/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorflow/lite/kernels/internal/types.h" #define LOG_TAG "Operations" #include #include #include #include #include "CpuOperationUtils.h" #include "HalInterfaces.h" #include "OperationResolver.h" #include "Tracing.h" namespace android { namespace nn { namespace fully_connected { constexpr char kOperationName[] = "FULLY_CONNECTED"; constexpr uint32_t kNumInputs = 4; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kWeightsTensor = 1; constexpr uint32_t kBiasTensor = 2; constexpr uint32_t kActivationScalar = 3; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputTensor = 0; namespace { using namespace hal; // executionMutex is used to protect concurrent access of non-threadsafe resources // like gemmlowp::GemmContext. // std::mutex is safe for pthreads on Android. static std::mutex executionMutex; bool fullyConnectedFloat32(const float* inputData, const Shape& inputShape, const float* weightsData, const Shape& weightsShape, const float* biasData, const Shape& biasShape, int32_t activation, float* outputData, const Shape& outputShape) { NNTRACE_TRANS("fullyConnectedFloat32"); float output_activation_min, output_activation_max; CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); // b/80425683, optimized implementation produces incorrect results when the // number of input elements is the squre of batch_size. uint32_t batch_size = getSizeOfDimension(outputShape, 0); uint32_t input_n_elements = getNumberOfElements(inputShape); if (batch_size * batch_size == input_n_elements) { NNTRACE_COMP_SWITCH("reference_ops::FullyConnected"); tflite::reference_ops::FullyConnected(inputData, convertShapeToDims(inputShape), weightsData, convertShapeToDims(weightsShape), biasData, convertShapeToDims(biasShape), output_activation_min, output_activation_max, outputData, convertShapeToDims(outputShape)); } else { NNTRACE_COMP_SWITCH("optimized_ops::FullyConnected"); tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), weightsData, convertShapeToDims(weightsShape), biasData, convertShapeToDims(biasShape), output_activation_min, output_activation_max, outputData, convertShapeToDims(outputShape)); } return true; } bool fullyConnectedFloat16(const _Float16* inputData, const Shape& inputShape, const _Float16* weightsData, const Shape& weightsShape, const _Float16* biasData, const Shape& biasShape, int32_t activation, _Float16* outputData, const Shape& outputShape) { NNTRACE_TRANS("fullyConnectedFloat16"); std::vector inputDataFloat32(getNumberOfElements(inputShape)); convertFloat16ToFloat32(inputData, &inputDataFloat32); std::vector weightsDataFloat32(getNumberOfElements(weightsShape)); convertFloat16ToFloat32(weightsData, &weightsDataFloat32); std::vector biasDataFloat32(getNumberOfElements(biasShape)); convertFloat16ToFloat32(biasData, &biasDataFloat32); std::vector outputDataFloat32(getNumberOfElements(outputShape)); fullyConnectedFloat32(inputDataFloat32.data(), inputShape, weightsDataFloat32.data(), weightsShape, biasDataFloat32.data(), biasShape, activation, outputDataFloat32.data(), outputShape); convertFloat32ToFloat16(outputDataFloat32, outputData); return true; } bool fullyConnectedQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* weightsData, const Shape& weightsShape, const int32_t* biasData, const Shape& biasShape, int32_t activation, uint8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("fullyConnectedQuant8"); int32_t inputOffset = -inputShape.offset; int32_t weightsOffset = -weightsShape.offset; int32_t outputOffset = outputShape.offset; double realMultiplier = 0.0; int32_t outputMultiplier = 0; int32_t outputShift = 0; int32_t outputActivationMin = 0; int32_t outputActivationMax = 0; NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, weightsShape, biasShape, outputShape, &realMultiplier)); int exponent; NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent)); outputShift = -exponent; CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin, &outputActivationMax); static gemmlowp::GemmContext gemmContext; // Prevent concurrent executions that access gemmContext. std::unique_lock lock(executionMutex); // Alow gemmlowp automatically decide how many threads to use. gemmContext.set_max_num_threads(0); NNTRACE_COMP_SWITCH("optimized_ops::FullyConnected"); tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), inputOffset, weightsData, convertShapeToDims(weightsShape), weightsOffset, biasData, convertShapeToDims(biasShape), outputOffset, outputMultiplier, outputShift, outputActivationMin, outputActivationMax, outputData, convertShapeToDims(outputShape), &gemmContext); return true; } bool fullyConnectedQuant8(const int8_t* inputData, const Shape& inputShape, const int8_t* weightsData, const Shape& weightsShape, const int32_t* biasData, const Shape& biasShape, int32_t activation, int8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("fullyConnectedQuant8Signed"); double realMultiplier = 0.0; int32_t outputMultiplier = 0; int32_t outputShift = 0; int32_t outputActivationMin = 0; int32_t outputActivationMax = 0; NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, weightsShape, biasShape, outputShape, &realMultiplier)); NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &outputShift)); CalculateActivationRangeInt8(activation, outputShape, &outputActivationMin, &outputActivationMax); tflite::FullyConnectedParams params; params.input_offset = -inputShape.offset; params.weights_offset = -weightsShape.offset; params.output_offset = outputShape.offset; params.output_multiplier = outputMultiplier; params.output_shift = outputShift; params.quantized_activation_min = outputActivationMin; params.quantized_activation_max = outputActivationMax; NNTRACE_COMP_SWITCH("reference_integer_ops::FullyConnected"); tflite::reference_integer_ops::FullyConnected( params, convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(weightsShape), weightsData, convertShapeToTflshape(biasShape), biasData, convertShapeToTflshape(outputShape), outputData); return true; } bool validateShapes(const Shape& input, const Shape& weights, const Shape& bias, Shape* output = nullptr) { // Check all the parameters of tensor match within themselves and match the // input configuration. NN_RET_CHECK(weights.type == input.type); if (input.type == OperandType::TENSOR_QUANT8_ASYMM || input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32); } else { NN_RET_CHECK(bias.type == input.type); } // The Tensorflow fully connected layer specification says that input should // be of at least rank 2, so we check. Tflite doesn't check. NN_RET_CHECK_GE(getNumberOfDimensions(input), 2); NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); NN_RET_CHECK_EQ(getNumberOfDimensions(weights), 2); NN_RET_CHECK_EQ(getNumberOfDimensions(bias), 1); uint32_t input_n_elements = getNumberOfElements(input); uint32_t num_units = getSizeOfDimension(weights, 0); uint32_t input_size = getSizeOfDimension(weights, 1); uint32_t bias_len = getSizeOfDimension(bias, 0); uint32_t batch_size = input_size == 0 ? 0 : input_n_elements / input_size; if (batch_size != 0) { NN_RET_CHECK_EQ(input_size * batch_size, input_n_elements); } if (num_units != 0 && bias_len != 0) { NN_RET_CHECK_EQ(bias_len, num_units); } if (output != nullptr) { // Only batch_size can be 0. NN_RET_CHECK_GT(num_units, 0); NN_RET_CHECK_GT(input_size, 0); output->type = input.type; output->dimensions = {batch_size, num_units}; } return true; } } // namespace bool validate(const IOperationValidationContext* context) { NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); auto inputType = context->getInputType(kInputTensor); std::vector inExpectedTypes; std::vector outExpectedTypes; if (inputType == OperandType::TENSOR_FLOAT32) { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0)); inExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32, OperandType::INT32, }; } else if (inputType == OperandType::TENSOR_FLOAT16) { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2)); inExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16, OperandType::INT32, }; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) { // NeuralNetworks.h specifies that ANEURALNETWORKS_FULLY_CONNECTED's output must // meet "outputScale > inputScale * weightsScale" for the operand type // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM before API level 29. const float inputScale = context->getInputShape(kInputTensor).scale; const float weightsScale = context->getInputShape(kWeightsTensor).scale; const float outputScale = context->getOutputShape(kOutputTensor).scale; bool meetsQuantizedScaleConstraintBeforeV1_2 = (outputScale > inputScale * weightsScale); if (!meetsQuantizedScaleConstraintBeforeV1_2) { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2)); } else { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0)); } inExpectedTypes = { OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32, OperandType::INT32, }; } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_3)); inExpectedTypes = { OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::TENSOR_INT32, OperandType::INT32, }; } else { NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName; return false; } NN_RET_CHECK(validateInputTypes(context, inExpectedTypes)); NN_RET_CHECK(validateOutputTypes(context, {inputType})); Shape input = context->getInputShape(kInputTensor); Shape weights = context->getInputShape(kWeightsTensor); Shape bias = context->getInputShape(kBiasTensor); if (hasKnownRank(input) && hasKnownRank(weights) && hasKnownRank(bias)) { NN_RET_CHECK(validateShapes(input, weights, bias)); } return true; } bool prepare(IOperationExecutionContext* context) { Shape input = context->getInputShape(kInputTensor); Shape weights = context->getInputShape(kWeightsTensor); Shape bias = context->getInputShape(kBiasTensor); Shape output = context->getOutputShape(kOutputTensor); NN_RET_CHECK(validateShapes(input, weights, bias, &output)); return context->setOutputShape(kOutputTensor, output); } bool execute(IOperationExecutionContext* context) { // Bypass execution in the case of zero-sized input. if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT32: return fullyConnectedFloat32(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kWeightsTensor), context->getInputShape(kWeightsTensor), context->getInputBuffer(kBiasTensor), context->getInputShape(kBiasTensor), context->getInputValue(kActivationScalar), context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_FLOAT16: return fullyConnectedFloat16(context->getInputBuffer<_Float16>(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer<_Float16>(kWeightsTensor), context->getInputShape(kWeightsTensor), context->getInputBuffer<_Float16>(kBiasTensor), context->getInputShape(kBiasTensor), context->getInputValue(kActivationScalar), context->getOutputBuffer<_Float16>(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM: return fullyConnectedQuant8(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kWeightsTensor), context->getInputShape(kWeightsTensor), context->getInputBuffer(kBiasTensor), context->getInputShape(kBiasTensor), context->getInputValue(kActivationScalar), context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: return fullyConnectedQuant8(context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputBuffer(kWeightsTensor), context->getInputShape(kWeightsTensor), context->getInputBuffer(kBiasTensor), context->getInputShape(kBiasTensor), context->getInputValue(kActivationScalar), context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } } // namespace fully_connected NN_REGISTER_OPERATION(FULLY_CONNECTED, fully_connected::kOperationName, fully_connected::validate, fully_connected::prepare, fully_connected::execute, .allowZeroSizedInput = true); } // namespace nn } // namespace android