/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "base/bit_utils.h" #include "base/hiddenapi_flags.h" #include "base/mem_map.h" #include "base/os.h" #include "base/stl_util.h" #include "base/string_view_cpp20.h" #include "base/unix_file/fd_file.h" #include "dex/art_dex_file_loader.h" #include "dex/class_accessor-inl.h" #include "dex/dex_file-inl.h" namespace art { namespace hiddenapi { const char kErrorHelp[] = "\nSee go/hiddenapi-error for help."; static int original_argc; static char** original_argv; static std::string CommandLine() { std::vector command; command.reserve(original_argc); for (int i = 0; i < original_argc; ++i) { command.push_back(original_argv[i]); } return android::base::Join(command, ' '); } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; android::base::StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } NO_RETURN static void Usage(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: hiddenapi [command_name] [options]..."); UsageError(""); UsageError(" Command \"encode\": encode API list membership in boot dex files"); UsageError(" --input-dex=: dex file which belongs to boot class path"); UsageError(" --output-dex=: file to write encoded dex into"); UsageError(" input and output dex files are paired in order of appearance"); UsageError(""); UsageError(" --api-flags=:"); UsageError(" CSV file with signatures of methods/fields and their respective flags"); UsageError(""); UsageError(" --no-force-assign-all:"); UsageError(" Disable check that all dex entries have been assigned a flag"); UsageError(""); UsageError(" Command \"list\": dump lists of public and private API"); UsageError(" --boot-dex=: dex file which belongs to boot class path"); UsageError(" --public-stub-classpath=:"); UsageError(" --system-stub-classpath=:"); UsageError(" --test-stub-classpath=:"); UsageError(" --core-platform-stub-classpath=:"); UsageError(" colon-separated list of dex/apk files which form API stubs of boot"); UsageError(" classpath. Multiple classpaths can be specified"); UsageError(""); UsageError(" --out-api-flags=: output file for a CSV file with API flags"); UsageError(""); exit(EXIT_FAILURE); } template static bool Contains(const std::vector& vec, const E& elem) { return std::find(vec.begin(), vec.end(), elem) != vec.end(); } class DexClass : public ClassAccessor { public: explicit DexClass(const ClassAccessor& accessor) : ClassAccessor(accessor) {} const uint8_t* GetData() const { return dex_file_.GetClassData(GetClassDef()); } const dex::TypeIndex GetSuperclassIndex() const { return GetClassDef().superclass_idx_; } bool HasSuperclass() const { return dex_file_.IsTypeIndexValid(GetSuperclassIndex()); } std::string_view GetSuperclassDescriptor() const { return HasSuperclass() ? dex_file_.StringByTypeIdx(GetSuperclassIndex()) : ""; } std::set GetInterfaceDescriptors() const { std::set list; const dex::TypeList* ifaces = dex_file_.GetInterfacesList(GetClassDef()); for (uint32_t i = 0; ifaces != nullptr && i < ifaces->Size(); ++i) { list.insert(dex_file_.StringByTypeIdx(ifaces->GetTypeItem(i).type_idx_)); } return list; } inline bool IsPublic() const { return HasAccessFlags(kAccPublic); } inline bool IsInterface() const { return HasAccessFlags(kAccInterface); } inline bool Equals(const DexClass& other) const { bool equals = strcmp(GetDescriptor(), other.GetDescriptor()) == 0; if (equals) { LOG(FATAL) << "Class duplication: " << GetDescriptor() << " in " << dex_file_.GetLocation() << " and " << other.dex_file_.GetLocation(); } return equals; } private: uint32_t GetAccessFlags() const { return GetClassDef().access_flags_; } bool HasAccessFlags(uint32_t mask) const { return (GetAccessFlags() & mask) == mask; } static std::string JoinStringSet(const std::set& s) { return "{" + ::android::base::Join(std::vector(s.begin(), s.end()), ",") + "}"; } }; class DexMember { public: DexMember(const DexClass& klass, const ClassAccessor::Field& item) : klass_(klass), item_(item), is_method_(false) { DCHECK_EQ(GetFieldId().class_idx_, klass.GetClassIdx()); } DexMember(const DexClass& klass, const ClassAccessor::Method& item) : klass_(klass), item_(item), is_method_(true) { DCHECK_EQ(GetMethodId().class_idx_, klass.GetClassIdx()); } inline const DexClass& GetDeclaringClass() const { return klass_; } inline bool IsMethod() const { return is_method_; } inline bool IsVirtualMethod() const { return IsMethod() && !GetMethod().IsStaticOrDirect(); } inline bool IsConstructor() const { return IsMethod() && HasAccessFlags(kAccConstructor); } inline bool IsPublicOrProtected() const { return HasAccessFlags(kAccPublic) || HasAccessFlags(kAccProtected); } // Constructs a string with a unique signature of this class member. std::string GetApiEntry() const { std::stringstream ss; ss << klass_.GetDescriptor() << "->" << GetName() << (IsMethod() ? "" : ":") << GetSignature(); return ss.str(); } inline bool operator==(const DexMember& other) const { // These need to match if they should resolve to one another. bool equals = IsMethod() == other.IsMethod() && GetName() == other.GetName() && GetSignature() == other.GetSignature(); // Soundness check that they do match. if (equals) { CHECK_EQ(IsVirtualMethod(), other.IsVirtualMethod()); } return equals; } private: inline uint32_t GetAccessFlags() const { return item_.GetAccessFlags(); } inline bool HasAccessFlags(uint32_t mask) const { return (GetAccessFlags() & mask) == mask; } inline std::string_view GetName() const { return IsMethod() ? item_.GetDexFile().GetMethodName(GetMethodId()) : item_.GetDexFile().GetFieldName(GetFieldId()); } inline std::string GetSignature() const { return IsMethod() ? item_.GetDexFile().GetMethodSignature(GetMethodId()).ToString() : item_.GetDexFile().GetFieldTypeDescriptor(GetFieldId()); } inline const ClassAccessor::Method& GetMethod() const { DCHECK(IsMethod()); return down_cast(item_); } inline const dex::MethodId& GetMethodId() const { DCHECK(IsMethod()); return item_.GetDexFile().GetMethodId(item_.GetIndex()); } inline const dex::FieldId& GetFieldId() const { DCHECK(!IsMethod()); return item_.GetDexFile().GetFieldId(item_.GetIndex()); } const DexClass& klass_; const ClassAccessor::BaseItem& item_; const bool is_method_; }; class ClassPath final { public: ClassPath(const std::vector& dex_paths, bool open_writable) { OpenDexFiles(dex_paths, open_writable); } template void ForEachDexClass(Fn fn) { for (auto& dex_file : dex_files_) { for (ClassAccessor accessor : dex_file->GetClasses()) { fn(DexClass(accessor)); } } } template void ForEachDexMember(Fn fn) { ForEachDexClass([&fn](const DexClass& klass) { for (const ClassAccessor::Field& field : klass.GetFields()) { fn(DexMember(klass, field)); } for (const ClassAccessor::Method& method : klass.GetMethods()) { fn(DexMember(klass, method)); } }); } std::vector GetDexFiles() const { return MakeNonOwningPointerVector(dex_files_); } void UpdateDexChecksums() { for (auto& dex_file : dex_files_) { // Obtain a writeable pointer to the dex header. DexFile::Header* header = const_cast(&dex_file->GetHeader()); // Recalculate checksum and overwrite the value in the header. header->checksum_ = dex_file->CalculateChecksum(); } } private: void OpenDexFiles(const std::vector& dex_paths, bool open_writable) { ArtDexFileLoader dex_loader; std::string error_msg; if (open_writable) { for (const std::string& filename : dex_paths) { File fd(filename.c_str(), O_RDWR, /* check_usage= */ false); CHECK_NE(fd.Fd(), -1) << "Unable to open file '" << filename << "': " << strerror(errno); // Memory-map the dex file with MAP_SHARED flag so that changes in memory // propagate to the underlying file. We run dex file verification as if // the dex file was not in boot claass path to check basic assumptions, // such as that at most one of public/private/protected flag is set. // We do those checks here and skip them when loading the processed file // into boot class path. std::unique_ptr dex_file(dex_loader.OpenDex(fd.Release(), /* location= */ filename, /* verify= */ true, /* verify_checksum= */ true, /* mmap_shared= */ true, &error_msg)); CHECK(dex_file.get() != nullptr) << "Open failed for '" << filename << "' " << error_msg; CHECK(dex_file->IsStandardDexFile()) << "Expected a standard dex file '" << filename << "'"; CHECK(dex_file->EnableWrite()) << "Failed to enable write permission for '" << filename << "'"; dex_files_.push_back(std::move(dex_file)); } } else { for (const std::string& filename : dex_paths) { bool success = dex_loader.Open(filename.c_str(), /* location= */ filename, /* verify= */ true, /* verify_checksum= */ true, &error_msg, &dex_files_); CHECK(success) << "Open failed for '" << filename << "' " << error_msg; } } } // Opened dex files. Note that these are opened as `const` but may be written into. std::vector> dex_files_; }; class HierarchyClass final { public: HierarchyClass() {} void AddDexClass(const DexClass& klass) { CHECK(dex_classes_.empty() || klass.Equals(dex_classes_.front())); dex_classes_.push_back(klass); } void AddExtends(HierarchyClass& parent) { CHECK(!Contains(extends_, &parent)); CHECK(!Contains(parent.extended_by_, this)); extends_.push_back(&parent); parent.extended_by_.push_back(this); } const DexClass& GetOneDexClass() const { CHECK(!dex_classes_.empty()); return dex_classes_.front(); } // See comment on Hierarchy::ForEachResolvableMember. template bool ForEachResolvableMember(const DexMember& other, Fn fn) { std::vector visited; return ForEachResolvableMember_Impl(other, fn, true, true, visited); } // Returns true if this class contains at least one member matching `other`. bool HasMatchingMember(const DexMember& other) { return ForEachMatchingMember(other, [](const DexMember&) { return true; }); } // Recursively iterates over all subclasses of this class and invokes `fn` // on each one. If `fn` returns false for a particular subclass, exploring its // subclasses is skipped. template void ForEachSubClass(Fn fn) { for (HierarchyClass* subclass : extended_by_) { if (fn(subclass)) { subclass->ForEachSubClass(fn); } } } private: template bool ForEachResolvableMember_Impl(const DexMember& other, Fn fn, bool allow_explore_up, bool allow_explore_down, std::vector visited) { if (std::find(visited.begin(), visited.end(), this) == visited.end()) { visited.push_back(this); } else { return false; } // First try to find a member matching `other` in this class. bool found = ForEachMatchingMember(other, fn); // If not found, see if it is inherited from parents. Note that this will not // revisit parents already in `visited`. if (!found && allow_explore_up) { for (HierarchyClass* superclass : extends_) { found |= superclass->ForEachResolvableMember_Impl( other, fn, /* allow_explore_up */ true, /* allow_explore_down */ false, visited); } } // If this is a virtual method, continue exploring into subclasses so as to visit // all overriding methods. Allow subclasses to explore their superclasses if this // is an interface. This is needed to find implementations of this interface's // methods inherited from superclasses (b/122551864). if (allow_explore_down && other.IsVirtualMethod()) { for (HierarchyClass* subclass : extended_by_) { subclass->ForEachResolvableMember_Impl( other, fn, /* allow_explore_up */ GetOneDexClass().IsInterface(), /* allow_explore_down */ true, visited); } } return found; } template bool ForEachMatchingMember(const DexMember& other, Fn fn) { bool found = false; auto compare_member = [&](const DexMember& member) { // TODO(dbrazdil): Check whether class of `other` can access `member`. if (member == other) { found = true; fn(member); } }; for (const DexClass& dex_class : dex_classes_) { for (const ClassAccessor::Field& field : dex_class.GetFields()) { compare_member(DexMember(dex_class, field)); } for (const ClassAccessor::Method& method : dex_class.GetMethods()) { compare_member(DexMember(dex_class, method)); } } return found; } // DexClass entries of this class found across all the provided dex files. std::vector dex_classes_; // Classes which this class inherits, or interfaces which it implements. std::vector extends_; // Classes which inherit from this class. std::vector extended_by_; }; class Hierarchy final { public: explicit Hierarchy(ClassPath& classpath) : classpath_(classpath) { BuildClassHierarchy(); } // Perform an operation for each member of the hierarchy which could potentially // be the result of method/field resolution of `other`. // The function `fn` should accept a DexMember reference and return true if // the member was changed. This drives a performance optimization which only // visits overriding members the first time the overridden member is visited. // Returns true if at least one resolvable member was found. template bool ForEachResolvableMember(const DexMember& other, Fn fn) { HierarchyClass* klass = FindClass(other.GetDeclaringClass().GetDescriptor()); return (klass != nullptr) && klass->ForEachResolvableMember(other, fn); } // Returns true if `member`, which belongs to this classpath, is visible to // code in child class loaders. bool IsMemberVisible(const DexMember& member) { if (!member.IsPublicOrProtected()) { // Member is private or package-private. Cannot be visible. return false; } else if (member.GetDeclaringClass().IsPublic()) { // Member is public or protected, and class is public. It must be visible. return true; } else if (member.IsConstructor()) { // Member is public or protected constructor and class is not public. // Must be hidden because it cannot be implicitly exposed by a subclass. return false; } else { // Member is public or protected method, but class is not public. Check if // it is exposed through a public subclass. // Example code (`foo` exposed by ClassB): // class ClassA { public void foo() { ... } } // public class ClassB extends ClassA {} HierarchyClass* klass = FindClass(member.GetDeclaringClass().GetDescriptor()); CHECK(klass != nullptr); bool visible = false; klass->ForEachSubClass([&visible, &member](HierarchyClass* subclass) { if (subclass->HasMatchingMember(member)) { // There is a member which matches `member` in `subclass`, either // a virtual method overriding `member` or a field overshadowing // `member`. In either case, `member` remains hidden. CHECK(member.IsVirtualMethod() || !member.IsMethod()); return false; // do not explore deeper } else if (subclass->GetOneDexClass().IsPublic()) { // `subclass` inherits and exposes `member`. visible = true; return false; // do not explore deeper } else { // `subclass` inherits `member` but does not expose it. return true; // explore deeper } }); return visible; } } private: HierarchyClass* FindClass(const std::string_view& descriptor) { auto it = classes_.find(descriptor); if (it == classes_.end()) { return nullptr; } else { return &it->second; } } void BuildClassHierarchy() { // Create one HierarchyClass entry in `classes_` per class descriptor // and add all DexClass objects with the same descriptor to that entry. classpath_.ForEachDexClass([this](const DexClass& klass) { classes_[klass.GetDescriptor()].AddDexClass(klass); }); // Connect each HierarchyClass to its successors and predecessors. for (auto& entry : classes_) { HierarchyClass& klass = entry.second; const DexClass& dex_klass = klass.GetOneDexClass(); if (!dex_klass.HasSuperclass()) { CHECK(dex_klass.GetInterfaceDescriptors().empty()) << "java/lang/Object should not implement any interfaces"; continue; } HierarchyClass* superclass = FindClass(dex_klass.GetSuperclassDescriptor()); CHECK(superclass != nullptr) << "Superclass " << dex_klass.GetSuperclassDescriptor() << " of class " << dex_klass.GetDescriptor() << " from dex file \"" << dex_klass.GetDexFile().GetLocation() << "\" was not found. " << "Either the superclass is missing or it appears later in the classpath spec."; klass.AddExtends(*superclass); for (const std::string_view& iface_desc : dex_klass.GetInterfaceDescriptors()) { HierarchyClass* iface = FindClass(iface_desc); CHECK(iface != nullptr); klass.AddExtends(*iface); } } } ClassPath& classpath_; std::map classes_; }; // Builder of dex section containing hiddenapi flags. class HiddenapiClassDataBuilder final { public: explicit HiddenapiClassDataBuilder(const DexFile& dex_file) : num_classdefs_(dex_file.NumClassDefs()), next_class_def_idx_(0u), class_def_has_non_zero_flags_(false), dex_file_has_non_zero_flags_(false), data_(sizeof(uint32_t) * (num_classdefs_ + 1), 0u) { *GetSizeField() = GetCurrentDataSize(); } // Notify the builder that new flags for the next class def // will be written now. The builder records the current offset // into the header. void BeginClassDef(uint32_t idx) { CHECK_EQ(next_class_def_idx_, idx); CHECK_LT(idx, num_classdefs_); GetOffsetArray()[idx] = GetCurrentDataSize(); class_def_has_non_zero_flags_ = false; } // Notify the builder that all flags for this class def have been // written. The builder updates the total size of the data struct // and may set offset for class def in header to zero if no data // has been written. void EndClassDef(uint32_t idx) { CHECK_EQ(next_class_def_idx_, idx); CHECK_LT(idx, num_classdefs_); ++next_class_def_idx_; if (!class_def_has_non_zero_flags_) { // No need to store flags for this class. Remove the written flags // and set offset in header to zero. data_.resize(GetOffsetArray()[idx]); GetOffsetArray()[idx] = 0u; } dex_file_has_non_zero_flags_ |= class_def_has_non_zero_flags_; if (idx == num_classdefs_ - 1) { if (dex_file_has_non_zero_flags_) { // This was the last class def and we have generated non-zero hiddenapi // flags. Update total size in the header. *GetSizeField() = GetCurrentDataSize(); } else { // This was the last class def and we have not generated any non-zero // hiddenapi flags. Clear all the data. data_.clear(); } } } // Append flags at the end of the data struct. This should be called // between BeginClassDef and EndClassDef in the order of appearance of // fields/methods in the class data stream. void WriteFlags(const ApiList& flags) { uint32_t dex_flags = flags.GetDexFlags(); EncodeUnsignedLeb128(&data_, dex_flags); class_def_has_non_zero_flags_ |= (dex_flags != 0u); } // Return backing data, assuming that all flags have been written. const std::vector& GetData() const { CHECK_EQ(next_class_def_idx_, num_classdefs_) << "Incomplete data"; return data_; } private: // Returns pointer to the size field in the header of this dex section. uint32_t* GetSizeField() { // Assume malloc() aligns allocated memory to at least uint32_t. CHECK(IsAligned(data_.data())); return reinterpret_cast(data_.data()); } // Returns pointer to array of offsets (indexed by class def indices) in the // header of this dex section. uint32_t* GetOffsetArray() { return &GetSizeField()[1]; } uint32_t GetCurrentDataSize() const { return data_.size(); } // Number of class defs in this dex file. const uint32_t num_classdefs_; // Next expected class def index. uint32_t next_class_def_idx_; // Whether non-zero flags have been encountered for this class def. bool class_def_has_non_zero_flags_; // Whether any non-zero flags have been encountered for this dex file. bool dex_file_has_non_zero_flags_; // Vector containing the data of the built data structure. std::vector data_; }; // Edits a dex file, inserting a new HiddenapiClassData section. class DexFileEditor final { public: DexFileEditor(const DexFile& old_dex, const std::vector& hiddenapi_class_data) : old_dex_(old_dex), hiddenapi_class_data_(hiddenapi_class_data), loaded_dex_header_(nullptr), loaded_dex_maplist_(nullptr) {} // Copies dex file into a backing data vector, appends the given HiddenapiClassData // and updates the MapList. void Encode() { // We do not support non-standard dex encodings, e.g. compact dex. CHECK(old_dex_.IsStandardDexFile()); // If there are no data to append, copy the old dex file and return. if (hiddenapi_class_data_.empty()) { AllocateMemory(old_dex_.Size()); Append(old_dex_.Begin(), old_dex_.Size(), /* update_header= */ false); return; } // Find the old MapList, find its size. const dex::MapList* old_map = old_dex_.GetMapList(); CHECK_LT(old_map->size_, std::numeric_limits::max()); // Compute the size of the new dex file. We append the HiddenapiClassData, // one MapItem and possibly some padding to align the new MapList. CHECK(IsAligned(old_dex_.Size())) << "End of input dex file is not 4-byte aligned, possibly because its MapList is not " << "at the end of the file."; size_t size_delta = RoundUp(hiddenapi_class_data_.size(), kMapListAlignment) + sizeof(dex::MapItem); size_t new_size = old_dex_.Size() + size_delta; AllocateMemory(new_size); // Copy the old dex file into the backing data vector. Load the copied // dex file to obtain pointers to its header and MapList. Append(old_dex_.Begin(), old_dex_.Size(), /* update_header= */ false); ReloadDex(/* verify= */ false); // Truncate the new dex file before the old MapList. This assumes that // the MapList is the last entry in the dex file. This is currently true // for our tooling. // TODO: Implement the general case by zero-ing the old MapList (turning // it into padding. RemoveOldMapList(); // Append HiddenapiClassData. size_t payload_offset = AppendHiddenapiClassData(); // Wrute new MapList with an entry for HiddenapiClassData. CreateMapListWithNewItem(payload_offset); // Check that the pre-computed size matches the actual size. CHECK_EQ(offset_, new_size); // Reload to all data structures. ReloadDex(/* verify= */ false); // Update the dex checksum. UpdateChecksum(); // Run DexFileVerifier on the new dex file as a CHECK. ReloadDex(/* verify= */ true); } // Writes the edited dex file into a file. void WriteTo(const std::string& path) { CHECK(!data_.empty()); std::ofstream ofs(path.c_str(), std::ofstream::out | std::ofstream::binary); ofs.write(reinterpret_cast(data_.data()), data_.size()); ofs.flush(); CHECK(ofs.good()); ofs.close(); } private: static constexpr size_t kMapListAlignment = 4u; static constexpr size_t kHiddenapiClassDataAlignment = 4u; void ReloadDex(bool verify) { std::string error_msg; DexFileLoader loader; loaded_dex_ = loader.Open( data_.data(), data_.size(), "test_location", old_dex_.GetLocationChecksum(), /* oat_dex_file= */ nullptr, /* verify= */ verify, /* verify_checksum= */ verify, &error_msg); if (loaded_dex_.get() == nullptr) { LOG(FATAL) << "Failed to load edited dex file: " << error_msg; UNREACHABLE(); } // Load the location of header and map list before we start editing the file. loaded_dex_header_ = const_cast(&loaded_dex_->GetHeader()); loaded_dex_maplist_ = const_cast(loaded_dex_->GetMapList()); } DexFile::Header& GetHeader() const { CHECK(loaded_dex_header_ != nullptr); return *loaded_dex_header_; } dex::MapList& GetMapList() const { CHECK(loaded_dex_maplist_ != nullptr); return *loaded_dex_maplist_; } void AllocateMemory(size_t total_size) { data_.clear(); data_.resize(total_size); CHECK(IsAligned(data_.data())); CHECK(IsAligned(data_.data())); offset_ = 0; } uint8_t* GetCurrentDataPtr() { return data_.data() + offset_; } void UpdateDataSize(off_t delta, bool update_header) { offset_ += delta; if (update_header) { DexFile::Header& header = GetHeader(); header.file_size_ += delta; header.data_size_ += delta; } } template T* Append(const T* src, size_t len, bool update_header = true) { CHECK_LE(offset_ + len, data_.size()); uint8_t* dst = GetCurrentDataPtr(); memcpy(dst, src, len); UpdateDataSize(len, update_header); return reinterpret_cast(dst); } void InsertPadding(size_t alignment) { size_t len = RoundUp(offset_, alignment) - offset_; std::vector padding(len, 0); Append(padding.data(), padding.size()); } void RemoveOldMapList() { size_t map_size = GetMapList().Size(); uint8_t* map_start = reinterpret_cast(&GetMapList()); CHECK_EQ(map_start + map_size, GetCurrentDataPtr()) << "MapList not at the end of dex file"; UpdateDataSize(-static_cast(map_size), /* update_header= */ true); CHECK_EQ(map_start, GetCurrentDataPtr()); loaded_dex_maplist_ = nullptr; // do not use this map list any more } void CreateMapListWithNewItem(size_t payload_offset) { InsertPadding(/* alignment= */ kMapListAlignment); size_t new_map_offset = offset_; dex::MapList* map = Append(old_dex_.GetMapList(), old_dex_.GetMapList()->Size()); // Check last map entry is a pointer to itself. dex::MapItem& old_item = map->list_[map->size_ - 1]; CHECK(old_item.type_ == DexFile::kDexTypeMapList); CHECK_EQ(old_item.size_, 1u); CHECK_EQ(old_item.offset_, GetHeader().map_off_); // Create a new MapItem entry with new MapList details. dex::MapItem new_item; new_item.type_ = old_item.type_; new_item.unused_ = 0u; // initialize to ensure dex output is deterministic (b/119308882) new_item.size_ = old_item.size_; new_item.offset_ = new_map_offset; // Update pointer in the header. GetHeader().map_off_ = new_map_offset; // Append a new MapItem and return its pointer. map->size_++; Append(&new_item, sizeof(dex::MapItem)); // Change penultimate entry to point to metadata. old_item.type_ = DexFile::kDexTypeHiddenapiClassData; old_item.size_ = 1u; // there is only one section old_item.offset_ = payload_offset; } size_t AppendHiddenapiClassData() { size_t payload_offset = offset_; CHECK_EQ(kMapListAlignment, kHiddenapiClassDataAlignment); CHECK(IsAligned(payload_offset)) << "Should not need to align the section, previous data was already aligned"; Append(hiddenapi_class_data_.data(), hiddenapi_class_data_.size()); return payload_offset; } void UpdateChecksum() { GetHeader().checksum_ = loaded_dex_->CalculateChecksum(); } const DexFile& old_dex_; const std::vector& hiddenapi_class_data_; std::vector data_; size_t offset_; std::unique_ptr loaded_dex_; DexFile::Header* loaded_dex_header_; dex::MapList* loaded_dex_maplist_; }; class HiddenApi final { public: HiddenApi() : force_assign_all_(true) {} void Run(int argc, char** argv) { switch (ParseArgs(argc, argv)) { case Command::kEncode: EncodeAccessFlags(); break; case Command::kList: ListApi(); break; } } private: enum class Command { kEncode, kList, }; Command ParseArgs(int argc, char** argv) { // Skip over the binary's path. argv++; argc--; if (argc > 0) { const char* raw_command = argv[0]; const std::string_view command(raw_command); if (command == "encode") { for (int i = 1; i < argc; ++i) { const char* raw_option = argv[i]; const std::string_view option(raw_option); if (StartsWith(option, "--input-dex=")) { boot_dex_paths_.push_back(std::string(option.substr(strlen("--input-dex=")))); } else if (StartsWith(option, "--output-dex=")) { output_dex_paths_.push_back(std::string(option.substr(strlen("--output-dex=")))); } else if (StartsWith(option, "--api-flags=")) { api_flags_path_ = std::string(option.substr(strlen("--api-flags="))); } else if (option == "--no-force-assign-all") { force_assign_all_ = false; } else { Usage("Unknown argument '%s'", raw_option); } } return Command::kEncode; } else if (command == "list") { for (int i = 1; i < argc; ++i) { const char* raw_option = argv[i]; const std::string_view option(raw_option); if (StartsWith(option, "--boot-dex=")) { boot_dex_paths_.push_back(std::string(option.substr(strlen("--boot-dex=")))); } else if (StartsWith(option, "--public-stub-classpath=")) { stub_classpaths_.push_back(std::make_pair( std::string(option.substr(strlen("--public-stub-classpath="))), ApiStubs::Kind::kPublicApi)); } else if (StartsWith(option, "--system-stub-classpath=")) { stub_classpaths_.push_back(std::make_pair( std::string(option.substr(strlen("--system-stub-classpath="))), ApiStubs::Kind::kSystemApi)); } else if (StartsWith(option, "--test-stub-classpath=")) { stub_classpaths_.push_back(std::make_pair( std::string(option.substr(strlen("--test-stub-classpath="))), ApiStubs::Kind::kTestApi)); } else if (StartsWith(option, "--core-platform-stub-classpath=")) { stub_classpaths_.push_back(std::make_pair( std::string(option.substr(strlen("--core-platform-stub-classpath="))), ApiStubs::Kind::kCorePlatformApi)); } else if (StartsWith(option, "--out-api-flags=")) { api_flags_path_ = std::string(option.substr(strlen("--out-api-flags="))); } else { Usage("Unknown argument '%s'", raw_option); } } return Command::kList; } else { Usage("Unknown command '%s'", raw_command); } } else { Usage("No command specified"); } } void EncodeAccessFlags() { if (boot_dex_paths_.empty()) { Usage("No input DEX files specified"); } else if (output_dex_paths_.size() != boot_dex_paths_.size()) { Usage("Number of input DEX files does not match number of output DEX files"); } // Load dex signatures. std::map api_list = OpenApiFile(api_flags_path_); // Iterate over input dex files and insert HiddenapiClassData sections. for (size_t i = 0; i < boot_dex_paths_.size(); ++i) { const std::string& input_path = boot_dex_paths_[i]; const std::string& output_path = output_dex_paths_[i]; ClassPath boot_classpath({ input_path }, /* open_writable= */ false); std::vector input_dex_files = boot_classpath.GetDexFiles(); CHECK_EQ(input_dex_files.size(), 1u); const DexFile& input_dex = *input_dex_files[0]; HiddenapiClassDataBuilder builder(input_dex); boot_classpath.ForEachDexClass([&](const DexClass& boot_class) { builder.BeginClassDef(boot_class.GetClassDefIndex()); if (boot_class.GetData() != nullptr) { auto fn_shared = [&](const DexMember& boot_member) { auto it = api_list.find(boot_member.GetApiEntry()); bool api_list_found = (it != api_list.end()); CHECK(!force_assign_all_ || api_list_found) << "Could not find hiddenapi flags for dex entry: " << boot_member.GetApiEntry(); builder.WriteFlags(api_list_found ? it->second : ApiList::Whitelist()); }; auto fn_field = [&](const ClassAccessor::Field& boot_field) { fn_shared(DexMember(boot_class, boot_field)); }; auto fn_method = [&](const ClassAccessor::Method& boot_method) { fn_shared(DexMember(boot_class, boot_method)); }; boot_class.VisitFieldsAndMethods(fn_field, fn_field, fn_method, fn_method); } builder.EndClassDef(boot_class.GetClassDefIndex()); }); DexFileEditor dex_editor(input_dex, builder.GetData()); dex_editor.Encode(); dex_editor.WriteTo(output_path); } } std::map OpenApiFile(const std::string& path) { CHECK(!path.empty()); std::ifstream api_file(path, std::ifstream::in); CHECK(!api_file.fail()) << "Unable to open file '" << path << "' " << strerror(errno); std::map api_flag_map; size_t line_number = 1; for (std::string line; std::getline(api_file, line); line_number++) { // Every line contains a comma separated list with the signature as the // first element and the api flags as the rest std::vector values = android::base::Split(line, ","); CHECK_GT(values.size(), 1u) << path << ":" << line_number << ": No flags found: " << line << kErrorHelp; const std::string& signature = values[0]; CHECK(api_flag_map.find(signature) == api_flag_map.end()) << path << ":" << line_number << ": Duplicate entry: " << signature << kErrorHelp; ApiList membership; bool success = ApiList::FromNames(values.begin() + 1, values.end(), &membership); CHECK(success) << path << ":" << line_number << ": Some flags were not recognized: " << line << kErrorHelp; CHECK(membership.IsValid()) << path << ":" << line_number << ": Invalid combination of flags: " << line << kErrorHelp; api_flag_map.emplace(signature, membership); } api_file.close(); return api_flag_map; } void ListApi() { if (boot_dex_paths_.empty()) { Usage("No boot DEX files specified"); } else if (stub_classpaths_.empty()) { Usage("No stub DEX files specified"); } else if (api_flags_path_.empty()) { Usage("No output path specified"); } // Complete list of boot class path members. The associated boolean states // whether it is public (true) or private (false). std::map> boot_members; // Deduplicate errors before printing them. std::set unresolved; // Open all dex files. ClassPath boot_classpath(boot_dex_paths_, /* open_writable= */ false); Hierarchy boot_hierarchy(boot_classpath); // Mark all boot dex members private. boot_classpath.ForEachDexMember([&](const DexMember& boot_member) { boot_members[boot_member.GetApiEntry()] = {}; }); // Resolve each SDK dex member against the framework and mark it white. for (const auto& cp_entry : stub_classpaths_) { ClassPath stub_classpath(android::base::Split(cp_entry.first, ":"), /* open_writable= */ false); Hierarchy stub_hierarchy(stub_classpath); const ApiStubs::Kind stub_api = cp_entry.second; stub_classpath.ForEachDexMember( [&](const DexMember& stub_member) { if (!stub_hierarchy.IsMemberVisible(stub_member)) { // Typically fake constructors and inner-class `this` fields. return; } bool resolved = boot_hierarchy.ForEachResolvableMember( stub_member, [&](const DexMember& boot_member) { std::string entry = boot_member.GetApiEntry(); auto it = boot_members.find(entry); CHECK(it != boot_members.end()); it->second.insert(ApiStubs::ToString(stub_api)); }); if (!resolved) { unresolved.insert(stub_member.GetApiEntry()); } }); } // Print errors. for (const std::string& str : unresolved) { LOG(WARNING) << "unresolved: " << str; } // Write into public/private API files. std::ofstream file_flags(api_flags_path_.c_str()); for (const auto& entry : boot_members) { if (entry.second.empty()) { file_flags << entry.first << std::endl; } else { file_flags << entry.first << ","; file_flags << android::base::Join(entry.second, ",") << std::endl; } } file_flags.close(); } // Whether to check that all dex entries have been assigned flags. // Defaults to true. bool force_assign_all_; // Paths to DEX files which should be processed. std::vector boot_dex_paths_; // Output paths where modified DEX files should be written. std::vector output_dex_paths_; // Set of public API stub classpaths. Each classpath is formed by a list // of DEX/APK files in the order they appear on the classpath. std::vector> stub_classpaths_; // Path to CSV file containing the list of API members and their flags. // This could be both an input and output path. std::string api_flags_path_; }; } // namespace hiddenapi } // namespace art int main(int argc, char** argv) { art::hiddenapi::original_argc = argc; art::hiddenapi::original_argv = argv; android::base::InitLogging(argv); art::MemMap::Init(); art::hiddenapi::HiddenApi().Run(argc, argv); return EXIT_SUCCESS; }