/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ziparchive/zip_writer.h" #include #include #include #include #define DEF_MEM_LEVEL 8 // normally in zutil.h? #include #include #include "android-base/logging.h" #include "entry_name_utils-inl.h" #include "zip_archive_common.h" #undef powerof2 #define powerof2(x) \ ({ \ __typeof__(x) _x = (x); \ __typeof__(x) _x2; \ __builtin_add_overflow(_x, -1, &_x2) ? 1 : ((_x2 & _x) == 0); \ }) /* Zip compression methods we support */ enum { kCompressStored = 0, // no compression kCompressDeflated = 8, // standard deflate }; // Size of the output buffer used for compression. static const size_t kBufSize = 32768u; // No error, operation completed successfully. static const int32_t kNoError = 0; // The ZipWriter is in a bad state. static const int32_t kInvalidState = -1; // There was an IO error while writing to disk. static const int32_t kIoError = -2; // The zip entry name was invalid. static const int32_t kInvalidEntryName = -3; // An error occurred in zlib. static const int32_t kZlibError = -4; // The start aligned function was called with the aligned flag. static const int32_t kInvalidAlign32Flag = -5; // The alignment parameter is not a power of 2. static const int32_t kInvalidAlignment = -6; static const char* sErrorCodes[] = { "Invalid state", "IO error", "Invalid entry name", "Zlib error", }; const char* ZipWriter::ErrorCodeString(int32_t error_code) { if (error_code < 0 && (-error_code) < static_cast(arraysize(sErrorCodes))) { return sErrorCodes[-error_code]; } return nullptr; } static void DeleteZStream(z_stream* stream) { deflateEnd(stream); delete stream; } ZipWriter::ZipWriter(FILE* f) : file_(f), seekable_(false), current_offset_(0), state_(State::kWritingZip), z_stream_(nullptr, DeleteZStream), buffer_(kBufSize) { // Check if the file is seekable (regular file). If fstat fails, that's fine, subsequent calls // will fail as well. struct stat file_stats; if (fstat(fileno(f), &file_stats) == 0) { seekable_ = S_ISREG(file_stats.st_mode); } } ZipWriter::ZipWriter(ZipWriter&& writer) noexcept : file_(writer.file_), seekable_(writer.seekable_), current_offset_(writer.current_offset_), state_(writer.state_), files_(std::move(writer.files_)), z_stream_(std::move(writer.z_stream_)), buffer_(std::move(writer.buffer_)) { writer.file_ = nullptr; writer.state_ = State::kError; } ZipWriter& ZipWriter::operator=(ZipWriter&& writer) noexcept { file_ = writer.file_; seekable_ = writer.seekable_; current_offset_ = writer.current_offset_; state_ = writer.state_; files_ = std::move(writer.files_); z_stream_ = std::move(writer.z_stream_); buffer_ = std::move(writer.buffer_); writer.file_ = nullptr; writer.state_ = State::kError; return *this; } int32_t ZipWriter::HandleError(int32_t error_code) { state_ = State::kError; z_stream_.reset(); return error_code; } int32_t ZipWriter::StartEntry(std::string_view path, size_t flags) { uint32_t alignment = 0; if (flags & kAlign32) { flags &= ~kAlign32; alignment = 4; } return StartAlignedEntryWithTime(path, flags, time_t(), alignment); } int32_t ZipWriter::StartAlignedEntry(std::string_view path, size_t flags, uint32_t alignment) { return StartAlignedEntryWithTime(path, flags, time_t(), alignment); } int32_t ZipWriter::StartEntryWithTime(std::string_view path, size_t flags, time_t time) { uint32_t alignment = 0; if (flags & kAlign32) { flags &= ~kAlign32; alignment = 4; } return StartAlignedEntryWithTime(path, flags, time, alignment); } static void ExtractTimeAndDate(time_t when, uint16_t* out_time, uint16_t* out_date) { /* round up to an even number of seconds */ when = static_cast((static_cast(when) + 1) & (~1)); struct tm* ptm; #if !defined(_WIN32) struct tm tm_result; ptm = localtime_r(&when, &tm_result); #else ptm = localtime(&when); #endif int year = ptm->tm_year; if (year < 80) { year = 80; } *out_date = static_cast((year - 80) << 9 | (ptm->tm_mon + 1) << 5 | ptm->tm_mday); *out_time = static_cast(ptm->tm_hour << 11 | ptm->tm_min << 5 | ptm->tm_sec >> 1); } static void CopyFromFileEntry(const ZipWriter::FileEntry& src, bool use_data_descriptor, LocalFileHeader* dst) { dst->lfh_signature = LocalFileHeader::kSignature; if (use_data_descriptor) { // Set this flag to denote that a DataDescriptor struct will appear after the data, // containing the crc and size fields. dst->gpb_flags |= kGPBDDFlagMask; // The size and crc fields must be 0. dst->compressed_size = 0u; dst->uncompressed_size = 0u; dst->crc32 = 0u; } else { dst->compressed_size = src.compressed_size; dst->uncompressed_size = src.uncompressed_size; dst->crc32 = src.crc32; } dst->compression_method = src.compression_method; dst->last_mod_time = src.last_mod_time; dst->last_mod_date = src.last_mod_date; DCHECK_LE(src.path.size(), std::numeric_limits::max()); dst->file_name_length = static_cast(src.path.size()); dst->extra_field_length = src.padding_length; } int32_t ZipWriter::StartAlignedEntryWithTime(std::string_view path, size_t flags, time_t time, uint32_t alignment) { if (state_ != State::kWritingZip) { return kInvalidState; } // Can only have 16535 entries because of zip records. if (files_.size() == std::numeric_limits::max()) { return HandleError(kIoError); } if (flags & kAlign32) { return kInvalidAlign32Flag; } if (powerof2(alignment) == 0) { return kInvalidAlignment; } if (alignment > std::numeric_limits::max()) { return kInvalidAlignment; } FileEntry file_entry = {}; file_entry.local_file_header_offset = current_offset_; file_entry.path = path; // No support for larger than 4GB files. if (file_entry.local_file_header_offset > std::numeric_limits::max()) { return HandleError(kIoError); } if (!IsValidEntryName(reinterpret_cast(file_entry.path.data()), file_entry.path.size())) { return kInvalidEntryName; } if (flags & ZipWriter::kCompress) { file_entry.compression_method = kCompressDeflated; int32_t result = PrepareDeflate(); if (result != kNoError) { return result; } } else { file_entry.compression_method = kCompressStored; } ExtractTimeAndDate(time, &file_entry.last_mod_time, &file_entry.last_mod_date); off_t offset = current_offset_ + sizeof(LocalFileHeader) + file_entry.path.size(); // prepare a pre-zeroed memory page in case when we need to pad some aligned data. static constexpr auto kPageSize = 4096; static constexpr char kSmallZeroPadding[kPageSize] = {}; // use this buffer if our preallocated one is too small std::vector zero_padding_big; const char* zero_padding = nullptr; if (alignment != 0 && (offset & (alignment - 1))) { // Pad the extra field so the data will be aligned. uint16_t padding = static_cast(alignment - (offset % alignment)); file_entry.padding_length = padding; offset += padding; if (padding <= std::size(kSmallZeroPadding)) { zero_padding = kSmallZeroPadding; } else { zero_padding_big.resize(padding, 0); zero_padding = zero_padding_big.data(); } } LocalFileHeader header = {}; // Always start expecting a data descriptor. When the data has finished being written, // if it is possible to seek back, the GPB flag will reset and the sizes written. CopyFromFileEntry(file_entry, true /*use_data_descriptor*/, &header); if (fwrite(&header, sizeof(header), 1, file_) != 1) { return HandleError(kIoError); } if (fwrite(path.data(), 1, path.size(), file_) != path.size()) { return HandleError(kIoError); } if (file_entry.padding_length != 0 && fwrite(zero_padding, 1, file_entry.padding_length, file_) != file_entry.padding_length) { return HandleError(kIoError); } current_file_entry_ = std::move(file_entry); current_offset_ = offset; state_ = State::kWritingEntry; return kNoError; } int32_t ZipWriter::DiscardLastEntry() { if (state_ != State::kWritingZip || files_.empty()) { return kInvalidState; } FileEntry& last_entry = files_.back(); current_offset_ = last_entry.local_file_header_offset; if (fseeko(file_, current_offset_, SEEK_SET) != 0) { return HandleError(kIoError); } files_.pop_back(); return kNoError; } int32_t ZipWriter::GetLastEntry(FileEntry* out_entry) { CHECK(out_entry != nullptr); if (files_.empty()) { return kInvalidState; } *out_entry = files_.back(); return kNoError; } int32_t ZipWriter::PrepareDeflate() { CHECK(state_ == State::kWritingZip); // Initialize the z_stream for compression. z_stream_ = std::unique_ptr(new z_stream(), DeleteZStream); #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wold-style-cast" int zerr = deflateInit2(z_stream_.get(), Z_BEST_COMPRESSION, Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); #pragma GCC diagnostic pop if (zerr != Z_OK) { if (zerr == Z_VERSION_ERROR) { LOG(ERROR) << "Installed zlib is not compatible with linked version (" << ZLIB_VERSION << ")"; return HandleError(kZlibError); } else { LOG(ERROR) << "deflateInit2 failed (zerr=" << zerr << ")"; return HandleError(kZlibError); } } z_stream_->next_out = buffer_.data(); DCHECK_EQ(buffer_.size(), kBufSize); z_stream_->avail_out = static_cast(buffer_.size()); return kNoError; } int32_t ZipWriter::WriteBytes(const void* data, size_t len) { if (state_ != State::kWritingEntry) { return HandleError(kInvalidState); } // Need to be able to mark down data correctly. if (len + static_cast(current_file_entry_.uncompressed_size) > std::numeric_limits::max()) { return HandleError(kIoError); } uint32_t len32 = static_cast(len); int32_t result = kNoError; if (current_file_entry_.compression_method & kCompressDeflated) { result = CompressBytes(¤t_file_entry_, data, len32); } else { result = StoreBytes(¤t_file_entry_, data, len32); } if (result != kNoError) { return result; } current_file_entry_.crc32 = static_cast( crc32(current_file_entry_.crc32, reinterpret_cast(data), len32)); current_file_entry_.uncompressed_size += len32; return kNoError; } int32_t ZipWriter::StoreBytes(FileEntry* file, const void* data, uint32_t len) { CHECK(state_ == State::kWritingEntry); if (fwrite(data, 1, len, file_) != len) { return HandleError(kIoError); } file->compressed_size += len; current_offset_ += len; return kNoError; } int32_t ZipWriter::CompressBytes(FileEntry* file, const void* data, uint32_t len) { CHECK(state_ == State::kWritingEntry); CHECK(z_stream_); CHECK(z_stream_->next_out != nullptr); CHECK(z_stream_->avail_out != 0); // Prepare the input. z_stream_->next_in = reinterpret_cast(data); z_stream_->avail_in = len; while (z_stream_->avail_in > 0) { // We have more data to compress. int zerr = deflate(z_stream_.get(), Z_NO_FLUSH); if (zerr != Z_OK) { return HandleError(kZlibError); } if (z_stream_->avail_out == 0) { // The output is full, let's write it to disk. size_t write_bytes = z_stream_->next_out - buffer_.data(); if (fwrite(buffer_.data(), 1, write_bytes, file_) != write_bytes) { return HandleError(kIoError); } file->compressed_size += write_bytes; current_offset_ += write_bytes; // Reset the output buffer for the next input. z_stream_->next_out = buffer_.data(); DCHECK_EQ(buffer_.size(), kBufSize); z_stream_->avail_out = static_cast(buffer_.size()); } } return kNoError; } int32_t ZipWriter::FlushCompressedBytes(FileEntry* file) { CHECK(state_ == State::kWritingEntry); CHECK(z_stream_); CHECK(z_stream_->next_out != nullptr); CHECK(z_stream_->avail_out != 0); // Keep deflating while there isn't enough space in the buffer to // to complete the compress. int zerr; while ((zerr = deflate(z_stream_.get(), Z_FINISH)) == Z_OK) { CHECK(z_stream_->avail_out == 0); size_t write_bytes = z_stream_->next_out - buffer_.data(); if (fwrite(buffer_.data(), 1, write_bytes, file_) != write_bytes) { return HandleError(kIoError); } file->compressed_size += write_bytes; current_offset_ += write_bytes; z_stream_->next_out = buffer_.data(); DCHECK_EQ(buffer_.size(), kBufSize); z_stream_->avail_out = static_cast(buffer_.size()); } if (zerr != Z_STREAM_END) { return HandleError(kZlibError); } size_t write_bytes = z_stream_->next_out - buffer_.data(); if (write_bytes != 0) { if (fwrite(buffer_.data(), 1, write_bytes, file_) != write_bytes) { return HandleError(kIoError); } file->compressed_size += write_bytes; current_offset_ += write_bytes; } z_stream_.reset(); return kNoError; } bool ZipWriter::ShouldUseDataDescriptor() const { // Only use a trailing "data descriptor" if the output isn't seekable. return !seekable_; } int32_t ZipWriter::FinishEntry() { if (state_ != State::kWritingEntry) { return kInvalidState; } if (current_file_entry_.compression_method & kCompressDeflated) { int32_t result = FlushCompressedBytes(¤t_file_entry_); if (result != kNoError) { return result; } } if (ShouldUseDataDescriptor()) { // Some versions of ZIP don't allow STORED data to have a trailing DataDescriptor. // If this file is not seekable, or if the data is compressed, write a DataDescriptor. // We haven't supported zip64 format yet. Write both uncompressed size and compressed // size as uint32_t. std::vector dataDescriptor = { DataDescriptor::kOptSignature, current_file_entry_.crc32, current_file_entry_.compressed_size, current_file_entry_.uncompressed_size}; if (fwrite(dataDescriptor.data(), dataDescriptor.size() * sizeof(uint32_t), 1, file_) != 1) { return HandleError(kIoError); } current_offset_ += sizeof(uint32_t) * dataDescriptor.size(); } else { // Seek back to the header and rewrite to include the size. if (fseeko(file_, current_file_entry_.local_file_header_offset, SEEK_SET) != 0) { return HandleError(kIoError); } LocalFileHeader header = {}; CopyFromFileEntry(current_file_entry_, false /*use_data_descriptor*/, &header); if (fwrite(&header, sizeof(header), 1, file_) != 1) { return HandleError(kIoError); } if (fseeko(file_, current_offset_, SEEK_SET) != 0) { return HandleError(kIoError); } } files_.emplace_back(std::move(current_file_entry_)); state_ = State::kWritingZip; return kNoError; } int32_t ZipWriter::Finish() { if (state_ != State::kWritingZip) { return kInvalidState; } off_t startOfCdr = current_offset_; for (FileEntry& file : files_) { CentralDirectoryRecord cdr = {}; cdr.record_signature = CentralDirectoryRecord::kSignature; if (ShouldUseDataDescriptor()) { cdr.gpb_flags |= kGPBDDFlagMask; } cdr.compression_method = file.compression_method; cdr.last_mod_time = file.last_mod_time; cdr.last_mod_date = file.last_mod_date; cdr.crc32 = file.crc32; cdr.compressed_size = file.compressed_size; cdr.uncompressed_size = file.uncompressed_size; // Checked in IsValidEntryName. DCHECK_LE(file.path.size(), std::numeric_limits::max()); cdr.file_name_length = static_cast(file.path.size()); // Checked in StartAlignedEntryWithTime. DCHECK_LE(file.local_file_header_offset, std::numeric_limits::max()); cdr.local_file_header_offset = static_cast(file.local_file_header_offset); if (fwrite(&cdr, sizeof(cdr), 1, file_) != 1) { return HandleError(kIoError); } if (fwrite(file.path.data(), 1, file.path.size(), file_) != file.path.size()) { return HandleError(kIoError); } current_offset_ += sizeof(cdr) + file.path.size(); } EocdRecord er = {}; er.eocd_signature = EocdRecord::kSignature; er.disk_num = 0; er.cd_start_disk = 0; // Checked when adding entries. DCHECK_LE(files_.size(), std::numeric_limits::max()); er.num_records_on_disk = static_cast(files_.size()); er.num_records = static_cast(files_.size()); if (current_offset_ > std::numeric_limits::max()) { return HandleError(kIoError); } er.cd_size = static_cast(current_offset_ - startOfCdr); er.cd_start_offset = static_cast(startOfCdr); if (fwrite(&er, sizeof(er), 1, file_) != 1) { return HandleError(kIoError); } current_offset_ += sizeof(er); // Since we can BackUp() and potentially finish writing at an offset less than one we had // already written at, we must truncate the file. if (ftruncate(fileno(file_), current_offset_) != 0) { return HandleError(kIoError); } if (fflush(file_) != 0) { return HandleError(kIoError); } state_ = State::kDone; return kNoError; }