/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "Allocator.h" #include "Binder.h" #include "HeapWalker.h" #include "Leak.h" #include "LeakFolding.h" #include "LeakPipe.h" #include "ProcessMappings.h" #include "PtracerThread.h" #include "ScopedDisableMalloc.h" #include "Semaphore.h" #include "ThreadCapture.h" #include "bionic.h" #include "log.h" #include "memunreachable/memunreachable.h" using namespace std::chrono_literals; namespace android { const size_t Leak::contents_length; class MemUnreachable { public: MemUnreachable(pid_t pid, Allocator allocator) : pid_(pid), allocator_(allocator), heap_walker_(allocator_) {} bool CollectAllocations(const allocator::vector& threads, const allocator::vector& mappings, const allocator::vector& refs); bool GetUnreachableMemory(allocator::vector& leaks, size_t limit, size_t* num_leaks, size_t* leak_bytes); size_t Allocations() { return heap_walker_.Allocations(); } size_t AllocationBytes() { return heap_walker_.AllocationBytes(); } private: bool ClassifyMappings(const allocator::vector& mappings, allocator::vector& heap_mappings, allocator::vector& anon_mappings, allocator::vector& globals_mappings, allocator::vector& stack_mappings); DISALLOW_COPY_AND_ASSIGN(MemUnreachable); pid_t pid_; Allocator allocator_; HeapWalker heap_walker_; }; static void HeapIterate(const Mapping& heap_mapping, const std::function& func) { malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin, [](uintptr_t base, size_t size, void* arg) { auto f = reinterpret_cast*>(arg); (*f)(base, size); }, const_cast(reinterpret_cast(&func))); } bool MemUnreachable::CollectAllocations(const allocator::vector& threads, const allocator::vector& mappings, const allocator::vector& refs) { MEM_ALOGI("searching process %d for allocations", pid_); for (auto it = mappings.begin(); it != mappings.end(); it++) { heap_walker_.Mapping(it->begin, it->end); } allocator::vector heap_mappings{mappings}; allocator::vector anon_mappings{mappings}; allocator::vector globals_mappings{mappings}; allocator::vector stack_mappings{mappings}; if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) { return false; } for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) { MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); HeapIterate(*it, [&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); }); } for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) { MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); heap_walker_.Allocation(it->begin, it->end); } for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) { MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); heap_walker_.Root(it->begin, it->end); } for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) { for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) { if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) { MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name); heap_walker_.Root(thread_it->stack.first, it->end); } } heap_walker_.Root(thread_it->regs); } heap_walker_.Root(refs); MEM_ALOGI("searching done"); return true; } bool MemUnreachable::GetUnreachableMemory(allocator::vector& leaks, size_t limit, size_t* num_leaks, size_t* leak_bytes) { MEM_ALOGI("sweeping process %d for unreachable memory", pid_); leaks.clear(); if (!heap_walker_.DetectLeaks()) { return false; } allocator::vector leaked1{allocator_}; heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes); MEM_ALOGI("sweeping done"); MEM_ALOGI("folding related leaks"); LeakFolding folding(allocator_, heap_walker_); if (!folding.FoldLeaks()) { return false; } allocator::vector leaked{allocator_}; if (!folding.Leaked(leaked, num_leaks, leak_bytes)) { return false; } allocator::unordered_map backtrace_map{allocator_}; // Prevent reallocations of backing memory so we can store pointers into it // in backtrace_map. leaks.reserve(leaked.size()); for (auto& it : leaked) { leaks.emplace_back(); Leak* leak = &leaks.back(); ssize_t num_backtrace_frames = malloc_backtrace( reinterpret_cast(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames); if (num_backtrace_frames > 0) { leak->backtrace.num_frames = num_backtrace_frames; auto inserted = backtrace_map.emplace(leak->backtrace, leak); if (!inserted.second) { // Leak with same backtrace already exists, drop this one and // increment similar counts on the existing one. leaks.pop_back(); Leak* similar_leak = inserted.first->second; similar_leak->similar_count++; similar_leak->similar_size += it.range.size(); similar_leak->similar_referenced_count += it.referenced_count; similar_leak->similar_referenced_size += it.referenced_size; similar_leak->total_size += it.range.size(); similar_leak->total_size += it.referenced_size; continue; } } leak->begin = it.range.begin; leak->size = it.range.size(); leak->referenced_count = it.referenced_count; leak->referenced_size = it.referenced_size; leak->total_size = leak->size + leak->referenced_size; memcpy(leak->contents, reinterpret_cast(it.range.begin), std::min(leak->size, Leak::contents_length)); } MEM_ALOGI("folding done"); std::sort(leaks.begin(), leaks.end(), [](const Leak& a, const Leak& b) { return a.total_size > b.total_size; }); if (leaks.size() > limit) { leaks.resize(limit); } return true; } static bool has_prefix(const allocator::string& s, const char* prefix) { int ret = s.compare(0, strlen(prefix), prefix); return ret == 0; } static bool is_sanitizer_mapping(const allocator::string& s) { return s == "[anon:low shadow]" || s == "[anon:high shadow]" || has_prefix(s, "[anon:hwasan"); } bool MemUnreachable::ClassifyMappings(const allocator::vector& mappings, allocator::vector& heap_mappings, allocator::vector& anon_mappings, allocator::vector& globals_mappings, allocator::vector& stack_mappings) { heap_mappings.clear(); anon_mappings.clear(); globals_mappings.clear(); stack_mappings.clear(); allocator::string current_lib{allocator_}; for (auto it = mappings.begin(); it != mappings.end(); it++) { if (it->execute) { current_lib = it->name; continue; } if (!it->read) { continue; } const allocator::string mapping_name{it->name, allocator_}; if (mapping_name == "[anon:.bss]") { // named .bss section globals_mappings.emplace_back(*it); } else if (mapping_name == current_lib) { // .rodata or .data section globals_mappings.emplace_back(*it); } else if (mapping_name == "[anon:libc_malloc]" || android::base::StartsWith(mapping_name, "[anon:scudo:") || android::base::StartsWith(mapping_name, "[anon:GWP-ASan")) { // named malloc mapping heap_mappings.emplace_back(*it); } else if (has_prefix(mapping_name, "[anon:dalvik-")) { // named dalvik heap mapping globals_mappings.emplace_back(*it); } else if (has_prefix(mapping_name, "[stack")) { // named stack mapping stack_mappings.emplace_back(*it); } else if (mapping_name.size() == 0) { globals_mappings.emplace_back(*it); } else if (has_prefix(mapping_name, "[anon:") && mapping_name != "[anon:leak_detector_malloc]" && !is_sanitizer_mapping(mapping_name)) { // TODO(ccross): it would be nice to treat named anonymous mappings as // possible leaks, but naming something in a .bss or .data section makes // it impossible to distinguish them from mmaped and then named mappings. globals_mappings.emplace_back(*it); } } return true; } template static inline const char* plural(T val) { return (val == 1) ? "" : "s"; } bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) { if (info.version > 0) { MEM_ALOGE("unsupported UnreachableMemoryInfo.version %zu in GetUnreachableMemory", info.version); return false; } int parent_pid = getpid(); int parent_tid = gettid(); Heap heap; Semaphore continue_parent_sem; LeakPipe pipe; PtracerThread thread{[&]() -> int { ///////////////////////////////////////////// // Collection thread ///////////////////////////////////////////// MEM_ALOGI("collecting thread info for process %d...", parent_pid); ThreadCapture thread_capture(parent_pid, heap); allocator::vector thread_info(heap); allocator::vector mappings(heap); allocator::vector refs(heap); // ptrace all the threads if (!thread_capture.CaptureThreads()) { continue_parent_sem.Post(); return 1; } // collect register contents and stacks if (!thread_capture.CapturedThreadInfo(thread_info)) { continue_parent_sem.Post(); return 1; } // snapshot /proc/pid/maps if (!ProcessMappings(parent_pid, mappings)) { continue_parent_sem.Post(); return 1; } if (!BinderReferences(refs)) { continue_parent_sem.Post(); return 1; } // malloc must be enabled to call fork, at_fork handlers take the same // locks as ScopedDisableMalloc. All threads are paused in ptrace, so // memory state is still consistent. Unfreeze the original thread so it // can drop the malloc locks, it will block until the collection thread // exits. thread_capture.ReleaseThread(parent_tid); continue_parent_sem.Post(); // fork a process to do the heap walking int ret = fork(); if (ret < 0) { return 1; } else if (ret == 0) { ///////////////////////////////////////////// // Heap walker process ///////////////////////////////////////////// // Examine memory state in the child using the data collected above and // the CoW snapshot of the process memory contents. if (!pipe.OpenSender()) { _exit(1); } MemUnreachable unreachable{parent_pid, heap}; if (!unreachable.CollectAllocations(thread_info, mappings, refs)) { _exit(2); } size_t num_allocations = unreachable.Allocations(); size_t allocation_bytes = unreachable.AllocationBytes(); allocator::vector leaks{heap}; size_t num_leaks = 0; size_t leak_bytes = 0; bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes); ok = ok && pipe.Sender().Send(num_allocations); ok = ok && pipe.Sender().Send(allocation_bytes); ok = ok && pipe.Sender().Send(num_leaks); ok = ok && pipe.Sender().Send(leak_bytes); ok = ok && pipe.Sender().SendVector(leaks); if (!ok) { _exit(3); } _exit(0); } else { // Nothing left to do in the collection thread, return immediately, // releasing all the captured threads. MEM_ALOGI("collection thread done"); return 0; } }}; ///////////////////////////////////////////// // Original thread ///////////////////////////////////////////// { // Disable malloc to get a consistent view of memory ScopedDisableMalloc disable_malloc; // Start the collection thread thread.Start(); // Wait for the collection thread to signal that it is ready to fork the // heap walker process. continue_parent_sem.Wait(30s); // Re-enable malloc so the collection thread can fork. } // Wait for the collection thread to exit int ret = thread.Join(); if (ret != 0) { return false; } // Get a pipe from the heap walker process. Transferring a new pipe fd // ensures no other forked processes can have it open, so when the heap // walker process dies the remote side of the pipe will close. if (!pipe.OpenReceiver()) { return false; } bool ok = true; ok = ok && pipe.Receiver().Receive(&info.num_allocations); ok = ok && pipe.Receiver().Receive(&info.allocation_bytes); ok = ok && pipe.Receiver().Receive(&info.num_leaks); ok = ok && pipe.Receiver().Receive(&info.leak_bytes); ok = ok && pipe.Receiver().ReceiveVector(info.leaks); if (!ok) { return false; } MEM_ALOGI("unreachable memory detection done"); MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s", info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes, info.num_allocations, plural(info.num_allocations)); return true; } std::string Leak::ToString(bool log_contents) const { std::ostringstream oss; oss << " " << std::dec << size; oss << " bytes unreachable at "; oss << std::hex << begin; oss << std::endl; if (referenced_count > 0) { oss << std::dec; oss << " referencing " << referenced_size << " unreachable bytes"; oss << " in " << referenced_count << " allocation" << plural(referenced_count); oss << std::endl; } if (similar_count > 0) { oss << std::dec; oss << " and " << similar_size << " similar unreachable bytes"; oss << " in " << similar_count << " allocation" << plural(similar_count); oss << std::endl; if (similar_referenced_count > 0) { oss << " referencing " << similar_referenced_size << " unreachable bytes"; oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count); oss << std::endl; } } if (log_contents) { const int bytes_per_line = 16; const size_t bytes = std::min(size, contents_length); if (bytes == size) { oss << " contents:" << std::endl; } else { oss << " first " << bytes << " bytes of contents:" << std::endl; } for (size_t i = 0; i < bytes; i += bytes_per_line) { oss << " " << std::hex << begin + i << ": "; size_t j; oss << std::setfill('0'); for (j = i; j < bytes && j < i + bytes_per_line; j++) { oss << std::setw(2) << static_cast(contents[j]) << " "; } oss << std::setfill(' '); for (; j < i + bytes_per_line; j++) { oss << " "; } for (j = i; j < bytes && j < i + bytes_per_line; j++) { char c = contents[j]; if (c < ' ' || c >= 0x7f) { c = '.'; } oss << c; } oss << std::endl; } } if (backtrace.num_frames > 0) { oss << backtrace_string(backtrace.frames, backtrace.num_frames); } return oss.str(); } std::string UnreachableMemoryInfo::ToString(bool log_contents) const { std::ostringstream oss; oss << " " << leak_bytes << " bytes in "; oss << num_leaks << " unreachable allocation" << plural(num_leaks); oss << std::endl; oss << " ABI: '" ABI_STRING "'" << std::endl; oss << std::endl; for (auto it = leaks.begin(); it != leaks.end(); it++) { oss << it->ToString(log_contents); oss << std::endl; } return oss.str(); } UnreachableMemoryInfo::~UnreachableMemoryInfo() { // Clear the memory that holds the leaks, otherwise the next attempt to // detect leaks may find the old data (for example in the jemalloc tcache) // and consider all the leaks to be referenced. memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak)); std::vector tmp; leaks.swap(tmp); // Disable and re-enable malloc to flush the jemalloc tcache to make sure // there are no copies of the leaked pointer addresses there. malloc_disable(); malloc_enable(); } std::string GetUnreachableMemoryString(bool log_contents, size_t limit) { UnreachableMemoryInfo info; if (!GetUnreachableMemory(info, limit)) { return "Failed to get unreachable memory\n" "If you are trying to get unreachable memory from a system app\n" "(like com.android.systemui), disable selinux first using\n" "setenforce 0\n"; } return info.ToString(log_contents); } } // namespace android bool LogUnreachableMemory(bool log_contents, size_t limit) { android::UnreachableMemoryInfo info; if (!android::GetUnreachableMemory(info, limit)) { return false; } for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) { MEM_ALOGE("%s", it->ToString(log_contents).c_str()); } return true; } bool NoLeaks() { android::UnreachableMemoryInfo info; if (!android::GetUnreachableMemory(info, 0)) { return false; } return info.num_leaks == 0; }