/* * Copyright 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Daltonizer.h" #include namespace android { void Daltonizer::setType(ColorBlindnessType type) { if (type != mType) { mDirty = true; mType = type; } } void Daltonizer::setMode(ColorBlindnessMode mode) { if (mode != mMode) { mDirty = true; mMode = mode; } } const mat4& Daltonizer::operator()() { if (mDirty) { mDirty = false; update(); } return mColorTransform; } void Daltonizer::update() { if (mType == ColorBlindnessType::None) { mColorTransform = mat4(); return; } // converts a linear RGB color to the XYZ space const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0, 0.3576, 0.7152, 0.1192, 0, 0.1805, 0.0722, 0.9505, 0, 0 , 0 , 0 , 1); // converts a XYZ color to the LMS space. const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0, 0.4296, 1.6975, 0.0136, 0, -0.1624, 0.0061, 0.9834, 0, 0 , 0 , 0 , 1); // Direct conversion from linear RGB to LMS const mat4 rgb2lms(xyz2lms*rgb2xyz); // And back from LMS to linear RGB const mat4 lms2rgb(inverse(rgb2lms)); // To simulate color blindness we need to "remove" the data lost by the absence of // a cone. This cannot be done by just zeroing out the corresponding LMS component // because it would create a color outside of the RGB gammut. // Instead we project the color along the axis of the missing component onto a plane // within the RGB gammut: // - since the projection happens along the axis of the missing component, a // color blind viewer perceives the projected color the same. // - We use the plane defined by 3 points in LMS space: black, white and // blue and red for protanopia/deuteranopia and tritanopia respectively. // LMS space red const vec3& lms_r(rgb2lms[0].rgb); // LMS space blue const vec3& lms_b(rgb2lms[2].rgb); // LMS space white const vec3 lms_w((rgb2lms * vec4(1)).rgb); // To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values // of the three known points. This equation is trivially solved, and has for // solution the following cross-products: const vec3 p0 = cross(lms_w, lms_b); // protanopia/deuteranopia const vec3 p1 = cross(lms_w, lms_r); // tritanopia // The following 3 matrices perform the projection of a LMS color onto the given plane // along the selected axis // projection for protanopia (L = 0) const mat4 lms2lmsp( 0.0000, 0.0000, 0.0000, 0, -p0.y / p0.x, 1.0000, 0.0000, 0, -p0.z / p0.x, 0.0000, 1.0000, 0, 0 , 0 , 0 , 1); // projection for deuteranopia (M = 0) const mat4 lms2lmsd( 1.0000, -p0.x / p0.y, 0.0000, 0, 0.0000, 0.0000, 0.0000, 0, 0.0000, -p0.z / p0.y, 1.0000, 0, 0 , 0 , 0 , 1); // projection for tritanopia (S = 0) const mat4 lms2lmst( 1.0000, 0.0000, -p1.x / p1.z, 0, 0.0000, 1.0000, -p1.y / p1.z, 0, 0.0000, 0.0000, 0.0000, 0, 0 , 0 , 0 , 1); // We will calculate the error between the color and the color viewed by // a color blind user and "spread" this error onto the healthy cones. // The matrices below perform this last step and have been chosen arbitrarily. // The amount of correction can be adjusted here. // error spread for protanopia const mat4 errp( 1.0, 0.7, 0.7, 0, 0.0, 1.0, 0.0, 0, 0.0, 0.0, 1.0, 0, 0, 0, 0, 1); // error spread for deuteranopia const mat4 errd( 1.0, 0.0, 0.0, 0, 0.7, 1.0, 0.7, 0, 0.0, 0.0, 1.0, 0, 0, 0, 0, 1); // error spread for tritanopia const mat4 errt( 1.0, 0.0, 0.0, 0, 0.0, 1.0, 0.0, 0, 0.7, 0.7, 1.0, 0, 0, 0, 0, 1); // And the magic happens here... // We construct the matrix that will perform the whole correction. // simulation: type of color blindness to simulate: // set to either lms2lmsp, lms2lmsd, lms2lmst mat4 simulation; // correction: type of color blindness correction (should match the simulation above): // set to identity, errp, errd, errt ([0] for simulation only) mat4 correction(0); switch (mType) { case ColorBlindnessType::Protanomaly: simulation = lms2lmsp; if (mMode == ColorBlindnessMode::Correction) correction = errp; break; case ColorBlindnessType::Deuteranomaly: simulation = lms2lmsd; if (mMode == ColorBlindnessMode::Correction) correction = errd; break; case ColorBlindnessType::Tritanomaly: simulation = lms2lmst; if (mMode == ColorBlindnessMode::Correction) correction = errt; break; case ColorBlindnessType::None: // We already caught this at the beginning of the method, but the // compiler doesn't know that break; } mColorTransform = lms2rgb * (simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms)); } } /* namespace android */