/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #define BOOT_MAGIC "ANDROID!" #define BOOT_MAGIC_SIZE 8 #define BOOT_NAME_SIZE 16 #define BOOT_ARGS_SIZE 512 #define BOOT_EXTRA_ARGS_SIZE 1024 #define VENDOR_BOOT_MAGIC "VNDRBOOT" #define VENDOR_BOOT_MAGIC_SIZE 8 #define VENDOR_BOOT_ARGS_SIZE 2048 #define VENDOR_BOOT_NAME_SIZE 16 /* When a boot header is of version 0, the structure of boot image is as * follows: * * +-----------------+ * | boot header | 1 page * +-----------------+ * | kernel | n pages * +-----------------+ * | ramdisk | m pages * +-----------------+ * | second stage | o pages * +-----------------+ * * n = (kernel_size + page_size - 1) / page_size * m = (ramdisk_size + page_size - 1) / page_size * o = (second_size + page_size - 1) / page_size * * 0. all entities are page_size aligned in flash * 1. kernel and ramdisk are required (size != 0) * 2. second is optional (second_size == 0 -> no second) * 3. load each element (kernel, ramdisk, second) at * the specified physical address (kernel_addr, etc) * 4. prepare tags at tag_addr. kernel_args[] is * appended to the kernel commandline in the tags. * 5. r0 = 0, r1 = MACHINE_TYPE, r2 = tags_addr * 6. if second_size != 0: jump to second_addr * else: jump to kernel_addr */ struct boot_img_hdr_v0 { // Must be BOOT_MAGIC. uint8_t magic[BOOT_MAGIC_SIZE]; uint32_t kernel_size; /* size in bytes */ uint32_t kernel_addr; /* physical load addr */ uint32_t ramdisk_size; /* size in bytes */ uint32_t ramdisk_addr; /* physical load addr */ uint32_t second_size; /* size in bytes */ uint32_t second_addr; /* physical load addr */ uint32_t tags_addr; /* physical addr for kernel tags (if required) */ uint32_t page_size; /* flash page size we assume */ // Version of the boot image header. uint32_t header_version; // Operating system version and security patch level. // For version "A.B.C" and patch level "Y-M-D": // (7 bits for each of A, B, C; 7 bits for (Y-2000), 4 bits for M) // os_version = A[31:25] B[24:18] C[17:11] (Y-2000)[10:4] M[3:0] uint32_t os_version; #if __cplusplus void SetOsVersion(unsigned major, unsigned minor, unsigned patch) { os_version &= ((1 << 11) - 1); os_version |= (((major & 0x7f) << 25) | ((minor & 0x7f) << 18) | ((patch & 0x7f) << 11)); } void SetOsPatchLevel(unsigned year, unsigned month) { os_version &= ~((1 << 11) - 1); os_version |= (((year - 2000) & 0x7f) << 4) | ((month & 0xf) << 0); } #endif uint8_t name[BOOT_NAME_SIZE]; /* asciiz product name */ uint8_t cmdline[BOOT_ARGS_SIZE]; uint32_t id[8]; /* timestamp / checksum / sha1 / etc */ // Supplemental command line data; kept here to maintain // binary compatibility with older versions of mkbootimg. uint8_t extra_cmdline[BOOT_EXTRA_ARGS_SIZE]; } __attribute__((packed)); /* * It is expected that callers would explicitly specify which version of the * boot image header they need to use. */ typedef struct boot_img_hdr_v0 boot_img_hdr; /* When a boot header is of version 1, the structure of boot image is as * follows: * * +---------------------+ * | boot header | 1 page * +---------------------+ * | kernel | n pages * +---------------------+ * | ramdisk | m pages * +---------------------+ * | second stage | o pages * +---------------------+ * | recovery dtbo/acpio | p pages * +---------------------+ * * n = (kernel_size + page_size - 1) / page_size * m = (ramdisk_size + page_size - 1) / page_size * o = (second_size + page_size - 1) / page_size * p = (recovery_dtbo_size + page_size - 1) / page_size * * 0. all entities are page_size aligned in flash * 1. kernel and ramdisk are required (size != 0) * 2. recovery_dtbo/recovery_acpio is required for recovery.img in non-A/B * devices(recovery_dtbo_size != 0) * 3. second is optional (second_size == 0 -> no second) * 4. load each element (kernel, ramdisk, second) at * the specified physical address (kernel_addr, etc) * 5. If booting to recovery mode in a non-A/B device, extract recovery * dtbo/acpio and apply the correct set of overlays on the base device tree * depending on the hardware/product revision. * 6. set up registers for kernel entry as required by your architecture * 7. if second_size != 0: jump to second_addr * else: jump to kernel_addr */ struct boot_img_hdr_v1 : public boot_img_hdr_v0 { uint32_t recovery_dtbo_size; /* size in bytes for recovery DTBO/ACPIO image */ uint64_t recovery_dtbo_offset; /* offset to recovery dtbo/acpio in boot image */ uint32_t header_size; } __attribute__((packed)); /* When the boot image header has a version of 2, the structure of the boot * image is as follows: * * +---------------------+ * | boot header | 1 page * +---------------------+ * | kernel | n pages * +---------------------+ * | ramdisk | m pages * +---------------------+ * | second stage | o pages * +---------------------+ * | recovery dtbo/acpio | p pages * +---------------------+ * | dtb | q pages * +---------------------+ * n = (kernel_size + page_size - 1) / page_size * m = (ramdisk_size + page_size - 1) / page_size * o = (second_size + page_size - 1) / page_size * p = (recovery_dtbo_size + page_size - 1) / page_size * q = (dtb_size + page_size - 1) / page_size * * 0. all entities are page_size aligned in flash * 1. kernel, ramdisk and DTB are required (size != 0) * 2. recovery_dtbo/recovery_acpio is required for recovery.img in non-A/B * devices(recovery_dtbo_size != 0) * 3. second is optional (second_size == 0 -> no second) * 4. load each element (kernel, ramdisk, second, dtb) at * the specified physical address (kernel_addr, etc) * 5. If booting to recovery mode in a non-A/B device, extract recovery * dtbo/acpio and apply the correct set of overlays on the base device tree * depending on the hardware/product revision. * 6. set up registers for kernel entry as required by your architecture * 7. if second_size != 0: jump to second_addr * else: jump to kernel_addr */ struct boot_img_hdr_v2 : public boot_img_hdr_v1 { uint32_t dtb_size; /* size in bytes for DTB image */ uint64_t dtb_addr; /* physical load address for DTB image */ } __attribute__((packed)); /* When the boot image header has a version of 3, the structure of the boot * image is as follows: * * +---------------------+ * | boot header | 4096 bytes * +---------------------+ * | kernel | m pages * +---------------------+ * | ramdisk | n pages * +---------------------+ * * m = (kernel_size + 4096 - 1) / 4096 * n = (ramdisk_size + 4096 - 1) / 4096 * * Note that in version 3 of the boot image header, page size is fixed at 4096 bytes. * * The structure of the vendor boot image (introduced with version 3 and * required to be present when a v3 boot image is used) is as follows: * * +---------------------+ * | vendor boot header | o pages * +---------------------+ * | vendor ramdisk | p pages * +---------------------+ * | dtb | q pages * +---------------------+ * o = (2112 + page_size - 1) / page_size * p = (vendor_ramdisk_size + page_size - 1) / page_size * q = (dtb_size + page_size - 1) / page_size * * 0. all entities in the boot image are 4096-byte aligned in flash, all * entities in the vendor boot image are page_size (determined by the vendor * and specified in the vendor boot image header) aligned in flash * 1. kernel, ramdisk, vendor ramdisk, and DTB are required (size != 0) * 2. load the kernel and DTB at the specified physical address (kernel_addr, * dtb_addr) * 3. load the vendor ramdisk at ramdisk_addr * 4. load the generic ramdisk immediately following the vendor ramdisk in * memory * 5. set up registers for kernel entry as required by your architecture * 6. if the platform has a second stage bootloader jump to it (must be * contained outside boot and vendor boot partitions), otherwise * jump to kernel_addr */ struct boot_img_hdr_v3 { // Must be BOOT_MAGIC. uint8_t magic[BOOT_MAGIC_SIZE]; uint32_t kernel_size; /* size in bytes */ uint32_t ramdisk_size; /* size in bytes */ // Operating system version and security patch level. // For version "A.B.C" and patch level "Y-M-D": // (7 bits for each of A, B, C; 7 bits for (Y-2000), 4 bits for M) // os_version = A[31:25] B[24:18] C[17:11] (Y-2000)[10:4] M[3:0] uint32_t os_version; #if __cplusplus void SetOsVersion(unsigned major, unsigned minor, unsigned patch) { os_version &= ((1 << 11) - 1); os_version |= (((major & 0x7f) << 25) | ((minor & 0x7f) << 18) | ((patch & 0x7f) << 11)); } void SetOsPatchLevel(unsigned year, unsigned month) { os_version &= ~((1 << 11) - 1); os_version |= (((year - 2000) & 0x7f) << 4) | ((month & 0xf) << 0); } #endif uint32_t header_size; uint32_t reserved[4]; // Version of the boot image header. uint32_t header_version; uint8_t cmdline[BOOT_ARGS_SIZE + BOOT_EXTRA_ARGS_SIZE]; } __attribute__((packed)); struct vendor_boot_img_hdr_v3 { // Must be VENDOR_BOOT_MAGIC. uint8_t magic[VENDOR_BOOT_MAGIC_SIZE]; // Version of the vendor boot image header. uint32_t header_version; uint32_t page_size; /* flash page size we assume */ uint32_t kernel_addr; /* physical load addr */ uint32_t ramdisk_addr; /* physical load addr */ uint32_t vendor_ramdisk_size; /* size in bytes */ uint8_t cmdline[VENDOR_BOOT_ARGS_SIZE]; uint32_t tags_addr; /* physical addr for kernel tags (if required) */ uint8_t name[VENDOR_BOOT_NAME_SIZE]; /* asciiz product name */ uint32_t header_size; uint32_t dtb_size; /* size in bytes for DTB image */ uint64_t dtb_addr; /* physical load address for DTB image */ } __attribute__((packed));