/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "vdex_file.h" #include // For the PROT_* and MAP_* constants. #include // for mkdir() #include #include #include #include "base/bit_utils.h" #include "base/leb128.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "class_loader_context.h" #include "dex/art_dex_file_loader.h" #include "dex/class_accessor-inl.h" #include "dex/dex_file_loader.h" #include "dex_to_dex_decompiler.h" #include "gc/heap.h" #include "gc/space/image_space.h" #include "quicken_info.h" #include "runtime.h" #include "verifier/verifier_deps.h" namespace art { constexpr uint8_t VdexFile::VerifierDepsHeader::kVdexInvalidMagic[4]; constexpr uint8_t VdexFile::VerifierDepsHeader::kVdexMagic[4]; constexpr uint8_t VdexFile::VerifierDepsHeader::kVerifierDepsVersion[4]; constexpr uint8_t VdexFile::VerifierDepsHeader::kDexSectionVersion[4]; constexpr uint8_t VdexFile::VerifierDepsHeader::kDexSectionVersionEmpty[4]; bool VdexFile::VerifierDepsHeader::IsMagicValid() const { return (memcmp(magic_, kVdexMagic, sizeof(kVdexMagic)) == 0); } bool VdexFile::VerifierDepsHeader::IsVerifierDepsVersionValid() const { return (memcmp(verifier_deps_version_, kVerifierDepsVersion, sizeof(kVerifierDepsVersion)) == 0); } bool VdexFile::VerifierDepsHeader::IsDexSectionVersionValid() const { return (memcmp(dex_section_version_, kDexSectionVersion, sizeof(kDexSectionVersion)) == 0) || (memcmp(dex_section_version_, kDexSectionVersionEmpty, sizeof(kDexSectionVersionEmpty)) == 0); } bool VdexFile::VerifierDepsHeader::HasDexSection() const { return (memcmp(dex_section_version_, kDexSectionVersion, sizeof(kDexSectionVersion)) == 0); } VdexFile::VerifierDepsHeader::VerifierDepsHeader(uint32_t number_of_dex_files, uint32_t verifier_deps_size, bool has_dex_section, uint32_t bootclasspath_checksums_size, uint32_t class_loader_context_size) : number_of_dex_files_(number_of_dex_files), verifier_deps_size_(verifier_deps_size), bootclasspath_checksums_size_(bootclasspath_checksums_size), class_loader_context_size_(class_loader_context_size) { memcpy(magic_, kVdexMagic, sizeof(kVdexMagic)); memcpy(verifier_deps_version_, kVerifierDepsVersion, sizeof(kVerifierDepsVersion)); if (has_dex_section) { memcpy(dex_section_version_, kDexSectionVersion, sizeof(kDexSectionVersion)); } else { memcpy(dex_section_version_, kDexSectionVersionEmpty, sizeof(kDexSectionVersionEmpty)); } DCHECK(IsMagicValid()); DCHECK(IsVerifierDepsVersionValid()); DCHECK(IsDexSectionVersionValid()); } VdexFile::DexSectionHeader::DexSectionHeader(uint32_t dex_size, uint32_t dex_shared_data_size, uint32_t quickening_info_size) : dex_size_(dex_size), dex_shared_data_size_(dex_shared_data_size), quickening_info_size_(quickening_info_size) { } std::unique_ptr VdexFile::OpenAtAddress(uint8_t* mmap_addr, size_t mmap_size, bool mmap_reuse, const std::string& vdex_filename, bool writable, bool low_4gb, bool unquicken, std::string* error_msg) { ScopedTrace trace(("VdexFile::OpenAtAddress " + vdex_filename).c_str()); if (!OS::FileExists(vdex_filename.c_str())) { *error_msg = "File " + vdex_filename + " does not exist."; return nullptr; } std::unique_ptr vdex_file; if (writable) { vdex_file.reset(OS::OpenFileReadWrite(vdex_filename.c_str())); } else { vdex_file.reset(OS::OpenFileForReading(vdex_filename.c_str())); } if (vdex_file == nullptr) { *error_msg = "Could not open file " + vdex_filename + (writable ? " for read/write" : "for reading"); return nullptr; } int64_t vdex_length = vdex_file->GetLength(); if (vdex_length == -1) { *error_msg = "Could not read the length of file " + vdex_filename; return nullptr; } return OpenAtAddress(mmap_addr, mmap_size, mmap_reuse, vdex_file->Fd(), vdex_length, vdex_filename, writable, low_4gb, unquicken, error_msg); } std::unique_ptr VdexFile::OpenAtAddress(uint8_t* mmap_addr, size_t mmap_size, bool mmap_reuse, int file_fd, size_t vdex_length, const std::string& vdex_filename, bool writable, bool low_4gb, bool unquicken, std::string* error_msg) { if (mmap_addr != nullptr && mmap_size < vdex_length) { LOG(WARNING) << "Insufficient pre-allocated space to mmap vdex."; mmap_addr = nullptr; mmap_reuse = false; } CHECK(!mmap_reuse || mmap_addr != nullptr); CHECK(!(writable && unquicken)) << "We don't want to be writing unquickened files out to disk!"; // Start as PROT_WRITE so we can mprotect back to it if we want to. MemMap mmap = MemMap::MapFileAtAddress( mmap_addr, vdex_length, PROT_READ | PROT_WRITE, writable ? MAP_SHARED : MAP_PRIVATE, file_fd, /* start= */ 0u, low_4gb, vdex_filename.c_str(), mmap_reuse, /* reservation= */ nullptr, error_msg); if (!mmap.IsValid()) { *error_msg = "Failed to mmap file " + vdex_filename + " : " + *error_msg; return nullptr; } std::unique_ptr vdex(new VdexFile(std::move(mmap))); if (!vdex->IsValid()) { *error_msg = "Vdex file is not valid"; return nullptr; } if (unquicken && vdex->HasDexSection()) { std::vector> unique_ptr_dex_files; if (!vdex->OpenAllDexFiles(&unique_ptr_dex_files, error_msg)) { return nullptr; } // TODO: It would be nice to avoid doing the return-instruction stuff but then we end up not // being able to tell if we need dequickening later. Instead just get rid of that too. vdex->Unquicken(MakeNonOwningPointerVector(unique_ptr_dex_files), /* decompile_return_instruction= */ true); // Update the quickening info size to pretend there isn't any. size_t offset = vdex->GetDexSectionHeaderOffset(); reinterpret_cast(vdex->mmap_.Begin() + offset)->quickening_info_size_ = 0; } if (!writable) { vdex->AllowWriting(false); } return vdex; } const uint8_t* VdexFile::GetNextDexFileData(const uint8_t* cursor) const { DCHECK(cursor == nullptr || (cursor > Begin() && cursor <= End())); if (cursor == nullptr) { // Beginning of the iteration, return the first dex file if there is one. return HasDexSection() ? DexBegin() + sizeof(QuickeningTableOffsetType) : nullptr; } else { // Fetch the next dex file. Return null if there is none. const uint8_t* data = cursor + reinterpret_cast(cursor)->file_size_; // Dex files are required to be 4 byte aligned. the OatWriter makes sure they are, see // OatWriter::SeekToDexFiles. data = AlignUp(data, 4); return (data == DexEnd()) ? nullptr : data + sizeof(QuickeningTableOffsetType); } } void VdexFile::AllowWriting(bool val) const { CHECK(mmap_.Protect(val ? (PROT_READ | PROT_WRITE) : PROT_READ)); } bool VdexFile::OpenAllDexFiles(std::vector>* dex_files, std::string* error_msg) const { const ArtDexFileLoader dex_file_loader; size_t i = 0; for (const uint8_t* dex_file_start = GetNextDexFileData(nullptr); dex_file_start != nullptr; dex_file_start = GetNextDexFileData(dex_file_start), ++i) { size_t size = reinterpret_cast(dex_file_start)->file_size_; // TODO: Supply the location information for a vdex file. static constexpr char kVdexLocation[] = ""; std::string location = DexFileLoader::GetMultiDexLocation(i, kVdexLocation); std::unique_ptr dex(dex_file_loader.OpenWithDataSection( dex_file_start, size, /*data_base=*/ nullptr, /*data_size=*/ 0u, location, GetLocationChecksum(i), /*oat_dex_file=*/ nullptr, /*verify=*/ false, /*verify_checksum=*/ false, error_msg)); if (dex == nullptr) { return false; } dex_files->push_back(std::move(dex)); } return true; } void VdexFile::UnquickenInPlace(bool decompile_return_instruction) const { CHECK_NE(mmap_.GetProtect() & PROT_WRITE, 0) << "File not mapped writable. Cannot unquicken! " << mmap_; if (HasDexSection()) { std::vector> unique_ptr_dex_files; std::string error_msg; if (!OpenAllDexFiles(&unique_ptr_dex_files, &error_msg)) { return; } Unquicken(MakeNonOwningPointerVector(unique_ptr_dex_files), decompile_return_instruction); // Update the quickening info size to pretend there isn't any. size_t offset = GetDexSectionHeaderOffset(); reinterpret_cast(mmap_.Begin() + offset)->quickening_info_size_ = 0; } } void VdexFile::Unquicken(const std::vector& target_dex_files, bool decompile_return_instruction) const { const uint8_t* source_dex = GetNextDexFileData(nullptr); for (const DexFile* target_dex : target_dex_files) { UnquickenDexFile(*target_dex, source_dex, decompile_return_instruction); source_dex = GetNextDexFileData(source_dex); } DCHECK(source_dex == nullptr); } uint32_t VdexFile::GetQuickeningInfoTableOffset(const uint8_t* source_dex_begin) const { DCHECK_GE(source_dex_begin, DexBegin()); DCHECK_LT(source_dex_begin, DexEnd()); return reinterpret_cast(source_dex_begin)[-1]; } CompactOffsetTable::Accessor VdexFile::GetQuickenInfoOffsetTable( const uint8_t* source_dex_begin, const ArrayRef& quickening_info) const { // The offset a is in preheader right before the dex file. const uint32_t offset = GetQuickeningInfoTableOffset(source_dex_begin); return CompactOffsetTable::Accessor(quickening_info.SubArray(offset).data()); } CompactOffsetTable::Accessor VdexFile::GetQuickenInfoOffsetTable( const DexFile& dex_file, const ArrayRef& quickening_info) const { return GetQuickenInfoOffsetTable(dex_file.Begin(), quickening_info); } static ArrayRef GetQuickeningInfoAt(const ArrayRef& quickening_info, uint32_t quickening_offset) { // Subtract offset of one since 0 represents unused and cannot be in the table. ArrayRef remaining = quickening_info.SubArray(quickening_offset - 1); return remaining.SubArray(0u, QuickenInfoTable::SizeInBytes(remaining)); } void VdexFile::UnquickenDexFile(const DexFile& target_dex_file, const DexFile& source_dex_file, bool decompile_return_instruction) const { UnquickenDexFile( target_dex_file, source_dex_file.Begin(), decompile_return_instruction); } void VdexFile::UnquickenDexFile(const DexFile& target_dex_file, const uint8_t* source_dex_begin, bool decompile_return_instruction) const { ArrayRef quickening_info = GetQuickeningInfo(); if (quickening_info.empty()) { // Bail early if there is no quickening info and no need to decompile. This means there is also // no RETURN_VOID to decompile since the empty table takes a non zero amount of space. return; } // Make sure to not unquicken the same code item multiple times. std::unordered_set unquickened_code_item; CompactOffsetTable::Accessor accessor(GetQuickenInfoOffsetTable(source_dex_begin, quickening_info)); for (ClassAccessor class_accessor : target_dex_file.GetClasses()) { for (const ClassAccessor::Method& method : class_accessor.GetMethods()) { const dex::CodeItem* code_item = method.GetCodeItem(); if (code_item != nullptr && unquickened_code_item.emplace(code_item).second) { const uint32_t offset = accessor.GetOffset(method.GetIndex()); // Offset being 0 means not quickened. if (offset != 0u) { ArrayRef quicken_data = GetQuickeningInfoAt(quickening_info, offset); optimizer::ArtDecompileDEX( target_dex_file, *code_item, quicken_data, decompile_return_instruction); } } } } } ArrayRef VdexFile::GetQuickenedInfoOf(const DexFile& dex_file, uint32_t dex_method_idx) const { ArrayRef quickening_info = GetQuickeningInfo(); if (quickening_info.empty()) { return ArrayRef(); } CHECK_LT(dex_method_idx, dex_file.NumMethodIds()); const uint32_t quickening_offset = GetQuickenInfoOffsetTable(dex_file, quickening_info).GetOffset(dex_method_idx); if (quickening_offset == 0u) { return ArrayRef(); } return GetQuickeningInfoAt(quickening_info, quickening_offset); } static std::string ComputeBootClassPathChecksumString() { Runtime* const runtime = Runtime::Current(); // Do not include boot image extension checksums, use their dex file checksums instead. Unlike // oat files, vdex files do not reference anything in image spaces, so there is no reason why // loading or not loading a boot image extension would affect the validity of the vdex file. // Note: Update of a boot class path module such as conscrypt invalidates the vdex file anyway. ArrayRef image_spaces(runtime->GetHeap()->GetBootImageSpaces()); size_t boot_image_components = image_spaces.empty() ? 0u : image_spaces[0]->GetImageHeader().GetComponentCount(); return gc::space::ImageSpace::GetBootClassPathChecksums( image_spaces.SubArray(/*pos=*/ 0u, boot_image_components), ArrayRef(runtime->GetClassLinker()->GetBootClassPath())); } static bool CreateDirectories(const std::string& child_path, /* out */ std::string* error_msg) { size_t last_slash_pos = child_path.find_last_of('/'); CHECK_NE(last_slash_pos, std::string::npos) << "Invalid path: " << child_path; std::string parent_path = child_path.substr(0, last_slash_pos); if (OS::DirectoryExists(parent_path.c_str())) { return true; } else if (CreateDirectories(parent_path, error_msg)) { if (mkdir(parent_path.c_str(), 0700) == 0) { return true; } *error_msg = "Could not create directory " + parent_path; return false; } else { return false; } } bool VdexFile::WriteToDisk(const std::string& path, const std::vector& dex_files, const verifier::VerifierDeps& verifier_deps, const std::string& class_loader_context, std::string* error_msg) { std::vector verifier_deps_data; verifier_deps.Encode(dex_files, &verifier_deps_data); std::string boot_checksum = ComputeBootClassPathChecksumString(); DCHECK_NE(boot_checksum, ""); VdexFile::VerifierDepsHeader deps_header(dex_files.size(), verifier_deps_data.size(), /* has_dex_section= */ false, boot_checksum.size(), class_loader_context.size()); if (!CreateDirectories(path, error_msg)) { return false; } std::unique_ptr out(OS::CreateEmptyFileWriteOnly(path.c_str())); if (out == nullptr) { *error_msg = "Could not open " + path + " for writing"; return false; } if (!out->WriteFully(reinterpret_cast(&deps_header), sizeof(deps_header))) { *error_msg = "Could not write vdex header to " + path; out->Unlink(); return false; } for (const DexFile* dex_file : dex_files) { const uint32_t* checksum_ptr = &dex_file->GetHeader().checksum_; static_assert(sizeof(*checksum_ptr) == sizeof(VdexFile::VdexChecksum)); if (!out->WriteFully(reinterpret_cast(checksum_ptr), sizeof(VdexFile::VdexChecksum))) { *error_msg = "Could not write dex checksums to " + path; out->Unlink(); return false; } } if (!out->WriteFully(reinterpret_cast(verifier_deps_data.data()), verifier_deps_data.size())) { *error_msg = "Could not write verifier deps to " + path; out->Unlink(); return false; } if (!out->WriteFully(boot_checksum.c_str(), boot_checksum.size())) { *error_msg = "Could not write boot classpath checksum to " + path; out->Unlink(); return false; } if (!out->WriteFully(class_loader_context.c_str(), class_loader_context.size())) { *error_msg = "Could not write class loader context to " + path; out->Unlink(); return false; } if (out->FlushClose() != 0) { *error_msg = "Could not flush and close " + path; out->Unlink(); return false; } return true; } bool VdexFile::MatchesDexFileChecksums(const std::vector& dex_headers) const { const VerifierDepsHeader& header = GetVerifierDepsHeader(); if (dex_headers.size() != header.GetNumberOfDexFiles()) { LOG(WARNING) << "Mismatch of number of dex files in vdex (expected=" << header.GetNumberOfDexFiles() << ", actual=" << dex_headers.size() << ")"; return false; } const VdexChecksum* checksums = header.GetDexChecksumsArray(); for (size_t i = 0; i < dex_headers.size(); ++i) { if (checksums[i] != dex_headers[i]->checksum_) { LOG(WARNING) << "Mismatch of dex file checksum in vdex (index=" << i << ")"; return false; } } return true; } bool VdexFile::MatchesBootClassPathChecksums() const { ArrayRef data = GetBootClassPathChecksumData(); std::string vdex(reinterpret_cast(data.data()), data.size()); std::string runtime = ComputeBootClassPathChecksumString(); if (vdex == runtime) { return true; } else { LOG(WARNING) << "Mismatch of boot class path checksum in vdex (expected=" << vdex << ", actual=" << runtime << ")"; return false; } } bool VdexFile::MatchesClassLoaderContext(const ClassLoaderContext& context) const { ArrayRef data = GetClassLoaderContextData(); std::string spec(reinterpret_cast(data.data()), data.size()); ClassLoaderContext::VerificationResult result = context.VerifyClassLoaderContextMatch(spec); if (result != ClassLoaderContext::VerificationResult::kMismatch) { return true; } else { LOG(WARNING) << "Mismatch of class loader context in vdex (expected=" << spec << ", actual=" << context.EncodeContextForOatFile("") << ")"; return false; } } } // namespace art