_time_); if (trace_version >= kTraceVersionDualClock) { uint16_t record_size = GetRecordSize(clock_source_); Append2LE(buf_.get() + 16, record_size); } static_assert(18 <= kMinBufSize, "Minimum buffer size not large enough for trace header"); cur_offset_.store(kTraceHeaderLength, std::memory_order_relaxed); if (output_mode == TraceOutputMode::kStreaming) { streaming_lock_ = new Mutex("tracing lock", LockLevel::kTracingStreamingLock); seen_threads_.reset(new ThreadIDBitSet()); } } Trace::~Trace() { delete streaming_lock_; delete unique_methods_lock_; } static uint64_t ReadBytes(uint8_t* buf, size_t bytes) { uint64_t ret = 0; for (size_t i = 0; i < bytes; ++i) { ret |= static_cast(buf[i]) << (i * 8); } return ret; } void Trace::DumpBuf(uint8_t* buf, size_t buf_size, TraceClockSource clock_source) { uint8_t* ptr = buf + kTraceHeaderLength; uint8_t* end = buf + buf_size; while (ptr < end) { uint32_t tmid = ReadBytes(ptr + 2, sizeof(tmid)); ArtMethod* method = DecodeTraceMethod(tmid); TraceAction action = DecodeTraceAction(tmid); LOG(INFO) << ArtMethod::PrettyMethod(method) << " " << static_cast(action); ptr += GetRecordSize(clock_source); } } void Trace::FinishTracing() { size_t final_offset = 0; std::set visited_methods; if (trace_output_mode_ == TraceOutputMode::kStreaming) { // Clean up. MutexLock mu(Thread::Current(), *streaming_lock_); STLDeleteValues(&seen_methods_); } else { final_offset = cur_offset_.load(std::memory_order_relaxed); GetVisitedMethods(final_offset, &visited_methods); } // Compute elapsed time. uint64_t elapsed = MicroTime() - start_time_; std::ostringstream os; os << StringPrintf("%cversion\n", kTraceTokenChar); os << StringPrintf("%d\n", GetTraceVersion(clock_source_)); os << StringPrintf("data-file-overflow=%s\n", overflow_ ? "true" : "false"); if (UseThreadCpuClock()) { if (UseWallClock()) { os << StringPrintf("clock=dual\n"); } else { os << StringPrintf("clock=thread-cpu\n"); } } else { os << StringPrintf("clock=wall\n"); } os << StringPrintf("elapsed-time-usec=%" PRIu64 "\n", elapsed); if (trace_output_mode_ != TraceOutputMode::kStreaming) { size_t num_records = (final_offset - kTraceHeaderLength) / GetRecordSize(clock_source_); os << StringPrintf("num-method-calls=%zd\n", num_records); } os << StringPrintf("clock-call-overhead-nsec=%d\n", clock_overhead_ns_); os << StringPrintf("vm=art\n"); os << StringPrintf("pid=%d\n", getpid()); if ((flags_ & kTraceCountAllocs) != 0) { os << "alloc-count=" << Runtime::Current()->GetStat(KIND_ALLOCATED_OBJECTS) << "\n"; os << "alloc-size=" << Runtime::Current()->GetStat(KIND_ALLOCATED_BYTES) << "\n"; os << "gc-count=" << Runtime::Current()->GetStat(KIND_GC_INVOCATIONS) << "\n"; } os << StringPrintf("%cthreads\n", kTraceTokenChar); DumpThreadList(os); os << StringPrintf("%cmethods\n", kTraceTokenChar); DumpMethodList(os, visited_methods); os << StringPrintf("%cend\n", kTraceTokenChar); std::string header(os.str()); if (trace_output_mode_ == TraceOutputMode::kStreaming) { // Protect access to buf_ and satisfy sanitizer for calls to WriteBuf / FlushBuf. MutexLock mu(Thread::Current(), *streaming_lock_); // Write a special token to mark the end of trace records and the start of // trace summary. uint8_t buf[7]; Append2LE(buf, 0); buf[2] = kOpTraceSummary; Append4LE(buf + 3, static_cast(header.length())); WriteToBuf(buf, sizeof(buf)); // Write the trace summary. The summary is identical to the file header when // the output mode is not streaming (except for methods). WriteToBuf(reinterpret_cast(header.c_str()), header.length()); // Flush the buffer, which may include some trace records before the summary. FlushBuf(); } else { if (trace_file_.get() == nullptr) { std::vector data; data.resize(header.length() + final_offset); memcpy(data.data(), header.c_str(), header.length()); memcpy(data.data() + header.length(), buf_.get(), final_offset); Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk(CHUNK_TYPE("MPSE"), ArrayRef(data)); const bool kDumpTraceInfo = false; if (kDumpTraceInfo) { LOG(INFO) << "Trace sent:\n" << header; DumpBuf(buf_.get(), final_offset, clock_source_); } } else { if (!trace_file_->WriteFully(header.c_str(), header.length()) || !trace_file_->WriteFully(buf_.get(), final_offset)) { std::string detail(StringPrintf("Trace data write failed: %s", strerror(errno))); PLOG(ERROR) << detail; ThrowRuntimeException("%s", detail.c_str()); } } } } void Trace::DexPcMoved(Thread* thread ATTRIBUTE_UNUSED, Handle this_object ATTRIBUTE_UNUSED, ArtMethod* method, uint32_t new_dex_pc) { // We're not recorded to listen to this kind of event, so complain. LOG(ERROR) << "Unexpected dex PC event in tracing " << ArtMethod::PrettyMethod(method) << " " << new_dex_pc; } void Trace::FieldRead(Thread* thread ATTRIBUTE_UNUSED, Handle this_object ATTRIBUTE_UNUSED, ArtMethod* method, uint32_t dex_pc, ArtField* field ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { // We're not recorded to listen to this kind of event, so complain. LOG(ERROR) << "Unexpected field read event in tracing " << ArtMethod::PrettyMethod(method) << " " << dex_pc; } void Trace::FieldWritten(Thread* thread ATTRIBUTE_UNUSED, Handle this_object ATTRIBUTE_UNUSED, ArtMethod* method, uint32_t dex_pc, ArtField* field ATTRIBUTE_UNUSED, const JValue& field_value ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { // We're not recorded to listen to this kind of event, so complain. LOG(ERROR) << "Unexpected field write event in tracing " << ArtMethod::PrettyMethod(method) << " " << dex_pc; } void Trace::MethodEntered(Thread* thread, Handle this_object ATTRIBUTE_UNUSED, ArtMethod* method, uint32_t dex_pc ATTRIBUTE_UNUSED) { uint32_t thread_clock_diff = 0; uint32_t wall_clock_diff = 0; ReadClocks(thread, &thread_clock_diff, &wall_clock_diff); LogMethodTraceEvent(thread, method, instrumentation::Instrumentation::kMethodEntered, thread_clock_diff, wall_clock_diff); } void Trace::MethodExited(Thread* thread, Handle this_object ATTRIBUTE_UNUSED, ArtMethod* method, uint32_t dex_pc ATTRIBUTE_UNUSED, instrumentation::OptionalFrame frame ATTRIBUTE_UNUSED, JValue& return_value ATTRIBUTE_UNUSED) { uint32_t thread_clock_diff = 0; uint32_t wall_clock_diff = 0; ReadClocks(thread, &thread_clock_diff, &wall_clock_diff); LogMethodTraceEvent(thread, method, instrumentation::Instrumentation::kMethodExited, thread_clock_diff, wall_clock_diff); } void Trace::MethodUnwind(Thread* thread, Handle this_object ATTRIBUTE_UNUSED, ArtMethod* method, uint32_t dex_pc ATTRIBUTE_UNUSED) { uint32_t thread_clock_diff = 0; uint32_t wall_clock_diff = 0; ReadClocks(thread, &thread_clock_diff, &wall_clock_diff); LogMethodTraceEvent(thread, method, instrumentation::Instrumentation::kMethodUnwind, thread_clock_diff, wall_clock_diff); } void Trace::ExceptionThrown(Thread* thread ATTRIBUTE_UNUSED, Handle exception_object ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(ERROR) << "Unexpected exception thrown event in tracing"; } void Trace::ExceptionHandled(Thread* thread ATTRIBUTE_UNUSED, Handle exception_object ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(ERROR) << "Unexpected exception thrown event in tracing"; } void Trace::Branch(Thread* /*thread*/, ArtMethod* method, uint32_t /*dex_pc*/, int32_t /*dex_pc_offset*/) REQUIRES_SHARED(Locks::mutator_lock_) { LOG(ERROR) << "Unexpected branch event in tracing" << ArtMethod::PrettyMethod(method); } void Trace::WatchedFramePop(Thread* self ATTRIBUTE_UNUSED, const ShadowFrame& frame ATTRIBUTE_UNUSED) { LOG(ERROR) << "Unexpected WatchedFramePop event in tracing"; } void Trace::ReadClocks(Thread* thread, uint32_t* thread_clock_diff, uint32_t* wall_clock_diff) { if (UseThreadCpuClock()) { uint64_t clock_base = thread->GetTraceClockBase(); if (UNLIKELY(clock_base == 0)) { // First event, record the base time in the map. uint64_t time = thread->GetCpuMicroTime(); thread->SetTraceClockBase(time); } else { *thread_clock_diff = thread->GetCpuMicroTime() - clock_base; } } if (UseWallClock()) { *wall_clock_diff = MicroTime() - start_time_; } } bool Trace::RegisterMethod(ArtMethod* method) { const DexFile* dex_file = method->GetDexFile(); if (seen_methods_.find(dex_file) == seen_methods_.end()) { seen_methods_.insert(std::make_pair(dex_file, new DexIndexBitSet())); } DexIndexBitSet* bit_set = seen_methods_.find(dex_file)->second; if (!(*bit_set)[method->GetDexMethodIndex()]) { bit_set->set(method->GetDexMethodIndex()); return true; } return false; } bool Trace::RegisterThread(Thread* thread) { pid_t tid = thread->GetTid(); CHECK_LT(0U, static_cast(tid)); CHECK_LT(static_cast(tid), kMaxThreadIdNumber); if (!(*seen_threads_)[tid]) { seen_threads_->set(tid); return true; } return false; } std::string Trace::GetMethodLine(ArtMethod* method) { method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); return StringPrintf("%#x\t%s\t%s\t%s\t%s\n", (EncodeTraceMethod(method) << TraceActionBits), PrettyDescriptor(method->GetDeclaringClassDescriptor()).c_str(), method->GetName(), method->GetSignature().ToString().c_str(), method->GetDeclaringClassSourceFile()); } void Trace::WriteToBuf(const uint8_t* src, size_t src_size) { // Updates to cur_offset_ are done under the streaming_lock_ here as in streaming mode. int32_t old_offset = cur_offset_.load(std::memory_order_relaxed); int32_t new_offset = old_offset + static_cast(src_size); if (dchecked_integral_cast(new_offset) > buffer_size_) { // Flush buffer. if (!trace_file_->WriteFully(buf_.get(), old_offset)) { PLOG(WARNING) << "Failed streaming a tracing event."; } // Check whether the data is too large for the buffer, then write immediately. if (src_size >= buffer_size_) { if (!trace_file_->WriteFully(src, src_size)) { PLOG(WARNING) << "Failed streaming a tracing event."; } cur_offset_.store(0, std::memory_order_relaxed); // Buffer is empty now. return; } old_offset = 0; new_offset = static_cast(src_size); } cur_offset_.store(new_offset, std::memory_order_relaxed); // Fill in data. memcpy(buf_.get() + old_offset, src, src_size); } void Trace::FlushBuf() { // Updates to cur_offset_ are done under the streaming_lock_ here as in streaming mode. int32_t offset = cur_offset_.load(std::memory_order_relaxed); if (!trace_file_->WriteFully(buf_.get(), offset)) { PLOG(WARNING) << "Failed flush the remaining data in streaming."; } cur_offset_.store(0, std::memory_order_relaxed); } void Trace::LogMethodTraceEvent(Thread* thread, ArtMethod* method, instrumentation::Instrumentation::InstrumentationEvent event, uint32_t thread_clock_diff, uint32_t wall_clock_diff) { // This method is called in both tracing modes (method and // sampling). In sampling mode, this method is only called by the // sampling thread. In method tracing mode, it can be called // concurrently. // Ensure we always use the non-obsolete version of the method so that entry/exit events have the // same pointer value. method = method->GetNonObsoleteMethod(); // Advance cur_offset_ atomically. int32_t new_offset; int32_t old_offset = 0; // In the non-streaming case, we do a busy loop here trying to get // an offset to write our record and advance cur_offset_ for the // next use. if (trace_output_mode_ != TraceOutputMode::kStreaming) { // Although multiple threads can call this method concurrently, // the compare_exchange_weak here is still atomic (by definition). // A succeeding update is visible to other cores when they pass // through this point. old_offset = cur_offset_.load(std::memory_order_relaxed); // Speculative read do { new_offset = old_offset + GetRecordSize(clock_source_); if (static_cast(new_offset) > buffer_size_) { overflow_ = true; return; } } while (!cur_offset_.compare_exchange_weak(old_offset, new_offset, std::memory_order_relaxed)); } TraceAction action = kTraceMethodEnter; switch (event) { case instrumentation::Instrumentation::kMethodEntered: action = kTraceMethodEnter; break; case instrumentation::Instrumentation::kMethodExited: action = kTraceMethodExit; break; case instrumentation::Instrumentation::kMethodUnwind: action = kTraceUnroll; break; default: UNIMPLEMENTED(FATAL) << "Unexpected event: " << event; } uint32_t method_value = EncodeTraceMethodAndAction(method, action); // Write data into the tracing buffer (if not streaming) or into a // small buffer on the stack (if streaming) which we'll put into the // tracing buffer below. // // These writes to the tracing buffer are synchronised with the // future reads that (only) occur under FinishTracing(). The callers // of FinishTracing() acquire locks and (implicitly) synchronise // the buffer memory. uint8_t* ptr; static constexpr size_t kPacketSize = 14U; // The maximum size of data in a packet. uint8_t stack_buf[kPacketSize]; // Space to store a packet when in streaming mode. if (trace_output_mode_ == TraceOutputMode::kStreaming) { ptr = stack_buf; } else { ptr = buf_.get() + old_offset; } Append2LE(ptr, thread->GetTid()); Append4LE(ptr + 2, method_value); ptr += 6; if (UseThreadCpuClock()) { Append4LE(ptr, thread_clock_diff); ptr += 4; } if (UseWallClock()) { Append4LE(ptr, wall_clock_diff); } static_assert(kPacketSize == 2 + 4 + 4 + 4, "Packet size incorrect."); if (trace_output_mode_ == TraceOutputMode::kStreaming) { MutexLock mu(Thread::Current(), *streaming_lock_); // To serialize writing. if (RegisterMethod(method)) { // Write a special block with the name. std::string method_line(GetMethodLine(method)); uint8_t buf2[5]; Append2LE(buf2, 0); buf2[2] = kOpNewMethod; Append2LE(buf2 + 3, static_cast(method_line.length())); WriteToBuf(buf2, sizeof(buf2)); WriteToBuf(reinterpret_cast(method_line.c_str()), method_line.length()); } if (RegisterThread(thread)) { // It might be better to postpone this. Threads might not have received names... std::string thread_name; thread->GetThreadName(thread_name); uint8_t buf2[7]; Append2LE(buf2, 0); buf2[2] = kOpNewThread; Append2LE(buf2 + 3, static_cast(thread->GetTid())); Append2LE(buf2 + 5, static_cast(thread_name.length())); WriteToBuf(buf2, sizeof(buf2)); WriteToBuf(reinterpret_cast(thread_name.c_str()), thread_name.length()); } WriteToBuf(stack_buf, sizeof(stack_buf)); } } void Trace::GetVisitedMethods(size_t buf_size, std::set* visited_methods) { uint8_t* ptr = buf_.get() + kTraceHeaderLength; uint8_t* end = buf_.get() + buf_size; while (ptr < end) { uint32_t tmid = ReadBytes(ptr + 2, sizeof(tmid)); ArtMethod* method = DecodeTraceMethod(tmid); visited_methods->insert(method); ptr += GetRecordSize(clock_source_); } } void Trace::DumpMethodList(std::ostream& os, const std::set& visited_methods) { for (const auto& method : visited_methods) { os << GetMethodLine(method); } } static void DumpThread(Thread* t, void* arg) { std::ostream& os = *reinterpret_cast(arg); std::string name; t->GetThreadName(name); os << t->GetTid() << "\t" << name << "\n"; } void Trace::DumpThreadList(std::ostream& os) { Thread* self = Thread::Current(); for (const auto& it : exited_threads_) { os << it.first << "\t" << it.second << "\n"; } Locks::thread_list_lock_->AssertNotHeld(self); MutexLock mu(self, *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(DumpThread, &os); } void Trace::StoreExitingThreadInfo(Thread* thread) { MutexLock mu(thread, *Locks::trace_lock_); if (the_trace_ != nullptr) { std::string name; thread->GetThreadName(name); // The same thread/tid may be used multiple times. As SafeMap::Put does not allow to override // a previous mapping, use SafeMap::Overwrite. the_trace_->exited_threads_.Overwrite(thread->GetTid(), name); } } Trace::TraceOutputMode Trace::GetOutputMode() { MutexLock mu(Thread::Current(), *Locks::trace_lock_); CHECK(the_trace_ != nullptr) << "Trace output mode requested, but no trace currently running"; return the_trace_->trace_output_mode_; } Trace::TraceMode Trace::GetMode() { MutexLock mu(Thread::Current(), *Locks::trace_lock_); CHECK(the_trace_ != nullptr) << "Trace mode requested, but no trace currently running"; return the_trace_->trace_mode_; } size_t Trace::GetBufferSize() { MutexLock mu(Thread::Current(), *Locks::trace_lock_); CHECK(the_trace_ != nullptr) << "Trace mode requested, but no trace currently running"; return the_trace_->buffer_size_; } bool Trace::IsTracingEnabled() { MutexLock mu(Thread::Current(), *Locks::trace_lock_); return the_trace_ != nullptr; } } // namespace art