/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if !defined(cbigint_h) #define cbigint_h #include #include #include #include /* IEEE floats consist of: sign bit, exponent field, significand field single: 31 = sign bit, 30..23 = exponent (8 bits), 22..0 = significand (23 bits) double: 63 = sign bit, 62..52 = exponent (11 bits), 51..0 = significand (52 bits) inf == (all exponent bits set) and (all mantissa bits clear) nan == (all exponent bits set) and (at least one mantissa bit set) finite == (at least one exponent bit clear) zero == (all exponent bits clear) and (all mantissa bits clear) denormal == (all exponent bits clear) and (at least one mantissa bit set) positive == sign bit clear negative == sign bit set */ #if __BYTE_ORDER == __LITTLE_ENDIAN #define DOUBLE_LO_OFFSET 0 #define DOUBLE_HI_OFFSET 1 #define LONG_LO_OFFSET 0 #define LONG_HI_OFFSET 1 #else #define DOUBLE_LO_OFFSET 1 #define DOUBLE_HI_OFFSET 0 #define LONG_LO_OFFSET 1 #define LONG_HI_OFFSET 0 #endif #define DOUBLE_EXPONENT_MASK_HI 0x7FF00000 #define DOUBLE_MANTISSA_MASK_HI 0x000FFFFF union U64U32DBL { uint64_t u64val; uint32_t u32val[2]; int32_t i32val[2]; double dval; }; #define DOUBLE_TO_LONGBITS(dbl) (*(reinterpret_cast(&dbl))) #define FLOAT_TO_INTBITS(flt) (*(reinterpret_cast(&flt))) #define INTBITS_TO_FLOAT(bits) (*(reinterpret_cast(&bits))) /* Replace P_FLOAT_HI and P_FLOAT_LOW */ /* These macros are used to access the high and low 32-bit parts of a double (64-bit) value. */ #define LOW_U32_FROM_DBL_PTR(dblptr) ((reinterpret_cast(dblptr))->u32val[DOUBLE_LO_OFFSET]) #define HIGH_U32_FROM_DBL_PTR(dblptr) ((reinterpret_cast(dblptr))->u32val[DOUBLE_HI_OFFSET]) #define LOW_I32_FROM_DBL_PTR(dblptr) ((reinterpret_cast(dblptr))->i32val[DOUBLE_LO_OFFSET]) #define HIGH_I32_FROM_DBL_PTR(dblptr) ((reinterpret_cast(dblptr))->i32val[DOUBLE_HI_OFFSET]) #define LOW_U32_FROM_DBL(dbl) LOW_U32_FROM_DBL_PTR(&(dbl)) #define HIGH_U32_FROM_DBL(dbl) HIGH_U32_FROM_DBL_PTR(&(dbl)) #define LOW_U32_FROM_LONG64_PTR(long64ptr) ((reinterpret_cast(long64ptr))->u32val[LONG_LO_OFFSET]) #define HIGH_U32_FROM_LONG64_PTR(long64ptr) ((reinterpret_cast(long64ptr))->u32val[LONG_HI_OFFSET]) #define LOW_I32_FROM_LONG64_PTR(long64ptr) ((reinterpret_cast(long64ptr))->i32val[LONG_LO_OFFSET]) #define HIGH_I32_FROM_LONG64_PTR(long64ptr) ((reinterpret_cast(long64ptr))->i32val[LONG_HI_OFFSET]) #define LOW_U32_FROM_LONG64(long64) LOW_U32_FROM_LONG64_PTR(&(long64)) #define HIGH_U32_FROM_LONG64(long64) HIGH_U32_FROM_LONG64_PTR(&(long64)) #define LOW_I32_FROM_LONG64(long64) LOW_I32_FROM_LONG64_PTR(&(long64)) #define HIGH_I32_FROM_LONG64(long64) HIGH_I32_FROM_LONG64_PTR(&(long64)) #define IS_DENORMAL_DBL_PTR(dblptr) (((HIGH_U32_FROM_DBL_PTR(dblptr) & DOUBLE_EXPONENT_MASK_HI) == 0) && ((HIGH_U32_FROM_DBL_PTR(dblptr) & DOUBLE_MANTISSA_MASK_HI) != 0 || (LOW_U32_FROM_DBL_PTR(dblptr) != 0))) #define IS_DENORMAL_DBL(dbl) IS_DENORMAL_DBL_PTR(&(dbl)) #define LOW_U32_FROM_VAR(u64) LOW_U32_FROM_LONG64(u64) #define LOW_U32_FROM_PTR(u64ptr) LOW_U32_FROM_LONG64_PTR(u64ptr) #define HIGH_U32_FROM_VAR(u64) HIGH_U32_FROM_LONG64(u64) #define HIGH_U32_FROM_PTR(u64ptr) HIGH_U32_FROM_LONG64_PTR(u64ptr) void multiplyHighPrecision(uint64_t* arg1, int32_t length1, uint64_t* arg2, int32_t length2, uint64_t* result, int32_t length); uint32_t simpleAppendDecimalDigitHighPrecision(uint64_t* arg1, int32_t length, uint64_t digit); jdouble toDoubleHighPrecision(uint64_t* arg, int32_t length); uint64_t doubleMantissa(jdouble z); int32_t compareHighPrecision(uint64_t* arg1, int32_t length1, uint64_t* arg2, int32_t length2); int32_t highestSetBitHighPrecision(uint64_t* arg, int32_t length); void subtractHighPrecision(uint64_t* arg1, int32_t length1, uint64_t* arg2, int32_t length2); int32_t doubleExponent(jdouble z); int32_t addHighPrecision(uint64_t* arg1, int32_t length1, uint64_t* arg2, int32_t length2); int32_t lowestSetBit(uint64_t* y); int32_t timesTenToTheEHighPrecision(uint64_t* result, int32_t length, jint e); int32_t highestSetBit(uint64_t* y); int32_t lowestSetBitHighPrecision(uint64_t* arg, int32_t length); void simpleShiftLeftHighPrecision(uint64_t* arg1, int32_t length, int32_t arg2); uint32_t floatMantissa(jfloat z); int32_t simpleAddHighPrecision(uint64_t* arg1, int32_t length, uint64_t arg2); int32_t floatExponent(jfloat z); #endif /* cbigint_h */