/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "BidirectionalSequenceLSTM.h" #include #include #include "CpuExecutor.h" #include "CpuOperationUtils.h" #include "HalInterfaces.h" #include "OperationsUtils.h" #include "Tracing.h" namespace android { namespace nn { namespace { using namespace hal; template inline T* GetBuffer(RunTimeOperandInfo* operand) { return reinterpret_cast(operand->buffer); } template inline const T* GetBuffer(const RunTimeOperandInfo* operand) { return reinterpret_cast(operand->buffer); } template inline const T* GetOptionalBuffer(const RunTimeOperandInfo* operand) { return !IsNullInput(operand) ? reinterpret_cast(operand->buffer) : nullptr; } enum class LinkingMode { NO_LINKING, PARALLEL_LINKING, CROSS_LINKING, }; bool getLinkingMode(bool hasAuxInput, bool hasAuxWeights, LinkingMode* linkingMode) { // Three possible configurations for three possible linking modes: // 1) NO_LINKING -- no auxiliary tensors at all // 2) PARALLEL_LINKING -- auxiliary input is provided and used as a regular // input to the backward network, so the auxiliary weights are omitted. // 3) CROSS_LINKING -- auxiliary input is provided and multiplied by // auxiliary weights. if (!hasAuxInput && !hasAuxWeights) { *linkingMode = LinkingMode::NO_LINKING; } else if (hasAuxInput && !hasAuxWeights) { *linkingMode = LinkingMode::PARALLEL_LINKING; } else if (hasAuxInput && hasAuxWeights) { *linkingMode = LinkingMode::CROSS_LINKING; } else { NN_RET_CHECK_FAIL() << "Unsupported auxiliary tensors configuration for BIDIRECTIONAL_SEQUENCE_RNN."; } return true; } } // anonymous namespace BidirectionalSequenceLSTM::BidirectionalSequenceLSTM(const Operation& operation, RunTimeOperandInfo* operands) { input_ = GetInput(operation, operands, kInputTensor); fw_input_to_input_weights_ = GetInput(operation, operands, kFwInputToInputWeightsTensor); // optional fw_input_to_forget_weights_ = GetInput(operation, operands, kFwInputToForgetWeightsTensor); fw_input_to_cell_weights_ = GetInput(operation, operands, kFwInputToCellWeightsTensor); fw_input_to_output_weights_ = GetInput(operation, operands, kFwInputToOutputWeightsTensor); fw_recurrent_to_input_weights_ = GetInput(operation, operands, kFwRecurrentToInputWeightsTensor); // optional fw_recurrent_to_forget_weights_ = GetInput(operation, operands, kFwRecurrentToForgetWeightsTensor); fw_recurrent_to_cell_weights_ = GetInput(operation, operands, kFwRecurrentToCellWeightsTensor); fw_recurrent_to_output_weights_ = GetInput(operation, operands, kFwRecurrentToOutputWeightsTensor); fw_cell_to_input_weights_ = GetInput(operation, operands, kFwCellToInputWeightsTensor); // optional fw_cell_to_forget_weights_ = GetInput(operation, operands, kFwCellToForgetWeightsTensor); // optional fw_cell_to_output_weights_ = GetInput(operation, operands, kFwCellToOutputWeightsTensor); // optional fw_input_gate_bias_ = GetInput(operation, operands, kFwInputGateBiasTensor); fw_forget_gate_bias_ = GetInput(operation, operands, kFwForgetGateBiasTensor); fw_cell_bias_ = GetInput(operation, operands, kFwCellGateBiasTensor); fw_output_gate_bias_ = GetInput(operation, operands, kFwOutputGateBiasTensor); fw_projection_weights_ = GetInput(operation, operands, kFwProjectionWeightsTensor); // optional fw_projection_bias_ = GetInput(operation, operands, kFwProjectionBiasTensor); // optional fw_activation_state_ = GetInput(operation, operands, kFwInputActivationStateTensor); fw_cell_state_ = GetInput(operation, operands, kFwInputCellStateTensor); bw_input_to_input_weights_ = GetInput(operation, operands, kBwInputToInputWeightsTensor); // optional bw_input_to_forget_weights_ = GetInput(operation, operands, kBwInputToForgetWeightsTensor); bw_input_to_cell_weights_ = GetInput(operation, operands, kBwInputToCellWeightsTensor); bw_input_to_output_weights_ = GetInput(operation, operands, kBwInputToOutputWeightsTensor); bw_recurrent_to_input_weights_ = GetInput(operation, operands, kBwRecurrentToInputWeightsTensor); // optional bw_recurrent_to_forget_weights_ = GetInput(operation, operands, kBwRecurrentToForgetWeightsTensor); bw_recurrent_to_cell_weights_ = GetInput(operation, operands, kBwRecurrentToCellWeightsTensor); bw_recurrent_to_output_weights_ = GetInput(operation, operands, kBwRecurrentToOutputWeightsTensor); bw_cell_to_input_weights_ = GetInput(operation, operands, kBwCellToInputWeightsTensor); // optional bw_cell_to_forget_weights_ = GetInput(operation, operands, kBwCellToForgetWeightsTensor); // optional bw_cell_to_output_weights_ = GetInput(operation, operands, kBwCellToOutputWeightsTensor); // optional bw_input_gate_bias_ = GetInput(operation, operands, kBwInputGateBiasTensor); bw_forget_gate_bias_ = GetInput(operation, operands, kBwForgetGateBiasTensor); bw_cell_bias_ = GetInput(operation, operands, kBwCellGateBiasTensor); bw_output_gate_bias_ = GetInput(operation, operands, kBwOutputGateBiasTensor); bw_projection_weights_ = GetInput(operation, operands, kBwProjectionWeightsTensor); // optional bw_projection_bias_ = GetInput(operation, operands, kBwProjectionBiasTensor); // optional bw_activation_state_ = GetInput(operation, operands, kBwInputActivationStateTensor); bw_cell_state_ = GetInput(operation, operands, kBwInputCellStateTensor); aux_input_ = GetInput(operation, operands, kAuxInputTensor); fw_aux_input_to_input_weights_ = GetInput(operation, operands, kFwAuxInputToInputWeightsTensor); fw_aux_input_to_forget_weights_ = GetInput(operation, operands, kFwAuxInputToForgetWeightsTensor); fw_aux_input_to_cell_weights_ = GetInput(operation, operands, kFwAuxInputToCellWeightsTensor); fw_aux_input_to_output_weights_ = GetInput(operation, operands, kFwAuxInputToOutputWeightsTensor); bw_aux_input_to_input_weights_ = GetInput(operation, operands, kBwAuxInputToInputWeightsTensor); bw_aux_input_to_forget_weights_ = GetInput(operation, operands, kBwAuxInputToForgetWeightsTensor); bw_aux_input_to_cell_weights_ = GetInput(operation, operands, kBwAuxInputToCellWeightsTensor); bw_aux_input_to_output_weights_ = GetInput(operation, operands, kBwAuxInputToOutputWeightsTensor); fw_input_layer_norm_weights_ = GetInput(operation, operands, kFwInputLayerNormWeightsTensor); fw_forget_layer_norm_weights_ = GetInput(operation, operands, kFwForgetLayerNormWeightsTensor); fw_cell_layer_norm_weights_ = GetInput(operation, operands, kFwCellLayerNormWeightsTensor); fw_output_layer_norm_weights_ = GetInput(operation, operands, kFwOutputLayerNormWeightsTensor); bw_input_layer_norm_weights_ = GetInput(operation, operands, kBwInputLayerNormWeightsTensor); bw_forget_layer_norm_weights_ = GetInput(operation, operands, kBwForgetLayerNormWeightsTensor); bw_cell_layer_norm_weights_ = GetInput(operation, operands, kBwCellLayerNormWeightsTensor); bw_output_layer_norm_weights_ = GetInput(operation, operands, kBwOutputLayerNormWeightsTensor); const auto& activationOperand = *GetInput(operation, operands, kActivationParam); params_.activation = static_cast(getScalarDataWithDefault( activationOperand, TfLiteFusedActivation::kTfLiteActNone)); const auto& clipOperand = *GetInput(operation, operands, kCellClipParam); const auto& projOperand = *GetInput(operation, operands, kProjClipParam); if (input_->type == OperandType::TENSOR_FLOAT32) { params_.cell_clip = getScalarDataWithDefault(clipOperand, 0.0f); params_.proj_clip = getScalarDataWithDefault(projOperand, 0.0f); } else { params_.cell_clip = static_cast(getScalarDataWithDefault<_Float16>(clipOperand, 0.0f)); params_.proj_clip = static_cast(getScalarDataWithDefault<_Float16>(projOperand, 0.0f)); } const auto& mergeOutputsOperand = *GetInput(operation, operands, kMergeOutputsParam); params_.merge_outputs = getScalarDataWithDefault(mergeOutputsOperand, false); const auto& timeMajorOperand = *GetInput(operation, operands, kTimeMajorParam); params_.time_major = getScalarDataWithDefault(timeMajorOperand, false); params_.use_layer_norm = !IsNullInput(fw_input_layer_norm_weights_); fw_output_ = GetOutput(operation, operands, kFwOutputTensor); if (!params_.merge_outputs) { bw_output_ = GetOutput(operation, operands, kBwOutputTensor); } params_.output_state = (operation.outputs.size() == 5 || operation.outputs.size() == 6); if (params_.output_state) { uint32_t delta = params_.merge_outputs ? 1 : 0; fw_output_activation_state_ = GetOutput(operation, operands, kFwOutputActivationStateTensor - delta); fw_output_cell_state_ = GetOutput(operation, operands, kFwOutputCellStateTensor - delta); bw_output_activation_state_ = GetOutput(operation, operands, kBwOutputActivationStateTensor - delta); bw_output_cell_state_ = GetOutput(operation, operands, kBwOutputCellStateTensor - delta); } } bool BidirectionalSequenceLSTM::Prepare(const Operation& operation, RunTimeOperandInfo* operands, Shape* fwOutputShape, Shape* bwOutputShape, Shape* fwOutputActivationState, Shape* fwOutputCellState, Shape* bwOutputActivationState, Shape* bwOutputCellState) { // Check we have all the inputs and outputs we need. constexpr int requiredInputs[] = { kInputTensor, kFwInputToForgetWeightsTensor, kFwInputToCellWeightsTensor, kFwInputToOutputWeightsTensor, kFwRecurrentToForgetWeightsTensor, kFwRecurrentToCellWeightsTensor, kFwRecurrentToOutputWeightsTensor, kFwForgetGateBiasTensor, kFwCellGateBiasTensor, kFwOutputGateBiasTensor, kBwInputToForgetWeightsTensor, kBwInputToCellWeightsTensor, kBwInputToOutputWeightsTensor, kBwRecurrentToForgetWeightsTensor, kBwRecurrentToCellWeightsTensor, kBwRecurrentToOutputWeightsTensor, kBwForgetGateBiasTensor, kBwCellGateBiasTensor, kBwOutputGateBiasTensor, kFwInputActivationStateTensor, kFwInputCellStateTensor, kBwInputActivationStateTensor, kBwInputCellStateTensor, kActivationParam, kCellClipParam, kProjClipParam, kMergeOutputsParam, kTimeMajorParam, }; for (const int requiredInput : requiredInputs) { NN_RET_CHECK(!IsNullInput(GetInput(operation, operands, requiredInput))) << "required input " << requiredInput << " is omitted"; } // Check that the scalar operands' buffers are large enough. const auto& activationOperand = *GetInput(operation, operands, kActivationParam); NN_RET_CHECK(activationOperand.length >= sizeof(int32_t)); const auto& cellOperand = *GetInput(operation, operands, kCellClipParam); const auto& projOperand = *GetInput(operation, operands, kProjClipParam); if (input_->type == OperandType::TENSOR_FLOAT32) { NN_RET_CHECK(cellOperand.length >= sizeof(float)); NN_RET_CHECK(projOperand.length >= sizeof(float)); } else { NN_RET_CHECK(cellOperand.length >= sizeof(_Float16)); NN_RET_CHECK(projOperand.length >= sizeof(_Float16)); } const auto& mergeOutputsOperand = *GetInput(operation, operands, kMergeOutputsParam); NN_RET_CHECK(mergeOutputsOperand.length >= sizeof(bool)); const auto& timeMajorOperand = *GetInput(operation, operands, kTimeMajorParam); NN_RET_CHECK(timeMajorOperand.length >= sizeof(bool)); // Inferring batch size, number of outputs and number of cells from the // input tensors. NN_CHECK(NumDimensions(input_) == 3); const uint32_t max_time = SizeOfDimension(input_, params_.time_major ? 0 : 1); const uint32_t n_batch = SizeOfDimension(input_, params_.time_major ? 1 : 0); const uint32_t n_fw_input = SizeOfDimension(input_, 2); const uint32_t n_fw_cell = SizeOfDimension(fw_input_to_output_weights_, 0); NN_CHECK_EQ(NumDimensions(fw_input_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(fw_input_to_output_weights_, 1), n_fw_input); NN_CHECK_EQ(NumDimensions(fw_recurrent_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(fw_recurrent_to_output_weights_, 0), n_fw_cell); const uint32_t n_fw_output = SizeOfDimension(fw_recurrent_to_output_weights_, 1); const uint32_t n_bw_cell = SizeOfDimension(bw_input_to_output_weights_, 0); NN_CHECK_EQ(NumDimensions(bw_recurrent_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(bw_recurrent_to_output_weights_, 0), n_bw_cell); const uint32_t n_bw_output = SizeOfDimension(bw_recurrent_to_output_weights_, 1); // Check that input tensor dimensions matches with each other. if (!LSTMCell::CheckInputTensorDimensions( input_, fw_input_to_input_weights_, fw_input_to_forget_weights_, fw_input_to_cell_weights_, fw_input_to_output_weights_, fw_recurrent_to_input_weights_, fw_recurrent_to_forget_weights_, fw_recurrent_to_cell_weights_, fw_recurrent_to_output_weights_, fw_cell_to_input_weights_, fw_cell_to_forget_weights_, fw_cell_to_output_weights_, fw_input_gate_bias_, fw_forget_gate_bias_, fw_cell_bias_, fw_output_gate_bias_, fw_projection_weights_, fw_projection_bias_, fw_input_layer_norm_weights_, fw_forget_layer_norm_weights_, fw_cell_layer_norm_weights_, fw_output_layer_norm_weights_, n_fw_input, n_fw_output, n_fw_cell, ¶ms_)) { return false; } if (params_.use_cifg) { NN_RET_CHECK(IsNullInput(fw_aux_input_to_input_weights_) && IsNullInput(bw_aux_input_to_input_weights_)); } const bool aux_fw_weights_all_or_none = ((params_.use_cifg || !IsNullInput(fw_aux_input_to_input_weights_)) && !IsNullInput(fw_aux_input_to_forget_weights_) && !IsNullInput(fw_aux_input_to_cell_weights_) && !IsNullInput(fw_aux_input_to_output_weights_)) || (IsNullInput(fw_aux_input_to_input_weights_) && IsNullInput(fw_aux_input_to_forget_weights_) && IsNullInput(fw_aux_input_to_cell_weights_) && IsNullInput(fw_aux_input_to_output_weights_)); const bool aux_bw_weights_all_or_none = ((params_.use_cifg || !IsNullInput(bw_aux_input_to_input_weights_)) && !IsNullInput(bw_aux_input_to_forget_weights_) && !IsNullInput(bw_aux_input_to_cell_weights_) && !IsNullInput(bw_aux_input_to_output_weights_)) || (IsNullInput(bw_aux_input_to_input_weights_) && IsNullInput(bw_aux_input_to_forget_weights_) && IsNullInput(bw_aux_input_to_cell_weights_) && IsNullInput(bw_aux_input_to_output_weights_)); NN_RET_CHECK(aux_fw_weights_all_or_none && aux_bw_weights_all_or_none); const bool has_aux_input = !IsNullInput(aux_input_); const bool has_fw_aux_weights = !IsNullInput(fw_aux_input_to_forget_weights_); const bool has_bw_aux_weights = !IsNullInput(bw_aux_input_to_forget_weights_); NN_RET_CHECK(has_fw_aux_weights == has_bw_aux_weights); LinkingMode linkingMode; NN_RET_CHECK(getLinkingMode(has_aux_input, has_fw_aux_weights, &linkingMode)); if (has_aux_input) { // Check that aux_input has the same dimensions (except last) as the input. NN_CHECK_EQ(aux_input_->shape().dimensions[0], input_->shape().dimensions[0]); NN_CHECK_EQ(aux_input_->shape().dimensions[1], input_->shape().dimensions[1]); } if (has_fw_aux_weights) { int n_aux_input = SizeOfDimension(input_, 2); // Check forward auxiliary input shapes { NN_RET_CHECK_EQ(NumDimensions(fw_aux_input_to_input_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_input_weights_, 0), n_fw_cell); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_input_weights_, 1), n_aux_input); NN_RET_CHECK_EQ(NumDimensions(fw_aux_input_to_forget_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_forget_weights_, 0), n_fw_cell); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_forget_weights_, 1), n_aux_input); NN_RET_CHECK_EQ(NumDimensions(fw_aux_input_to_cell_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_cell_weights_, 0), n_fw_cell); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_cell_weights_, 1), n_aux_input); NN_RET_CHECK_EQ(NumDimensions(fw_aux_input_to_output_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_output_weights_, 0), n_fw_cell); NN_RET_CHECK_EQ(SizeOfDimension(fw_aux_input_to_output_weights_, 1), n_aux_input); } // Check backward auxiliary input shapes { NN_RET_CHECK_EQ(NumDimensions(bw_aux_input_to_input_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_input_weights_, 0), n_bw_cell); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_input_weights_, 1), n_aux_input); NN_RET_CHECK_EQ(NumDimensions(bw_aux_input_to_forget_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_forget_weights_, 0), n_bw_cell); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_forget_weights_, 1), n_aux_input); NN_RET_CHECK_EQ(NumDimensions(bw_aux_input_to_cell_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_cell_weights_, 0), n_bw_cell); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_cell_weights_, 1), n_aux_input); NN_RET_CHECK_EQ(NumDimensions(bw_aux_input_to_output_weights_), 2); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_output_weights_, 0), n_bw_cell); NN_RET_CHECK_EQ(SizeOfDimension(bw_aux_input_to_output_weights_, 1), n_aux_input); } } const Shape& inputShape = input_->shape(); fwOutputShape->type = inputShape.type; fwOutputShape->offset = inputShape.offset; fwOutputShape->scale = inputShape.scale; fwOutputShape->dimensions.resize(3); fwOutputShape->dimensions[0] = params_.time_major ? max_time : n_batch; fwOutputShape->dimensions[1] = params_.time_major ? n_batch : max_time; fwOutputShape->dimensions[2] = params_.merge_outputs ? n_fw_output + n_bw_output : n_fw_output; const RunTimeOperandInfo* bw_input = linkingMode == LinkingMode::PARALLEL_LINKING ? aux_input_ : input_; const uint32_t n_bw_input = SizeOfDimension(bw_input, 2); // Check that input tensor dimensions matches with each other. if (!LSTMCell::CheckInputTensorDimensions( bw_input, bw_input_to_input_weights_, bw_input_to_forget_weights_, bw_input_to_cell_weights_, bw_input_to_output_weights_, bw_recurrent_to_input_weights_, bw_recurrent_to_forget_weights_, bw_recurrent_to_cell_weights_, bw_recurrent_to_output_weights_, bw_cell_to_input_weights_, bw_cell_to_forget_weights_, bw_cell_to_output_weights_, bw_input_gate_bias_, bw_forget_gate_bias_, bw_cell_bias_, bw_output_gate_bias_, bw_projection_weights_, bw_projection_bias_, bw_input_layer_norm_weights_, bw_forget_layer_norm_weights_, bw_cell_layer_norm_weights_, bw_output_layer_norm_weights_, n_bw_input, n_bw_output, n_bw_cell, ¶ms_)) { return false; } if (!params_.merge_outputs) { bwOutputShape->type = inputShape.type; bwOutputShape->offset = inputShape.offset; bwOutputShape->scale = inputShape.scale; bwOutputShape->dimensions.resize(3); bwOutputShape->dimensions[0] = params_.time_major ? max_time : n_batch; bwOutputShape->dimensions[1] = params_.time_major ? n_batch : max_time; bwOutputShape->dimensions[2] = n_bw_output; } if (params_.output_state) { *fwOutputActivationState = fw_activation_state_->shape(); *fwOutputCellState = fw_cell_state_->shape(); *bwOutputActivationState = bw_activation_state_->shape(); *bwOutputCellState = bw_cell_state_->shape(); } if (params_.use_cifg) { fw_scratch_shape_.dimensions = {n_batch, n_fw_cell * 3}; bw_scratch_shape_.dimensions = {n_batch, n_bw_cell * 3}; } else { fw_scratch_shape_.dimensions = {n_batch, n_fw_cell * 4}; bw_scratch_shape_.dimensions = {n_batch, n_bw_cell * 4}; } fw_scratch_shape_.type = bw_scratch_shape_.type = inputShape.type; fw_scratch_shape_.offset = bw_scratch_shape_.offset = inputShape.offset; fw_scratch_shape_.scale = bw_scratch_shape_.scale = inputShape.scale; return true; } bool BidirectionalSequenceLSTM::Eval() { const uint32_t n_fw_output = SizeOfDimension(fw_recurrent_to_output_weights_, 1); const uint32_t n_bw_output = SizeOfDimension(bw_recurrent_to_output_weights_, 1); std::vector fw_output_dims = input_->shape().dimensions; fw_output_dims[2] = n_fw_output; std::vector bw_output_dims = fw_output_dims; bw_output_dims[2] = n_bw_output; const uint32_t n_fw_output_elements = fw_output_dims[0] * fw_output_dims[1] * fw_output_dims[2]; const uint32_t n_output_elements = fw_output_dims[0] * fw_output_dims[1] * (fw_output_dims[2] + bw_output_dims[2]); const bool has_aux_input = !IsNullInput(aux_input_); const bool has_aux_weights = !IsNullInput(fw_aux_input_to_forget_weights_); LinkingMode linkingMode; NN_RET_CHECK(getLinkingMode(has_aux_input, has_aux_weights, &linkingMode)); switch (input_->type) { case OperandType::TENSOR_FLOAT32: { const float* bwInput = GetBuffer(input_); Shape bwInputShape = input_->shape(); const float* auxInput = GetOptionalBuffer(aux_input_); if (linkingMode == LinkingMode::PARALLEL_LINKING) { bwInput = GetBuffer(aux_input_); bwInputShape = aux_input_->shape(); auxInput = nullptr; } float* fw_output_activation_state_buffer = nullptr; float* fw_output_cell_state_buffer = nullptr; std::vector fw_output_activation_state; std::vector fw_output_cell_state; if (params_.output_state) { fw_output_activation_state_buffer = GetBuffer(fw_output_activation_state_); fw_output_cell_state_buffer = GetBuffer(fw_output_cell_state_); } else { fw_output_activation_state.resize( getNumberOfElements(fw_activation_state_->shape())); fw_output_cell_state.resize(getNumberOfElements(fw_cell_state_->shape())); fw_output_activation_state_buffer = fw_output_activation_state.data(); fw_output_cell_state_buffer = fw_output_cell_state.data(); } std::vector fw_scratch_buffer(getNumberOfElements(fw_scratch_shape_)); const bool kForwardSequence = true; LSTMCell::LSTMEvalFloat32( params_, GetBuffer(input_), input_->shape(), GetBuffer(fw_input_to_input_weights_), GetBuffer(fw_input_to_forget_weights_), GetBuffer(fw_input_to_cell_weights_), GetBuffer(fw_input_to_output_weights_), fw_input_to_output_weights_->shape(), GetBuffer(fw_recurrent_to_input_weights_), GetBuffer(fw_recurrent_to_forget_weights_), GetBuffer(fw_recurrent_to_cell_weights_), GetBuffer(fw_recurrent_to_output_weights_), fw_recurrent_to_output_weights_->shape(), GetBuffer(fw_cell_to_input_weights_), GetBuffer(fw_cell_to_forget_weights_), GetBuffer(fw_cell_to_output_weights_), auxInput, GetOptionalBuffer(fw_aux_input_to_input_weights_), GetOptionalBuffer(fw_aux_input_to_forget_weights_), GetOptionalBuffer(fw_aux_input_to_cell_weights_), GetOptionalBuffer(fw_aux_input_to_output_weights_), GetBuffer(fw_input_gate_bias_), GetBuffer(fw_forget_gate_bias_), GetBuffer(fw_cell_bias_), GetBuffer(fw_output_gate_bias_), GetBuffer(fw_projection_weights_), GetBuffer(fw_projection_bias_), GetBuffer(fw_activation_state_), GetBuffer(fw_cell_state_), GetOptionalBuffer(fw_input_layer_norm_weights_), GetOptionalBuffer(fw_forget_layer_norm_weights_), GetOptionalBuffer(fw_cell_layer_norm_weights_), GetOptionalBuffer(fw_output_layer_norm_weights_), fw_output_activation_state_buffer, fw_output_cell_state_buffer, GetBuffer(fw_output_), fw_scratch_buffer.data(), params_.time_major, kForwardSequence); float* bw_output_activation_state_buffer; float* bw_output_cell_state_buffer; std::vector bw_output_activation_state; std::vector bw_output_cell_state; if (params_.output_state) { bw_output_activation_state_buffer = GetBuffer(bw_output_activation_state_); bw_output_cell_state_buffer = GetBuffer(bw_output_cell_state_); } else { bw_output_activation_state.resize( getNumberOfElements(bw_activation_state_->shape())); bw_output_cell_state.resize(getNumberOfElements(bw_cell_state_->shape())); bw_output_activation_state_buffer = bw_output_activation_state.data(); bw_output_cell_state_buffer = bw_output_cell_state.data(); } std::vector bw_scratch_buffer(getNumberOfElements(bw_scratch_shape_)); const bool kBackwardSequence = false; LSTMCell::LSTMEvalFloat32( params_, bwInput, bwInputShape, GetBuffer(bw_input_to_input_weights_), GetBuffer(bw_input_to_forget_weights_), GetBuffer(bw_input_to_cell_weights_), GetBuffer(bw_input_to_output_weights_), bw_input_to_output_weights_->shape(), GetBuffer(bw_recurrent_to_input_weights_), GetBuffer(bw_recurrent_to_forget_weights_), GetBuffer(bw_recurrent_to_cell_weights_), GetBuffer(bw_recurrent_to_output_weights_), bw_recurrent_to_output_weights_->shape(), GetBuffer(bw_cell_to_input_weights_), GetBuffer(bw_cell_to_forget_weights_), GetBuffer(bw_cell_to_output_weights_), auxInput, GetOptionalBuffer(bw_aux_input_to_input_weights_), GetOptionalBuffer(bw_aux_input_to_forget_weights_), GetOptionalBuffer(bw_aux_input_to_cell_weights_), GetOptionalBuffer(bw_aux_input_to_output_weights_), GetBuffer(bw_input_gate_bias_), GetBuffer(bw_forget_gate_bias_), GetBuffer(bw_cell_bias_), GetBuffer(bw_output_gate_bias_), GetBuffer(bw_projection_weights_), GetBuffer(bw_projection_bias_), GetBuffer(bw_activation_state_), GetBuffer(bw_cell_state_), GetOptionalBuffer(bw_input_layer_norm_weights_), GetOptionalBuffer(bw_forget_layer_norm_weights_), GetOptionalBuffer(bw_cell_layer_norm_weights_), GetOptionalBuffer(bw_output_layer_norm_weights_), bw_output_activation_state_buffer, bw_output_cell_state_buffer, params_.merge_outputs ? GetBuffer(fw_output_) + n_fw_output_elements : GetBuffer(bw_output_), bw_scratch_buffer.data(), params_.time_major, kBackwardSequence); if (params_.merge_outputs) { std::vector temp(n_output_elements); mergeThirdDimension(GetBuffer(fw_output_), fw_output_dims, GetBuffer(fw_output_) + n_fw_output_elements, bw_output_dims, temp.data()); std::copy(temp.data(), temp.data() + n_output_elements, GetBuffer(fw_output_)); } } break; case OperandType::TENSOR_FLOAT16: { const _Float16* bwInput = GetBuffer(input_); Shape bwInputShape = input_->shape(); const _Float16* auxInput = GetOptionalBuffer(aux_input_); if (linkingMode == LinkingMode::PARALLEL_LINKING) { bwInput = GetBuffer(aux_input_); bwInputShape = aux_input_->shape(); auxInput = nullptr; } _Float16* fw_output_activation_state_buffer; _Float16* fw_output_cell_state_buffer; std::vector<_Float16> fw_output_activation_state; std::vector<_Float16> fw_output_cell_state; if (params_.output_state) { fw_output_activation_state_buffer = GetBuffer<_Float16>(fw_output_activation_state_); fw_output_cell_state_buffer = GetBuffer<_Float16>(fw_output_cell_state_); } else { fw_output_activation_state.resize( getNumberOfElements(fw_activation_state_->shape())); fw_output_cell_state.resize(getNumberOfElements(fw_cell_state_->shape())); fw_output_activation_state_buffer = fw_output_activation_state.data(); fw_output_cell_state_buffer = fw_output_cell_state.data(); } std::vector<_Float16> fw_scratch_buffer(getNumberOfElements(fw_scratch_shape_)); const bool kForwardSequence = true; LSTMCell::LSTMEvalFloat16( params_, GetBuffer(input_), input_->shape(), GetOptionalBuffer(fw_input_to_input_weights_), GetBuffer(fw_input_to_forget_weights_), GetBuffer(fw_input_to_cell_weights_), GetBuffer(fw_input_to_output_weights_), fw_input_to_output_weights_->shape(), GetOptionalBuffer(fw_recurrent_to_input_weights_), GetBuffer(fw_recurrent_to_forget_weights_), GetBuffer(fw_recurrent_to_cell_weights_), GetBuffer(fw_recurrent_to_output_weights_), fw_recurrent_to_output_weights_->shape(), GetOptionalBuffer(fw_cell_to_input_weights_), GetOptionalBuffer(fw_cell_to_forget_weights_), GetOptionalBuffer(fw_cell_to_output_weights_), auxInput, GetOptionalBuffer(fw_aux_input_to_input_weights_), GetOptionalBuffer(fw_aux_input_to_forget_weights_), GetOptionalBuffer(fw_aux_input_to_cell_weights_), GetOptionalBuffer(fw_aux_input_to_output_weights_), GetOptionalBuffer(fw_input_gate_bias_), GetBuffer(fw_forget_gate_bias_), GetBuffer(fw_cell_bias_), GetBuffer(fw_output_gate_bias_), GetOptionalBuffer(fw_projection_weights_), GetOptionalBuffer(fw_projection_bias_), GetBuffer(fw_activation_state_), GetBuffer(fw_cell_state_), GetOptionalBuffer(fw_input_layer_norm_weights_), GetOptionalBuffer(fw_forget_layer_norm_weights_), GetOptionalBuffer(fw_cell_layer_norm_weights_), GetOptionalBuffer(fw_output_layer_norm_weights_), fw_output_activation_state_buffer, fw_output_cell_state_buffer, GetBuffer<_Float16>(fw_output_), fw_scratch_buffer.data(), params_.time_major, kForwardSequence); _Float16* bw_output_activation_state_buffer; _Float16* bw_output_cell_state_buffer; std::vector<_Float16> bw_output_activation_state; std::vector<_Float16> bw_output_cell_state; if (params_.output_state) { bw_output_activation_state_buffer = GetBuffer<_Float16>(bw_output_activation_state_); bw_output_cell_state_buffer = GetBuffer<_Float16>(bw_output_cell_state_); } else { bw_output_activation_state.resize( getNumberOfElements(bw_activation_state_->shape())); bw_output_cell_state.resize(getNumberOfElements(bw_cell_state_->shape())); bw_output_activation_state_buffer = bw_output_activation_state.data(); bw_output_cell_state_buffer = bw_output_cell_state.data(); } std::vector<_Float16> bw_scratch_buffer(getNumberOfElements(bw_scratch_shape_)); const bool kBackwardSequence = false; LSTMCell::LSTMEvalFloat16( params_, bwInput, bwInputShape, GetOptionalBuffer(bw_input_to_input_weights_), GetBuffer(bw_input_to_forget_weights_), GetBuffer(bw_input_to_cell_weights_), GetBuffer(bw_input_to_output_weights_), bw_input_to_output_weights_->shape(), GetOptionalBuffer(bw_recurrent_to_input_weights_), GetBuffer(bw_recurrent_to_forget_weights_), GetBuffer(bw_recurrent_to_cell_weights_), GetBuffer(bw_recurrent_to_output_weights_), bw_recurrent_to_output_weights_->shape(), GetOptionalBuffer(bw_cell_to_input_weights_), GetOptionalBuffer(bw_cell_to_forget_weights_), GetOptionalBuffer(bw_cell_to_output_weights_), auxInput, GetOptionalBuffer(bw_aux_input_to_input_weights_), GetOptionalBuffer(bw_aux_input_to_forget_weights_), GetOptionalBuffer(bw_aux_input_to_cell_weights_), GetOptionalBuffer(bw_aux_input_to_output_weights_), GetOptionalBuffer(bw_input_gate_bias_), GetBuffer(bw_forget_gate_bias_), GetBuffer(bw_cell_bias_), GetBuffer(bw_output_gate_bias_), GetOptionalBuffer(bw_projection_weights_), GetOptionalBuffer(bw_projection_bias_), GetBuffer(bw_activation_state_), GetBuffer(bw_cell_state_), GetOptionalBuffer(bw_input_layer_norm_weights_), GetOptionalBuffer(bw_forget_layer_norm_weights_), GetOptionalBuffer(bw_cell_layer_norm_weights_), GetOptionalBuffer(bw_output_layer_norm_weights_), bw_output_activation_state_buffer, bw_output_cell_state_buffer, params_.merge_outputs ? GetBuffer<_Float16>(fw_output_) + n_fw_output_elements : GetBuffer<_Float16>(bw_output_), bw_scratch_buffer.data(), params_.time_major, kBackwardSequence); if (params_.merge_outputs) { std::vector<_Float16> temp(n_output_elements); mergeThirdDimension(GetBuffer<_Float16>(fw_output_), fw_output_dims, GetBuffer<_Float16>(fw_output_) + n_fw_output_elements, bw_output_dims, temp.data()); std::copy(temp.data(), temp.data() + n_output_elements, GetBuffer<_Float16>(fw_output_)); } } break; default: { LOG(ERROR) << "Unsupported data type: " << static_cast(input_->type); return false; } } return true; } } // namespace nn } // namespace android