/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include // bionic kernel uapi linux/udp.h header is munged... #define __kernel_udphdr udphdr #include #include "bpf_helpers.h" #include "bpf_net_helpers.h" #include "netdbpf/bpf_shared.h" // From kernel:include/net/ip.h #define IP_DF 0x4000 // Flag: "Don't Fragment" DEFINE_BPF_MAP(clat_ingress_map, HASH, ClatIngressKey, ClatIngressValue, 16) static inline __always_inline int nat64(struct __sk_buff* skb, bool is_ethernet) { const int l2_header_size = is_ethernet ? sizeof(struct ethhdr) : 0; void* data = (void*)(long)skb->data; const void* data_end = (void*)(long)skb->data_end; const struct ethhdr* const eth = is_ethernet ? data : NULL; // used iff is_ethernet const struct ipv6hdr* const ip6 = is_ethernet ? (void*)(eth + 1) : data; // Must be meta-ethernet IPv6 frame if (skb->protocol != htons(ETH_P_IPV6)) return TC_ACT_OK; // Must have (ethernet and) ipv6 header if (data + l2_header_size + sizeof(*ip6) > data_end) return TC_ACT_OK; // Ethertype - if present - must be IPv6 if (is_ethernet && (eth->h_proto != htons(ETH_P_IPV6))) return TC_ACT_OK; // IP version must be 6 if (ip6->version != 6) return TC_ACT_OK; // Maximum IPv6 payload length that can be translated to IPv4 if (ntohs(ip6->payload_len) > 0xFFFF - sizeof(struct iphdr)) return TC_ACT_OK; switch (ip6->nexthdr) { case IPPROTO_TCP: // For TCP & UDP the checksum neutrality of the chosen IPv6 case IPPROTO_UDP: // address means there is no need to update their checksums. case IPPROTO_GRE: // We do not need to bother looking at GRE/ESP headers, case IPPROTO_ESP: // since there is never a checksum to update. break; default: // do not know how to handle anything else return TC_ACT_OK; } ClatIngressKey k = { .iif = skb->ifindex, .pfx96.in6_u.u6_addr32 = { ip6->saddr.in6_u.u6_addr32[0], ip6->saddr.in6_u.u6_addr32[1], ip6->saddr.in6_u.u6_addr32[2], }, .local6 = ip6->daddr, }; ClatIngressValue* v = bpf_clat_ingress_map_lookup_elem(&k); if (!v) return TC_ACT_OK; struct ethhdr eth2; // used iff is_ethernet if (is_ethernet) { eth2 = *eth; // Copy over the ethernet header (src/dst mac) eth2.h_proto = htons(ETH_P_IP); // But replace the ethertype } struct iphdr ip = { .version = 4, // u4 .ihl = sizeof(struct iphdr) / sizeof(__u32), // u4 .tos = (ip6->priority << 4) + (ip6->flow_lbl[0] >> 4), // u8 .tot_len = htons(ntohs(ip6->payload_len) + sizeof(struct iphdr)), // u16 .id = 0, // u16 .frag_off = htons(IP_DF), // u16 .ttl = ip6->hop_limit, // u8 .protocol = ip6->nexthdr, // u8 .check = 0, // u16 .saddr = ip6->saddr.in6_u.u6_addr32[3], // u32 .daddr = v->local4.s_addr, // u32 }; // Calculate the IPv4 one's complement checksum of the IPv4 header. __wsum sum4 = 0; for (int i = 0; i < sizeof(ip) / sizeof(__u16); ++i) { sum4 += ((__u16*)&ip)[i]; } // Note that sum4 is guaranteed to be non-zero by virtue of ip.version == 4 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 ip.check = (__u16)~sum4; // sum4 cannot be zero, so this is never 0xFFFF // Calculate the *negative* IPv6 16-bit one's complement checksum of the IPv6 header. __wsum sum6 = 0; // We'll end up with a non-zero sum due to ip6->version == 6 (which has '0' bits) for (int i = 0; i < sizeof(*ip6) / sizeof(__u16); ++i) { sum6 += ~((__u16*)ip6)[i]; // note the bitwise negation } // Note that there is no L4 checksum update: we are relying on the checksum neutrality // of the ipv6 address chosen by netd's ClatdController. // Packet mutations begin - point of no return, but if this first modification fails // the packet is probably still pristine, so let clatd handle it. if (bpf_skb_change_proto(skb, htons(ETH_P_IP), 0)) return TC_ACT_OK; // This takes care of updating the skb->csum field for a CHECKSUM_COMPLETE packet. // // In such a case, skb->csum is a 16-bit one's complement sum of the entire payload, // thus we need to subtract out the ipv6 header's sum, and add in the ipv4 header's sum. // However, by construction of ip.check above the checksum of an ipv4 header is zero. // Thus we only need to subtract the ipv6 header's sum, which is the same as adding // in the sum of the bitwise negation of the ipv6 header. // // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error // (-ENOTSUPP) if it isn't. So we just ignore the return code. // // if (skb->ip_summed == CHECKSUM_COMPLETE) // return (skb->csum = csum_add(skb->csum, csum)); // else // return -ENOTSUPP; bpf_csum_update(skb, sum6); // bpf_skb_change_proto() invalidates all pointers - reload them. data = (void*)(long)skb->data; data_end = (void*)(long)skb->data_end; // I cannot think of any valid way for this error condition to trigger, however I do // believe the explicit check is required to keep the in kernel ebpf verifier happy. if (data + l2_header_size + sizeof(struct iphdr) > data_end) return TC_ACT_SHOT; if (is_ethernet) { struct ethhdr* new_eth = data; // Copy over the updated ethernet header *new_eth = eth2; // Copy over the new ipv4 header. *(struct iphdr*)(new_eth + 1) = ip; } else { // Copy over the new ipv4 header without an ethernet header. *(struct iphdr*)data = ip; } // Redirect, possibly back to same interface, so tcpdump sees packet twice. if (v->oif) return bpf_redirect(v->oif, BPF_F_INGRESS); // Just let it through, tcpdump will not see IPv4 packet. return TC_ACT_OK; } SEC("schedcls/ingress/clat_ether") int sched_cls_ingress_clat_ether(struct __sk_buff* skb) { return nat64(skb, true); } SEC("schedcls/ingress/clat_rawip") int sched_cls_ingress_clat_rawip(struct __sk_buff* skb) { return nat64(skb, false); } DEFINE_BPF_MAP(clat_egress_map, HASH, ClatEgressKey, ClatEgressValue, 16) SEC("schedcls/egress/clat_ether") int sched_cls_egress_clat_ether(struct __sk_buff* skb) { return TC_ACT_OK; } SEC("schedcls/egress/clat_rawip") int sched_cls_egress_clat_rawip(struct __sk_buff* skb) { void* data = (void*)(long)skb->data; const void* data_end = (void*)(long)skb->data_end; const struct iphdr* const ip4 = data; // Must be meta-ethernet IPv4 frame if (skb->protocol != htons(ETH_P_IP)) return TC_ACT_OK; // Must have ipv4 header if (data + sizeof(*ip4) > data_end) return TC_ACT_OK; // IP version must be 4 if (ip4->version != 4) return TC_ACT_OK; // We cannot handle IP options, just standard 20 byte == 5 dword minimal IPv4 header if (ip4->ihl != 5) return TC_ACT_OK; // Calculate the IPv4 one's complement checksum of the IPv4 header. __wsum sum4 = 0; for (int i = 0; i < sizeof(*ip4) / sizeof(__u16); ++i) { sum4 += ((__u16*)ip4)[i]; } // Note that sum4 is guaranteed to be non-zero by virtue of ip4->version == 4 sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse u32 into range 1 .. 0x1FFFE sum4 = (sum4 & 0xFFFF) + (sum4 >> 16); // collapse any potential carry into u16 // for a correct checksum we should get *a* zero, but sum4 must be positive, ie 0xFFFF if (sum4 != 0xFFFF) return TC_ACT_OK; // Minimum IPv4 total length is the size of the header if (ntohs(ip4->tot_len) < sizeof(*ip4)) return TC_ACT_OK; // We are incapable of dealing with IPv4 fragments if (ip4->frag_off & ~htons(IP_DF)) return TC_ACT_OK; switch (ip4->protocol) { case IPPROTO_TCP: // For TCP & UDP the checksum neutrality of the chosen IPv6 case IPPROTO_GRE: // address means there is no need to update their checksums. case IPPROTO_ESP: // We do not need to bother looking at GRE/ESP headers, break; // since there is never a checksum to update. case IPPROTO_UDP: // See above comment, but must also have UDP header... if (data + sizeof(*ip4) + sizeof(struct udphdr) > data_end) return TC_ACT_OK; const struct udphdr* uh = (const struct udphdr*)(ip4 + 1); // If IPv4/UDP checksum is 0 then fallback to clatd so it can calculate the // checksum. Otherwise the network or more likely the NAT64 gateway might // drop the packet because in most cases IPv6/UDP packets with a zero checksum // are invalid. See RFC 6935. TODO: calculate checksum via bpf_csum_diff() if (!uh->check) return TC_ACT_OK; break; default: // do not know how to handle anything else return TC_ACT_OK; } ClatEgressKey k = { .iif = skb->ifindex, .local4.s_addr = ip4->saddr, }; ClatEgressValue* v = bpf_clat_egress_map_lookup_elem(&k); if (!v) return TC_ACT_OK; // Translating without redirecting doesn't make sense. if (!v->oif) return TC_ACT_OK; // This implementation is currently limited to rawip. if (v->oifIsEthernet) return TC_ACT_OK; struct ipv6hdr ip6 = { .version = 6, // __u8:4 .priority = ip4->tos >> 4, // __u8:4 .flow_lbl = {(ip4->tos & 0xF) << 4, 0, 0}, // __u8[3] .payload_len = htons(ntohs(ip4->tot_len) - 20), // __be16 .nexthdr = ip4->protocol, // __u8 .hop_limit = ip4->ttl, // __u8 .saddr = v->local6, // struct in6_addr .daddr = v->pfx96, // struct in6_addr }; ip6.daddr.in6_u.u6_addr32[3] = ip4->daddr; // Calculate the IPv6 16-bit one's complement checksum of the IPv6 header. __wsum sum6 = 0; // We'll end up with a non-zero sum due to ip6.version == 6 for (int i = 0; i < sizeof(ip6) / sizeof(__u16); ++i) { sum6 += ((__u16*)&ip6)[i]; } // Note that there is no L4 checksum update: we are relying on the checksum neutrality // of the ipv6 address chosen by netd's ClatdController. // Packet mutations begin - point of no return, but if this first modification fails // the packet is probably still pristine, so let clatd handle it. if (bpf_skb_change_proto(skb, htons(ETH_P_IPV6), 0)) return TC_ACT_OK; // This takes care of updating the skb->csum field for a CHECKSUM_COMPLETE packet. // // In such a case, skb->csum is a 16-bit one's complement sum of the entire payload, // thus we need to subtract out the ipv4 header's sum, and add in the ipv6 header's sum. // However, we've already verified the ipv4 checksum is correct and thus 0. // Thus we only need to add the ipv6 header's sum. // // bpf_csum_update() always succeeds if the skb is CHECKSUM_COMPLETE and returns an error // (-ENOTSUPP) if it isn't. So we just ignore the return code (see above for more details). bpf_csum_update(skb, sum6); // bpf_skb_change_proto() invalidates all pointers - reload them. data = (void*)(long)skb->data; data_end = (void*)(long)skb->data_end; // I cannot think of any valid way for this error condition to trigger, however I do // believe the explicit check is required to keep the in kernel ebpf verifier happy. if (data + sizeof(ip6) > data_end) return TC_ACT_SHOT; // Copy over the new ipv6 header without an ethernet header. *(struct ipv6hdr*)data = ip6; // Redirect to non v4-* interface. Tcpdump only sees packet after this redirect. return bpf_redirect(v->oif, 0 /* this is effectively BPF_F_EGRESS */); } LICENSE("Apache 2.0"); CRITICAL("netd");