/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsdAllocation.h" #include "rsdCore.h" #include #ifdef RS_COMPATIBILITY_LIB #include "rsCompatibilityLib.h" #else #include "rsdFrameBufferObj.h" #include #include #include #include #endif #include // for memalign() #include // for close() using android::renderscript::Allocation; using android::renderscript::Context; using android::renderscript::Element; using android::renderscript::Type; using android::renderscript::rs_allocation; using android::renderscript::rsBoxFilter565; using android::renderscript::rsBoxFilter8888; using android::renderscript::rsMax; using android::renderscript::rsRound; #ifndef RS_COMPATIBILITY_LIB const static GLenum gFaceOrder[] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z }; GLenum rsdTypeToGLType(RsDataType t) { switch (t) { case RS_TYPE_UNSIGNED_5_6_5: return GL_UNSIGNED_SHORT_5_6_5; case RS_TYPE_UNSIGNED_5_5_5_1: return GL_UNSIGNED_SHORT_5_5_5_1; case RS_TYPE_UNSIGNED_4_4_4_4: return GL_UNSIGNED_SHORT_4_4_4_4; //case RS_TYPE_FLOAT_16: return GL_HALF_FLOAT; case RS_TYPE_FLOAT_32: return GL_FLOAT; case RS_TYPE_UNSIGNED_8: return GL_UNSIGNED_BYTE; case RS_TYPE_UNSIGNED_16: return GL_UNSIGNED_SHORT; case RS_TYPE_SIGNED_8: return GL_BYTE; case RS_TYPE_SIGNED_16: return GL_SHORT; default: break; } return 0; } GLenum rsdKindToGLFormat(RsDataKind k) { switch (k) { case RS_KIND_PIXEL_L: return GL_LUMINANCE; case RS_KIND_PIXEL_A: return GL_ALPHA; case RS_KIND_PIXEL_LA: return GL_LUMINANCE_ALPHA; case RS_KIND_PIXEL_RGB: return GL_RGB; case RS_KIND_PIXEL_RGBA: return GL_RGBA; case RS_KIND_PIXEL_DEPTH: return GL_DEPTH_COMPONENT16; default: break; } return 0; } #endif uint8_t *GetOffsetPtr(const android::renderscript::Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, RsAllocationCubemapFace face) { uint8_t *ptr = (uint8_t *)alloc->mHal.drvState.lod[lod].mallocPtr; ptr += face * alloc->mHal.drvState.faceOffset; ptr += zoff * alloc->mHal.drvState.lod[lod].dimY * alloc->mHal.drvState.lod[lod].stride; ptr += yoff * alloc->mHal.drvState.lod[lod].stride; ptr += xoff * alloc->mHal.state.elementSizeBytes; return ptr; } static void Update2DTexture(const Context *rsc, const Allocation *alloc, const void *ptr, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h) { #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; rsAssert(drv->textureID); RSD_CALL_GL(glBindTexture, drv->glTarget, drv->textureID); RSD_CALL_GL(glPixelStorei, GL_UNPACK_ALIGNMENT, 1); GLenum t = GL_TEXTURE_2D; if (alloc->mHal.state.hasFaces) { t = gFaceOrder[face]; } RSD_CALL_GL(glTexSubImage2D, t, lod, xoff, yoff, w, h, drv->glFormat, drv->glType, ptr); #endif } #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) static void Upload2DTexture(const Context *rsc, const Allocation *alloc, bool isFirstUpload) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; RSD_CALL_GL(glBindTexture, drv->glTarget, drv->textureID); RSD_CALL_GL(glPixelStorei, GL_UNPACK_ALIGNMENT, 1); uint32_t faceCount = 1; if (alloc->mHal.state.hasFaces) { faceCount = 6; } rsdGLCheckError(rsc, "Upload2DTexture 1 "); for (uint32_t face = 0; face < faceCount; face ++) { for (uint32_t lod = 0; lod < alloc->mHal.state.type->getLODCount(); lod++) { const uint8_t *p = GetOffsetPtr(alloc, 0, 0, 0, lod, (RsAllocationCubemapFace)face); GLenum t = GL_TEXTURE_2D; if (alloc->mHal.state.hasFaces) { t = gFaceOrder[face]; } if (isFirstUpload) { RSD_CALL_GL(glTexImage2D, t, lod, drv->glFormat, alloc->mHal.state.type->getLODDimX(lod), alloc->mHal.state.type->getLODDimY(lod), 0, drv->glFormat, drv->glType, p); } else { RSD_CALL_GL(glTexSubImage2D, t, lod, 0, 0, alloc->mHal.state.type->getLODDimX(lod), alloc->mHal.state.type->getLODDimY(lod), drv->glFormat, drv->glType, p); } } } if (alloc->mHal.state.mipmapControl == RS_ALLOCATION_MIPMAP_ON_SYNC_TO_TEXTURE) { RSD_CALL_GL(glGenerateMipmap, drv->glTarget); } rsdGLCheckError(rsc, "Upload2DTexture"); } #endif static void UploadToTexture(const Context *rsc, const Allocation *alloc) { #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_INPUT) { if (!drv->textureID) { RSD_CALL_GL(glGenTextures, 1, &drv->textureID); } return; } if (!drv->glType || !drv->glFormat) { return; } if (!alloc->mHal.drvState.lod[0].mallocPtr) { return; } bool isFirstUpload = false; if (!drv->textureID) { RSD_CALL_GL(glGenTextures, 1, &drv->textureID); isFirstUpload = true; } Upload2DTexture(rsc, alloc, isFirstUpload); if (!(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT)) { if (alloc->mHal.drvState.lod[0].mallocPtr) { free(alloc->mHal.drvState.lod[0].mallocPtr); alloc->mHal.drvState.lod[0].mallocPtr = nullptr; } } rsdGLCheckError(rsc, "UploadToTexture"); #endif } static void AllocateRenderTarget(const Context *rsc, const Allocation *alloc) { #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; if (!drv->glFormat) { return; } if (!drv->renderTargetID) { RSD_CALL_GL(glGenRenderbuffers, 1, &drv->renderTargetID); if (!drv->renderTargetID) { // This should generally not happen ALOGE("allocateRenderTarget failed to gen mRenderTargetID"); rsc->dumpDebug(); return; } RSD_CALL_GL(glBindRenderbuffer, GL_RENDERBUFFER, drv->renderTargetID); RSD_CALL_GL(glRenderbufferStorage, GL_RENDERBUFFER, drv->glFormat, alloc->mHal.drvState.lod[0].dimX, alloc->mHal.drvState.lod[0].dimY); } rsdGLCheckError(rsc, "AllocateRenderTarget"); #endif } static void UploadToBufferObject(const Context *rsc, const Allocation *alloc) { #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; rsAssert(!alloc->mHal.state.type->getDimY()); rsAssert(!alloc->mHal.state.type->getDimZ()); //alloc->mHal.state.usageFlags |= RS_ALLOCATION_USAGE_GRAPHICS_VERTEX; if (!drv->bufferID) { RSD_CALL_GL(glGenBuffers, 1, &drv->bufferID); } if (!drv->bufferID) { ALOGE("Upload to buffer object failed"); drv->uploadDeferred = true; return; } RSD_CALL_GL(glBindBuffer, drv->glTarget, drv->bufferID); RSD_CALL_GL(glBufferData, drv->glTarget, alloc->mHal.state.type->getPackedSizeBytes(), alloc->mHal.drvState.lod[0].mallocPtr, GL_DYNAMIC_DRAW); RSD_CALL_GL(glBindBuffer, drv->glTarget, 0); rsdGLCheckError(rsc, "UploadToBufferObject"); #endif } static size_t DeriveYUVLayout(int yuv, Allocation::Hal::DrvState *state) { #ifndef RS_COMPATIBILITY_LIB // For the flexible YCbCr format, layout is initialized during call to // Allocation::ioReceive. Return early and avoid clobberring any // pre-existing layout. if (yuv == RS_YUV_420_888) { return 0; } #endif // YUV only supports basic 2d // so we can stash the plane pointers in the mipmap levels. size_t uvSize = 0; state->lod[1].dimX = state->lod[0].dimX / 2; state->lod[1].dimY = state->lod[0].dimY / 2; state->lod[2].dimX = state->lod[0].dimX / 2; state->lod[2].dimY = state->lod[0].dimY / 2; state->yuv.shift = 1; state->yuv.step = 1; state->lodCount = 3; switch(yuv) { case RS_YUV_YV12: state->lod[2].stride = rsRound(state->lod[0].stride >> 1, 16); state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) + (state->lod[0].stride * state->lod[0].dimY); uvSize += state->lod[2].stride * state->lod[2].dimY; state->lod[1].stride = state->lod[2].stride; state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) + (state->lod[2].stride * state->lod[2].dimY); uvSize += state->lod[1].stride * state->lod[2].dimY; break; case RS_YUV_NV21: //state->lod[1].dimX = state->lod[0].dimX; state->lod[1].stride = state->lod[0].stride; state->lod[2].stride = state->lod[0].stride; state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) + (state->lod[0].stride * state->lod[0].dimY); state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) + 1; uvSize += state->lod[1].stride * state->lod[1].dimY; state->yuv.step = 2; break; default: rsAssert(0); } return uvSize; } static size_t AllocationBuildPointerTable(const Context *rsc, const Allocation *alloc, const Type *type, uint8_t *ptr, size_t requiredAlignment) { alloc->mHal.drvState.lod[0].dimX = type->getDimX(); alloc->mHal.drvState.lod[0].dimY = type->getDimY(); alloc->mHal.drvState.lod[0].dimZ = type->getDimZ(); alloc->mHal.drvState.lod[0].mallocPtr = 0; // Stride needs to be aligned to a boundary defined by requiredAlignment! size_t stride = alloc->mHal.drvState.lod[0].dimX * type->getElementSizeBytes(); alloc->mHal.drvState.lod[0].stride = rsRound(stride, requiredAlignment); alloc->mHal.drvState.lodCount = type->getLODCount(); alloc->mHal.drvState.faceCount = type->getDimFaces(); size_t offsets[Allocation::MAX_LOD]; memset(offsets, 0, sizeof(offsets)); size_t o = alloc->mHal.drvState.lod[0].stride * rsMax(alloc->mHal.drvState.lod[0].dimY, 1u) * rsMax(alloc->mHal.drvState.lod[0].dimZ, 1u); if (alloc->mHal.state.yuv) { o += DeriveYUVLayout(alloc->mHal.state.yuv, &alloc->mHal.drvState); for (uint32_t ct = 1; ct < alloc->mHal.drvState.lodCount; ct++) { offsets[ct] = (size_t)alloc->mHal.drvState.lod[ct].mallocPtr; } } else if(alloc->mHal.drvState.lodCount > 1) { uint32_t tx = alloc->mHal.drvState.lod[0].dimX; uint32_t ty = alloc->mHal.drvState.lod[0].dimY; uint32_t tz = alloc->mHal.drvState.lod[0].dimZ; for (uint32_t lod=1; lod < alloc->mHal.drvState.lodCount; lod++) { alloc->mHal.drvState.lod[lod].dimX = tx; alloc->mHal.drvState.lod[lod].dimY = ty; alloc->mHal.drvState.lod[lod].dimZ = tz; alloc->mHal.drvState.lod[lod].stride = rsRound(tx * type->getElementSizeBytes(), requiredAlignment); offsets[lod] = o; o += alloc->mHal.drvState.lod[lod].stride * rsMax(ty, 1u) * rsMax(tz, 1u); if (tx > 1) tx >>= 1; if (ty > 1) ty >>= 1; if (tz > 1) tz >>= 1; } } alloc->mHal.drvState.faceOffset = o; alloc->mHal.drvState.lod[0].mallocPtr = ptr; for (uint32_t lod=1; lod < alloc->mHal.drvState.lodCount; lod++) { alloc->mHal.drvState.lod[lod].mallocPtr = ptr + offsets[lod]; } size_t allocSize = alloc->mHal.drvState.faceOffset; if(alloc->mHal.drvState.faceCount) { allocSize *= 6; } return allocSize; } static size_t AllocationBuildPointerTable(const Context *rsc, const Allocation *alloc, const Type *type, uint8_t *ptr) { return AllocationBuildPointerTable(rsc, alloc, type, ptr, Allocation::kMinimumRSAlignment); } static uint8_t* allocAlignedMemory(size_t allocSize, bool forceZero, size_t requiredAlignment) { // We align all allocations to a boundary defined by requiredAlignment. uint8_t* ptr = (uint8_t *)memalign(requiredAlignment, allocSize); if (!ptr) { return nullptr; } if (forceZero) { memset(ptr, 0, allocSize); } return ptr; } bool rsdAllocationInitStrided(const Context *rsc, Allocation *alloc, bool forceZero, size_t requiredAlignment) { DrvAllocation *drv = (DrvAllocation *)calloc(1, sizeof(DrvAllocation)); if (!drv) { return false; } alloc->mHal.drv = drv; // Check if requiredAlignment is power of 2, also requiredAlignment should be larger or equal than kMinimumRSAlignment. if ((requiredAlignment & (requiredAlignment-1)) != 0 || requiredAlignment < Allocation::kMinimumRSAlignment) { ALOGE("requiredAlignment must be power of 2"); return false; } // Calculate the object size. size_t allocSize = AllocationBuildPointerTable(rsc, alloc, alloc->getType(), nullptr, requiredAlignment); uint8_t * ptr = nullptr; if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT) { } else if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_INPUT) { // Allocation is allocated when the surface is created // in getSurface #ifdef RS_COMPATIBILITY_LIB } else if (alloc->mHal.state.usageFlags == (RS_ALLOCATION_USAGE_INCREMENTAL_SUPPORT | RS_ALLOCATION_USAGE_SHARED)) { if (alloc->mHal.state.userProvidedPtr == nullptr) { ALOGE("User-backed buffer pointer cannot be null"); return false; } if (alloc->getType()->getDimLOD() || alloc->getType()->getDimFaces()) { ALOGE("User-allocated buffers must not have multiple faces or LODs"); return false; } drv->useUserProvidedPtr = true; ptr = (uint8_t*)alloc->mHal.state.userProvidedPtr; #endif } else if (alloc->mHal.state.userProvidedPtr != nullptr) { // user-provided allocation // limitations: no faces, no LOD, USAGE_SCRIPT or SCRIPT+TEXTURE only if (!(alloc->mHal.state.usageFlags == (RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_SHARED) || alloc->mHal.state.usageFlags == (RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_SHARED | RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE))) { ALOGE("Can't use user-allocated buffers if usage is not USAGE_SCRIPT | USAGE_SHARED or USAGE_SCRIPT | USAGE_SHARED | USAGE_GRAPHICS_TEXTURE"); return false; } if (alloc->getType()->getDimLOD() || alloc->getType()->getDimFaces()) { ALOGE("User-allocated buffers must not have multiple faces or LODs"); return false; } // rows must be aligned based on requiredAlignment. // validate that here, otherwise fall back to not use the user-backed allocation if (((alloc->getType()->getDimX() * alloc->getType()->getElement()->getSizeBytes()) % requiredAlignment) != 0) { ALOGV("User-backed allocation failed stride requirement, falling back to separate allocation"); drv->useUserProvidedPtr = false; ptr = allocAlignedMemory(allocSize, forceZero, requiredAlignment); if (!ptr) { alloc->mHal.drv = nullptr; free(drv); return false; } } else { drv->useUserProvidedPtr = true; ptr = (uint8_t*)alloc->mHal.state.userProvidedPtr; } } else { ptr = allocAlignedMemory(allocSize, forceZero, requiredAlignment); if (!ptr) { alloc->mHal.drv = nullptr; free(drv); return false; } } // Build the pointer tables size_t verifySize = AllocationBuildPointerTable(rsc, alloc, alloc->getType(), ptr, requiredAlignment); if(allocSize != verifySize) { rsAssert(!"Size mismatch"); } drv->glTarget = GL_NONE; if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE) { if (alloc->mHal.state.hasFaces) { drv->glTarget = GL_TEXTURE_CUBE_MAP; } else { drv->glTarget = GL_TEXTURE_2D; } } else { if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_VERTEX) { drv->glTarget = GL_ARRAY_BUFFER; } } #ifndef RS_COMPATIBILITY_LIB drv->glType = rsdTypeToGLType(alloc->mHal.state.type->getElement()->getComponent().getType()); drv->glFormat = rsdKindToGLFormat(alloc->mHal.state.type->getElement()->getComponent().getKind()); #else drv->glType = 0; drv->glFormat = 0; #endif if (alloc->mHal.state.usageFlags & ~RS_ALLOCATION_USAGE_SCRIPT) { drv->uploadDeferred = true; } #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) drv->readBackFBO = nullptr; #endif // fill out the initial state of the buffer if we couldn't use the user-provided ptr and USAGE_SHARED was accepted if ((alloc->mHal.state.userProvidedPtr != 0) && (drv->useUserProvidedPtr == false)) { rsdAllocationData2D(rsc, alloc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, alloc->getType()->getDimX(), alloc->getType()->getDimY(), alloc->mHal.state.userProvidedPtr, allocSize, 0); } #ifdef RS_FIND_OFFSETS ALOGE("pointer for allocation: %p", alloc); ALOGE("pointer for allocation.drv: %p", &alloc->mHal.drv); #endif return true; } bool rsdAllocationInit(const Context *rsc, Allocation *alloc, bool forceZero) { return rsdAllocationInitStrided(rsc, alloc, forceZero, Allocation::kMinimumRSAlignment); } void rsdAllocationAdapterOffset(const Context *rsc, const Allocation *alloc) { //ALOGE("rsdAllocationAdapterOffset"); // Get a base pointer to the new LOD const Allocation *base = alloc->mHal.state.baseAlloc; const Type *type = alloc->mHal.state.type; if (base == nullptr) { return; } //ALOGE("rsdAllocationAdapterOffset %p %p", ptrA, ptrB); //ALOGE("rsdAllocationAdapterOffset lodCount %i", alloc->mHal.drvState.lodCount); const int lodBias = alloc->mHal.state.originLOD; uint32_t lodCount = rsMax(alloc->mHal.drvState.lodCount, (uint32_t)1); for (uint32_t lod=0; lod < lodCount; lod++) { alloc->mHal.drvState.lod[lod] = base->mHal.drvState.lod[lod + lodBias]; alloc->mHal.drvState.lod[lod].mallocPtr = GetOffsetPtr(alloc, alloc->mHal.state.originX, alloc->mHal.state.originY, alloc->mHal.state.originZ, lodBias, (RsAllocationCubemapFace)alloc->mHal.state.originFace); } } bool rsdAllocationAdapterInit(const Context *rsc, Allocation *alloc) { DrvAllocation *drv = (DrvAllocation *)calloc(1, sizeof(DrvAllocation)); if (!drv) { return false; } alloc->mHal.drv = drv; // We need to build an allocation that looks like a subset of the parent allocation rsdAllocationAdapterOffset(rsc, alloc); return true; } void rsdAllocationDestroy(const Context *rsc, Allocation *alloc) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; if (alloc->mHal.state.baseAlloc == nullptr) { #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) if (drv->bufferID) { // Causes a SW crash.... //ALOGV(" mBufferID %i", mBufferID); //glDeleteBuffers(1, &mBufferID); //mBufferID = 0; } if (drv->textureID) { RSD_CALL_GL(glDeleteTextures, 1, &drv->textureID); drv->textureID = 0; } if (drv->renderTargetID) { RSD_CALL_GL(glDeleteRenderbuffers, 1, &drv->renderTargetID); drv->renderTargetID = 0; } #endif if (alloc->mHal.drvState.lod[0].mallocPtr) { // don't free user-allocated ptrs or IO_OUTPUT buffers if (!(drv->useUserProvidedPtr) && !(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_INPUT) && !(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT)) { free(alloc->mHal.drvState.lod[0].mallocPtr); } alloc->mHal.drvState.lod[0].mallocPtr = nullptr; } #ifndef RS_COMPATIBILITY_LIB #ifndef RS_VENDOR_LIB if (drv->readBackFBO != nullptr) { delete drv->readBackFBO; drv->readBackFBO = nullptr; } #endif if ((alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT) && (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT)) { ANativeWindow *nw = drv->wndSurface; if (nw) { //If we have an attached surface, need to release it. AHardwareBuffer* ahwb = ANativeWindowBuffer_getHardwareBuffer(drv->wndBuffer); int fenceID = -1; AHardwareBuffer_unlock(ahwb, &fenceID); ANativeWindow_cancelBuffer(nw, drv->wndBuffer, fenceID); ANativeWindow_release(nw); drv->wndSurface = nullptr; drv->wndBuffer = nullptr; } } #endif } free(drv); alloc->mHal.drv = nullptr; } void rsdAllocationResize(const Context *rsc, const Allocation *alloc, const Type *newType, bool zeroNew) { const uint32_t oldDimX = alloc->mHal.drvState.lod[0].dimX; const uint32_t dimX = newType->getDimX(); // can't resize Allocations with user-allocated buffers if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SHARED) { ALOGE("Resize cannot be called on a USAGE_SHARED allocation"); return; } void * oldPtr = alloc->mHal.drvState.lod[0].mallocPtr; // Calculate the object size size_t s = AllocationBuildPointerTable(rsc, alloc, newType, nullptr); uint8_t *ptr = (uint8_t *)realloc(oldPtr, s); // Build the relative pointer tables. size_t verifySize = AllocationBuildPointerTable(rsc, alloc, newType, ptr); if(s != verifySize) { rsAssert(!"Size mismatch"); } if (dimX > oldDimX) { size_t stride = alloc->mHal.state.elementSizeBytes; memset(((uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr) + stride * oldDimX, 0, stride * (dimX - oldDimX)); } } static void rsdAllocationSyncFromFBO(const Context *rsc, const Allocation *alloc) { #if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) if (!alloc->getIsScript()) { return; // nothing to sync } RsdHal *dc = (RsdHal *)rsc->mHal.drv; RsdFrameBufferObj *lastFbo = dc->gl.currentFrameBuffer; DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; if (!drv->textureID && !drv->renderTargetID) { return; // nothing was rendered here yet, so nothing to sync } if (drv->readBackFBO == nullptr) { drv->readBackFBO = new RsdFrameBufferObj(); drv->readBackFBO->setColorTarget(drv, 0); drv->readBackFBO->setDimensions(alloc->getType()->getDimX(), alloc->getType()->getDimY()); } // Bind the framebuffer object so we can read back from it drv->readBackFBO->setActive(rsc); // Do the readback RSD_CALL_GL(glReadPixels, 0, 0, alloc->mHal.drvState.lod[0].dimX, alloc->mHal.drvState.lod[0].dimY, drv->glFormat, drv->glType, alloc->mHal.drvState.lod[0].mallocPtr); // Revert framebuffer to its original lastFbo->setActive(rsc); #endif } void rsdAllocationSyncAll(const Context *rsc, const Allocation *alloc, RsAllocationUsageType src) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; if (src == RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) { if(!alloc->getIsRenderTarget()) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Attempting to sync allocation from render target, " "for non-render target allocation"); } else if (alloc->getType()->getElement()->getKind() != RS_KIND_PIXEL_RGBA) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Cannot only sync from RGBA" "render target"); } else { rsdAllocationSyncFromFBO(rsc, alloc); } return; } rsAssert(src == RS_ALLOCATION_USAGE_SCRIPT || src == RS_ALLOCATION_USAGE_SHARED); if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE) { UploadToTexture(rsc, alloc); } else { if ((alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) && !(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT)) { AllocateRenderTarget(rsc, alloc); } } if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_VERTEX) { UploadToBufferObject(rsc, alloc); } if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SHARED) { if (src == RS_ALLOCATION_USAGE_SHARED) { // just a memory fence for the CPU driver // vendor drivers probably want to flush any dirty cachelines for // this particular Allocation __sync_synchronize(); } } drv->uploadDeferred = false; } void rsdAllocationMarkDirty(const Context *rsc, const Allocation *alloc) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; drv->uploadDeferred = true; } #ifndef RS_COMPATIBILITY_LIB static bool IoGetBuffer(const Context *rsc, Allocation *alloc, ANativeWindow *nw) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; // Must lock the whole surface int fenceID = -1; int r = ANativeWindow_dequeueBuffer(nw, &drv->wndBuffer, &fenceID); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error dequeueing IO output buffer."); close(fenceID); return false; } void *dst = nullptr; AHardwareBuffer* ahwb = ANativeWindowBuffer_getHardwareBuffer(drv->wndBuffer); r = AHardwareBuffer_lock(ahwb, AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, fenceID, NULL, &dst); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error Locking IO output buffer."); return false; } alloc->mHal.drvState.lod[0].mallocPtr = dst; alloc->mHal.drvState.lod[0].stride = drv->wndBuffer->stride * alloc->mHal.state.elementSizeBytes; rsAssert((alloc->mHal.drvState.lod[0].stride & 0xf) == 0); return true; } #endif void rsdAllocationSetSurface(const Context *rsc, Allocation *alloc, ANativeWindow *nw) { #ifndef RS_COMPATIBILITY_LIB DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; // Cleanup old surface if there is one. if (drv->wndSurface) { ANativeWindow *old = drv->wndSurface; AHardwareBuffer* ahwb = ANativeWindowBuffer_getHardwareBuffer(drv->wndBuffer); int fenceID = -1; int32_t r = AHardwareBuffer_unlock(ahwb, &fenceID); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error unlocking output buffer."); close(fenceID); return; } r = ANativeWindow_cancelBuffer(old, drv->wndBuffer, fenceID); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error canceling output buffer."); return; } ANativeWindow_release(old); drv->wndSurface = nullptr; drv->wndBuffer = nullptr; } if (nw) { int32_t r = ANativeWindow_setBuffersGeometry(nw, alloc->mHal.drvState.lod[0].dimX, alloc->mHal.drvState.lod[0].dimY, WINDOW_FORMAT_RGBA_8888); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error setting IO output buffer geometry."); return; } if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT) { r = ANativeWindow_setUsage(nw, AHARDWAREBUFFER_USAGE_CPU_READ_RARELY | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error setting IO output buffer usage."); return; } } IoGetBuffer(rsc, alloc, nw); drv->wndSurface = nw; } return; #endif } void rsdAllocationIoSend(const Context *rsc, Allocation *alloc) { #ifndef RS_COMPATIBILITY_LIB DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; ANativeWindow *nw = drv->wndSurface; #ifndef RS_VENDOR_LIB if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) { RsdHal *dc = (RsdHal *)rsc->mHal.drv; RSD_CALL_GL(eglSwapBuffers, dc->gl.egl.display, dc->gl.egl.surface); return; } #endif if (nw) { if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT) { AHardwareBuffer* ahwb = ANativeWindowBuffer_getHardwareBuffer(drv->wndBuffer); int fenceID = -1; int32_t r = AHardwareBuffer_unlock(ahwb, &fenceID); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error unlock output buffer."); close(fenceID); return; } r = ANativeWindow_queueBuffer(nw, drv->wndBuffer, fenceID); if (r) { rsc->setError(RS_ERROR_DRIVER, "Error sending IO output buffer."); return; } drv->wndBuffer = nullptr; IoGetBuffer(rsc, alloc, nw); } } else { rsc->setError(RS_ERROR_DRIVER, "Sent IO buffer with no attached surface."); return; } #endif } void rsdAllocationIoReceive(const Context *rsc, Allocation *alloc) { if (alloc->mHal.state.yuv) { DeriveYUVLayout(alloc->mHal.state.yuv, &alloc->mHal.drvState); } } void rsdAllocationData1D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t lod, size_t count, const void *data, size_t sizeBytes) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; const size_t eSize = alloc->mHal.state.type->getElementSizeBytes(); uint8_t * ptr = GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); size_t size = count * eSize; if (ptr != data) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. if (alloc->mHal.state.hasReferences) { alloc->incRefs(data, count); alloc->decRefs(ptr, count); } memcpy(ptr, data, size); } drv->uploadDeferred = true; } void rsdAllocationData2D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, const void *data, size_t sizeBytes, size_t stride) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; size_t eSize = alloc->mHal.state.elementSizeBytes; size_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { const uint8_t *src = static_cast(data); uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face); if (dst == src) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. drv->uploadDeferred = true; return; } for (uint32_t line=yoff; line < (yoff+h); line++) { if (alloc->mHal.state.hasReferences) { alloc->incRefs(src, w); alloc->decRefs(dst, w); } memcpy(dst, src, lineSize); src += stride; dst += alloc->mHal.drvState.lod[lod].stride; } if (alloc->mHal.state.yuv) { size_t clineSize = lineSize; int lod = 1; int maxLod = 2; if (alloc->mHal.state.yuv == RS_YUV_YV12) { maxLod = 3; clineSize >>= 1; } else if (alloc->mHal.state.yuv == RS_YUV_NV21) { lod = 2; maxLod = 3; } while (lod < maxLod) { uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face); for (uint32_t line=(yoff >> 1); line < ((yoff+h)>>1); line++) { memcpy(dst, src, clineSize); // When copying from an array to an Allocation, the src pointer // to the array should just move by the number of bytes copied. src += clineSize; dst += alloc->mHal.drvState.lod[lod].stride; } lod++; } } drv->uploadDeferred = true; } else { Update2DTexture(rsc, alloc, data, xoff, yoff, lod, face, w, h); } } void rsdAllocationData3D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, const void *data, size_t sizeBytes, size_t stride) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; uint32_t eSize = alloc->mHal.state.elementSizeBytes; uint32_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { const uint8_t *src = static_cast(data); for (uint32_t z = zoff; z < (d + zoff); z++) { uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, z, lod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); if (dst == src) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. drv->uploadDeferred = true; return; } for (uint32_t line=yoff; line < (yoff+h); line++) { if (alloc->mHal.state.hasReferences) { alloc->incRefs(src, w); alloc->decRefs(dst, w); } memcpy(dst, src, lineSize); src += stride; dst += alloc->mHal.drvState.lod[lod].stride; } } drv->uploadDeferred = true; } } void rsdAllocationRead1D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t lod, size_t count, void *data, size_t sizeBytes) { const size_t eSize = alloc->mHal.state.type->getElementSizeBytes(); const uint8_t * ptr = GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); if (data != ptr) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. memcpy(data, ptr, count * eSize); } } void rsdAllocationRead2D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, uint32_t w, uint32_t h, void *data, size_t sizeBytes, size_t stride) { size_t eSize = alloc->mHal.state.elementSizeBytes; size_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { uint8_t *dst = static_cast(data); const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face); if (dst == src) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. return; } for (uint32_t line=yoff; line < (yoff+h); line++) { memcpy(dst, src, lineSize); dst += stride; src += alloc->mHal.drvState.lod[lod].stride; } } else { ALOGE("Add code to readback from non-script memory"); } } void rsdAllocationRead3D(const Context *rsc, const Allocation *alloc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, uint32_t w, uint32_t h, uint32_t d, void *data, size_t sizeBytes, size_t stride) { uint32_t eSize = alloc->mHal.state.elementSizeBytes; uint32_t lineSize = eSize * w; if (!stride) { stride = lineSize; } if (alloc->mHal.drvState.lod[0].mallocPtr) { uint8_t *dst = static_cast(data); for (uint32_t z = zoff; z < (d + zoff); z++) { const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, z, lod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); if (dst == src) { // Skip the copy if we are the same allocation. This can arise from // our Bitmap optimization, where we share the same storage. return; } for (uint32_t line=yoff; line < (yoff+h); line++) { memcpy(dst, src, lineSize); dst += stride; src += alloc->mHal.drvState.lod[lod].stride; } } } } void * rsdAllocationLock1D(const android::renderscript::Context *rsc, const android::renderscript::Allocation *alloc) { return alloc->mHal.drvState.lod[0].mallocPtr; } void rsdAllocationUnlock1D(const android::renderscript::Context *rsc, const android::renderscript::Allocation *alloc) { } void rsdAllocationData1D_alloc(const android::renderscript::Context *rsc, const android::renderscript::Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstLod, size_t count, const android::renderscript::Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcLod) { } void rsdAllocationData2D_alloc_script(const android::renderscript::Context *rsc, const android::renderscript::Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstLod, RsAllocationCubemapFace dstFace, uint32_t w, uint32_t h, const android::renderscript::Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcLod, RsAllocationCubemapFace srcFace) { size_t elementSize = dstAlloc->getType()->getElementSizeBytes(); for (uint32_t i = 0; i < h; i ++) { uint8_t *dstPtr = GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, 0, dstLod, dstFace); uint8_t *srcPtr = GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, 0, srcLod, srcFace); memcpy(dstPtr, srcPtr, w * elementSize); //ALOGE("COPIED dstXoff(%u), dstYoff(%u), dstLod(%u), dstFace(%u), w(%u), h(%u), srcXoff(%u), srcYoff(%u), srcLod(%u), srcFace(%u)", // dstXoff, dstYoff, dstLod, dstFace, w, h, srcXoff, srcYoff, srcLod, srcFace); } } void rsdAllocationData3D_alloc_script(const android::renderscript::Context *rsc, const android::renderscript::Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff, uint32_t dstLod, uint32_t w, uint32_t h, uint32_t d, const android::renderscript::Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff, uint32_t srcLod) { uint32_t elementSize = dstAlloc->getType()->getElementSizeBytes(); for (uint32_t j = 0; j < d; j++) { for (uint32_t i = 0; i < h; i ++) { uint8_t *dstPtr = GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, dstZoff + j, dstLod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); uint8_t *srcPtr = GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, srcZoff + j, srcLod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); memcpy(dstPtr, srcPtr, w * elementSize); //ALOGE("COPIED dstXoff(%u), dstYoff(%u), dstLod(%u), dstFace(%u), w(%u), h(%u), srcXoff(%u), srcYoff(%u), srcLod(%u), srcFace(%u)", // dstXoff, dstYoff, dstLod, dstFace, w, h, srcXoff, srcYoff, srcLod, srcFace); } } } void rsdAllocationData2D_alloc(const android::renderscript::Context *rsc, const android::renderscript::Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstLod, RsAllocationCubemapFace dstFace, uint32_t w, uint32_t h, const android::renderscript::Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcLod, RsAllocationCubemapFace srcFace) { if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Non-script allocation copies not " "yet implemented."); return; } rsdAllocationData2D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff, dstLod, dstFace, w, h, srcAlloc, srcXoff, srcYoff, srcLod, srcFace); } void rsdAllocationData3D_alloc(const android::renderscript::Context *rsc, const android::renderscript::Allocation *dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff, uint32_t dstLod, uint32_t w, uint32_t h, uint32_t d, const android::renderscript::Allocation *srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff, uint32_t srcLod) { if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Non-script allocation copies not " "yet implemented."); return; } rsdAllocationData3D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff, dstZoff, dstLod, w, h, d, srcAlloc, srcXoff, srcYoff, srcZoff, srcLod); } void rsdAllocationElementData(const Context *rsc, const Allocation *alloc, uint32_t x, uint32_t y, uint32_t z, const void *data, uint32_t cIdx, size_t sizeBytes) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; uint8_t * ptr = GetOffsetPtr(alloc, x, y, z, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); const Element * e = alloc->mHal.state.type->getElement()->getField(cIdx); ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx); if (alloc->mHal.state.hasReferences) { e->incRefs(data); e->decRefs(ptr); } memcpy(ptr, data, sizeBytes); drv->uploadDeferred = true; } void rsdAllocationElementRead(const Context *rsc, const Allocation *alloc, uint32_t x, uint32_t y, uint32_t z, void *data, uint32_t cIdx, size_t sizeBytes) { DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; uint8_t * ptr = GetOffsetPtr(alloc, x, y, z, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X); const Element * e = alloc->mHal.state.type->getElement()->getField(cIdx); ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx); memcpy(data, ptr, sizeBytes); } static void mip565(const Allocation *alloc, int lod, RsAllocationCubemapFace face) { uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX; uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY; for (uint32_t y=0; y < h; y++) { uint16_t *oPtr = (uint16_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face); const uint16_t *i1 = (uint16_t *)GetOffsetPtr(alloc, 0, 0, y*2, lod, face); const uint16_t *i2 = (uint16_t *)GetOffsetPtr(alloc, 0, 0, y*2+1, lod, face); for (uint32_t x=0; x < w; x++) { *oPtr = rsBoxFilter565(i1[0], i1[1], i2[0], i2[1]); oPtr ++; i1 += 2; i2 += 2; } } } static void mip8888(const Allocation *alloc, int lod, RsAllocationCubemapFace face) { uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX; uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY; for (uint32_t y=0; y < h; y++) { uint32_t *oPtr = (uint32_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face); const uint32_t *i1 = (uint32_t *)GetOffsetPtr(alloc, 0, y*2, 0, lod, face); const uint32_t *i2 = (uint32_t *)GetOffsetPtr(alloc, 0, y*2+1, 0, lod, face); for (uint32_t x=0; x < w; x++) { *oPtr = rsBoxFilter8888(i1[0], i1[1], i2[0], i2[1]); oPtr ++; i1 += 2; i2 += 2; } } } static void mip8(const Allocation *alloc, int lod, RsAllocationCubemapFace face) { uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX; uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY; for (uint32_t y=0; y < h; y++) { uint8_t *oPtr = GetOffsetPtr(alloc, 0, y, 0, lod + 1, face); const uint8_t *i1 = GetOffsetPtr(alloc, 0, y*2, 0, lod, face); const uint8_t *i2 = GetOffsetPtr(alloc, 0, y*2+1, 0, lod, face); for (uint32_t x=0; x < w; x++) { *oPtr = (uint8_t)(((uint32_t)i1[0] + i1[1] + i2[0] + i2[1]) * 0.25f); oPtr ++; i1 += 2; i2 += 2; } } } void rsdAllocationGenerateMipmaps(const Context *rsc, const Allocation *alloc) { if(!alloc->mHal.drvState.lod[0].mallocPtr) { return; } uint32_t numFaces = alloc->getType()->getDimFaces() ? 6 : 1; for (uint32_t face = 0; face < numFaces; face ++) { for (uint32_t lod=0; lod < (alloc->getType()->getLODCount() -1); lod++) { switch (alloc->getType()->getElement()->getSizeBits()) { case 32: mip8888(alloc, lod, (RsAllocationCubemapFace)face); break; case 16: mip565(alloc, lod, (RsAllocationCubemapFace)face); break; case 8: mip8(alloc, lod, (RsAllocationCubemapFace)face); break; } } } } uint32_t rsdAllocationGrallocBits(const android::renderscript::Context *rsc, android::renderscript::Allocation *alloc) { return 0; } void rsdAllocationUpdateCachedObject(const Context *rsc, const Allocation *alloc, rs_allocation *obj) { obj->p = alloc; #ifdef __LP64__ obj->unused1 = nullptr; obj->unused2 = nullptr; obj->unused3 = nullptr; #endif }