// // Copyright (C) 2016 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/update_attempter_android.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "update_engine/cleanup_previous_update_action.h" #include "update_engine/common/constants.h" #include "update_engine/common/error_code_utils.h" #include "update_engine/common/file_fetcher.h" #include "update_engine/common/utils.h" #include "update_engine/daemon_state_interface.h" #include "update_engine/metrics_reporter_interface.h" #include "update_engine/metrics_utils.h" #include "update_engine/network_selector.h" #include "update_engine/payload_consumer/certificate_parser_interface.h" #include "update_engine/payload_consumer/delta_performer.h" #include "update_engine/payload_consumer/download_action.h" #include "update_engine/payload_consumer/file_descriptor.h" #include "update_engine/payload_consumer/file_descriptor_utils.h" #include "update_engine/payload_consumer/filesystem_verifier_action.h" #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_consumer/payload_metadata.h" #include "update_engine/payload_consumer/payload_verifier.h" #include "update_engine/payload_consumer/postinstall_runner_action.h" #include "update_engine/update_boot_flags_action.h" #include "update_engine/update_status_utils.h" #ifndef _UE_SIDELOAD // Do not include support for external HTTP(s) urls when building // update_engine_sideload. #include "update_engine/libcurl_http_fetcher.h" #endif using android::base::unique_fd; using base::Bind; using base::Time; using base::TimeDelta; using base::TimeTicks; using std::shared_ptr; using std::string; using std::vector; using update_engine::UpdateEngineStatus; namespace chromeos_update_engine { namespace { // Minimum threshold to broadcast an status update in progress and time. const double kBroadcastThresholdProgress = 0.01; // 1% const int kBroadcastThresholdSeconds = 10; const char* const kErrorDomain = "update_engine"; // TODO(deymo): Convert the different errors to a numeric value to report them // back on the service error. const char* const kGenericError = "generic_error"; // Log and set the error on the passed ErrorPtr. bool LogAndSetError(brillo::ErrorPtr* error, const base::Location& location, const string& reason) { brillo::Error::AddTo(error, location, kErrorDomain, kGenericError, reason); LOG(ERROR) << "Replying with failure: " << location.ToString() << ": " << reason; return false; } bool GetHeaderAsBool(const string& header, bool default_value) { int value = 0; if (base::StringToInt(header, &value) && (value == 0 || value == 1)) return value == 1; return default_value; } bool ParseKeyValuePairHeaders(const vector& key_value_pair_headers, std::map* headers, brillo::ErrorPtr* error) { for (const string& key_value_pair : key_value_pair_headers) { string key; string value; if (!brillo::string_utils::SplitAtFirst( key_value_pair, "=", &key, &value, false)) { return LogAndSetError( error, FROM_HERE, "Passed invalid header: " + key_value_pair); } if (!headers->emplace(key, value).second) return LogAndSetError(error, FROM_HERE, "Passed repeated key: " + key); } return true; } // Unique identifier for the payload. An empty string means that the payload // can't be resumed. string GetPayloadId(const std::map& headers) { return (headers.count(kPayloadPropertyFileHash) ? headers.at(kPayloadPropertyFileHash) : "") + (headers.count(kPayloadPropertyMetadataHash) ? headers.at(kPayloadPropertyMetadataHash) : ""); } } // namespace UpdateAttempterAndroid::UpdateAttempterAndroid( DaemonStateInterface* daemon_state, PrefsInterface* prefs, BootControlInterface* boot_control, HardwareInterface* hardware) : daemon_state_(daemon_state), prefs_(prefs), boot_control_(boot_control), hardware_(hardware), processor_(new ActionProcessor()), clock_(new Clock()) { metrics_reporter_ = metrics::CreateMetricsReporter(); network_selector_ = network::CreateNetworkSelector(); } UpdateAttempterAndroid::~UpdateAttempterAndroid() { // Release ourselves as the ActionProcessor's delegate to prevent // re-scheduling the updates due to the processing stopped. processor_->set_delegate(nullptr); } void UpdateAttempterAndroid::Init() { // In case of update_engine restart without a reboot we need to restore the // reboot needed state. if (UpdateCompletedOnThisBoot()) { SetStatusAndNotify(UpdateStatus::UPDATED_NEED_REBOOT); } else { SetStatusAndNotify(UpdateStatus::IDLE); UpdatePrefsAndReportUpdateMetricsOnReboot(); #ifdef _UE_SIDELOAD LOG(INFO) << "Skip ScheduleCleanupPreviousUpdate in sideload because " << "ApplyPayload will call it later."; #else ScheduleCleanupPreviousUpdate(); #endif } } bool UpdateAttempterAndroid::ApplyPayload( const string& payload_url, int64_t payload_offset, int64_t payload_size, const vector& key_value_pair_headers, brillo::ErrorPtr* error) { if (status_ == UpdateStatus::UPDATED_NEED_REBOOT) { return LogAndSetError( error, FROM_HERE, "An update already applied, waiting for reboot"); } if (processor_->IsRunning()) { return LogAndSetError( error, FROM_HERE, "Already processing an update, cancel it first."); } DCHECK(status_ == UpdateStatus::IDLE); std::map headers; if (!ParseKeyValuePairHeaders(key_value_pair_headers, &headers, error)) { return false; } string payload_id = GetPayloadId(headers); // Setup the InstallPlan based on the request. install_plan_ = InstallPlan(); install_plan_.download_url = payload_url; install_plan_.version = ""; base_offset_ = payload_offset; InstallPlan::Payload payload; payload.size = payload_size; if (!payload.size) { if (!base::StringToUint64(headers[kPayloadPropertyFileSize], &payload.size)) { payload.size = 0; } } if (!brillo::data_encoding::Base64Decode(headers[kPayloadPropertyFileHash], &payload.hash)) { LOG(WARNING) << "Unable to decode base64 file hash: " << headers[kPayloadPropertyFileHash]; } if (!base::StringToUint64(headers[kPayloadPropertyMetadataSize], &payload.metadata_size)) { payload.metadata_size = 0; } // The |payload.type| is not used anymore since minor_version 3. payload.type = InstallPayloadType::kUnknown; install_plan_.payloads.push_back(payload); // The |public_key_rsa| key would override the public key stored on disk. install_plan_.public_key_rsa = ""; install_plan_.hash_checks_mandatory = hardware_->IsOfficialBuild(); install_plan_.is_resume = !payload_id.empty() && DeltaPerformer::CanResumeUpdate(prefs_, payload_id); if (!install_plan_.is_resume) { // No need to reset dynamic_partititon_metadata_updated. If previous calls // to AllocateSpaceForPayload uses the same payload_id, reuse preallocated // space. Otherwise, DeltaPerformer re-allocates space when the payload is // applied. if (!DeltaPerformer::ResetUpdateProgress( prefs_, false /* quick */, true /* skip_dynamic_partititon_metadata_updated */)) { LOG(WARNING) << "Unable to reset the update progress."; } if (!prefs_->SetString(kPrefsUpdateCheckResponseHash, payload_id)) { LOG(WARNING) << "Unable to save the update check response hash."; } } install_plan_.source_slot = GetCurrentSlot(); install_plan_.target_slot = GetTargetSlot(); install_plan_.powerwash_required = GetHeaderAsBool(headers[kPayloadPropertyPowerwash], false); install_plan_.switch_slot_on_reboot = GetHeaderAsBool(headers[kPayloadPropertySwitchSlotOnReboot], true); install_plan_.run_post_install = GetHeaderAsBool(headers[kPayloadPropertyRunPostInstall], true); // Skip writing verity if we're resuming and verity has already been written. install_plan_.write_verity = true; if (install_plan_.is_resume && prefs_->Exists(kPrefsVerityWritten)) { bool verity_written = false; if (prefs_->GetBoolean(kPrefsVerityWritten, &verity_written) && verity_written) { install_plan_.write_verity = false; } } NetworkId network_id = kDefaultNetworkId; if (!headers[kPayloadPropertyNetworkId].empty()) { if (!base::StringToUint64(headers[kPayloadPropertyNetworkId], &network_id)) { return LogAndSetError( error, FROM_HERE, "Invalid network_id: " + headers[kPayloadPropertyNetworkId]); } if (!network_selector_->SetProcessNetwork(network_id)) { return LogAndSetError( error, FROM_HERE, "Unable to set network_id: " + headers[kPayloadPropertyNetworkId]); } } LOG(INFO) << "Using this install plan:"; install_plan_.Dump(); HttpFetcher* fetcher = nullptr; if (FileFetcher::SupportedUrl(payload_url)) { DLOG(INFO) << "Using FileFetcher for file URL."; fetcher = new FileFetcher(); } else { #ifdef _UE_SIDELOAD LOG(FATAL) << "Unsupported sideload URI: " << payload_url; #else LibcurlHttpFetcher* libcurl_fetcher = new LibcurlHttpFetcher(&proxy_resolver_, hardware_); libcurl_fetcher->set_server_to_check(ServerToCheck::kDownload); fetcher = libcurl_fetcher; #endif // _UE_SIDELOAD } // Setup extra headers. if (!headers[kPayloadPropertyAuthorization].empty()) fetcher->SetHeader("Authorization", headers[kPayloadPropertyAuthorization]); if (!headers[kPayloadPropertyUserAgent].empty()) fetcher->SetHeader("User-Agent", headers[kPayloadPropertyUserAgent]); BuildUpdateActions(fetcher); SetStatusAndNotify(UpdateStatus::UPDATE_AVAILABLE); UpdatePrefsOnUpdateStart(install_plan_.is_resume); // TODO(xunchang) report the metrics for unresumable updates ScheduleProcessingStart(); return true; } bool UpdateAttempterAndroid::ApplyPayload( int fd, int64_t payload_offset, int64_t payload_size, const vector& key_value_pair_headers, brillo::ErrorPtr* error) { payload_fd_.reset(dup(fd)); const string payload_url = "fd://" + std::to_string(payload_fd_.get()); return ApplyPayload( payload_url, payload_offset, payload_size, key_value_pair_headers, error); } bool UpdateAttempterAndroid::SuspendUpdate(brillo::ErrorPtr* error) { if (!processor_->IsRunning()) return LogAndSetError(error, FROM_HERE, "No ongoing update to suspend."); processor_->SuspendProcessing(); return true; } bool UpdateAttempterAndroid::ResumeUpdate(brillo::ErrorPtr* error) { if (!processor_->IsRunning()) return LogAndSetError(error, FROM_HERE, "No ongoing update to resume."); processor_->ResumeProcessing(); return true; } bool UpdateAttempterAndroid::CancelUpdate(brillo::ErrorPtr* error) { if (!processor_->IsRunning()) return LogAndSetError(error, FROM_HERE, "No ongoing update to cancel."); processor_->StopProcessing(); return true; } bool UpdateAttempterAndroid::ResetStatus(brillo::ErrorPtr* error) { LOG(INFO) << "Attempting to reset state from " << UpdateStatusToString(status_) << " to UpdateStatus::IDLE"; switch (status_) { case UpdateStatus::IDLE: { if (!boot_control_->GetDynamicPartitionControl()->ResetUpdate(prefs_)) { LOG(WARNING) << "Failed to reset snapshots. UpdateStatus is IDLE but" << "space might not be freed."; } return true; } case UpdateStatus::UPDATED_NEED_REBOOT: { bool ret_value = true; // Update the boot flags so the current slot has higher priority. if (!boot_control_->SetActiveBootSlot(GetCurrentSlot())) ret_value = false; // Mark the current slot as successful again, since marking it as active // may reset the successful bit. We ignore the result of whether marking // the current slot as successful worked. if (!boot_control_->MarkBootSuccessfulAsync(Bind([](bool successful) {}))) ret_value = false; // Resets the warm reset property since we won't switch the slot. hardware_->SetWarmReset(false); // Remove update progress for DeltaPerformer and remove snapshots. if (!boot_control_->GetDynamicPartitionControl()->ResetUpdate(prefs_)) ret_value = false; // Remove the reboot marker so that if the machine is rebooted // after resetting to idle state, it doesn't go back to // UpdateStatus::UPDATED_NEED_REBOOT state. if (!prefs_->Delete(kPrefsUpdateCompletedOnBootId)) ret_value = false; ClearMetricsPrefs(); if (!ret_value) { return LogAndSetError( error, FROM_HERE, "Failed to reset the status to "); } SetStatusAndNotify(UpdateStatus::IDLE); LOG(INFO) << "Reset status successful"; return true; } default: return LogAndSetError( error, FROM_HERE, "Reset not allowed in this state. Cancel the ongoing update first"); } } bool UpdateAttempterAndroid::VerifyPayloadParseManifest( const std::string& metadata_filename, DeltaArchiveManifest* manifest, brillo::ErrorPtr* error) { FileDescriptorPtr fd(new EintrSafeFileDescriptor); if (!fd->Open(metadata_filename.c_str(), O_RDONLY)) { return LogAndSetError( error, FROM_HERE, "Failed to open " + metadata_filename); } brillo::Blob metadata(kMaxPayloadHeaderSize); if (!fd->Read(metadata.data(), metadata.size())) { return LogAndSetError( error, FROM_HERE, "Failed to read payload header from " + metadata_filename); } ErrorCode errorcode; PayloadMetadata payload_metadata; if (payload_metadata.ParsePayloadHeader(metadata, &errorcode) != MetadataParseResult::kSuccess) { return LogAndSetError(error, FROM_HERE, "Failed to parse payload header: " + utils::ErrorCodeToString(errorcode)); } uint64_t metadata_size = payload_metadata.GetMetadataSize() + payload_metadata.GetMetadataSignatureSize(); if (metadata_size < kMaxPayloadHeaderSize || metadata_size > static_cast(utils::FileSize(metadata_filename))) { return LogAndSetError( error, FROM_HERE, "Invalid metadata size: " + std::to_string(metadata_size)); } metadata.resize(metadata_size); if (!fd->Read(metadata.data() + kMaxPayloadHeaderSize, metadata.size() - kMaxPayloadHeaderSize)) { return LogAndSetError( error, FROM_HERE, "Failed to read metadata and signature from " + metadata_filename); } fd->Close(); auto payload_verifier = PayloadVerifier::CreateInstanceFromZipPath( constants::kUpdateCertificatesPath); if (!payload_verifier) { return LogAndSetError(error, FROM_HERE, "Failed to create the payload verifier from " + std::string(constants::kUpdateCertificatesPath)); } errorcode = payload_metadata.ValidateMetadataSignature( metadata, "", *payload_verifier); if (errorcode != ErrorCode::kSuccess) { return LogAndSetError(error, FROM_HERE, "Failed to validate metadata signature: " + utils::ErrorCodeToString(errorcode)); } if (!payload_metadata.GetManifest(metadata, manifest)) { return LogAndSetError(error, FROM_HERE, "Failed to parse manifest."); } return true; } bool UpdateAttempterAndroid::VerifyPayloadApplicable( const std::string& metadata_filename, brillo::ErrorPtr* error) { DeltaArchiveManifest manifest; TEST_AND_RETURN_FALSE( VerifyPayloadParseManifest(metadata_filename, &manifest, error)); FileDescriptorPtr fd(new EintrSafeFileDescriptor); ErrorCode errorcode; BootControlInterface::Slot current_slot = GetCurrentSlot(); for (const PartitionUpdate& partition : manifest.partitions()) { if (!partition.has_old_partition_info()) continue; string partition_path; if (!boot_control_->GetPartitionDevice( partition.partition_name(), current_slot, &partition_path)) { return LogAndSetError( error, FROM_HERE, "Failed to get partition device for " + partition.partition_name()); } if (!fd->Open(partition_path.c_str(), O_RDONLY)) { return LogAndSetError( error, FROM_HERE, "Failed to open " + partition_path); } for (const InstallOperation& operation : partition.operations()) { if (!operation.has_src_sha256_hash()) continue; brillo::Blob source_hash; if (!fd_utils::ReadAndHashExtents(fd, operation.src_extents(), manifest.block_size(), &source_hash)) { return LogAndSetError( error, FROM_HERE, "Failed to hash " + partition_path); } if (!DeltaPerformer::ValidateSourceHash( source_hash, operation, fd, &errorcode)) { return false; } } fd->Close(); } return true; } void UpdateAttempterAndroid::ProcessingDone(const ActionProcessor* processor, ErrorCode code) { LOG(INFO) << "Processing Done."; if (status_ == UpdateStatus::CLEANUP_PREVIOUS_UPDATE) { TerminateUpdateAndNotify(code); return; } switch (code) { case ErrorCode::kSuccess: // Update succeeded. WriteUpdateCompletedMarker(); prefs_->SetInt64(kPrefsDeltaUpdateFailures, 0); LOG(INFO) << "Update successfully applied, waiting to reboot."; break; case ErrorCode::kFilesystemCopierError: case ErrorCode::kNewRootfsVerificationError: case ErrorCode::kNewKernelVerificationError: case ErrorCode::kFilesystemVerifierError: case ErrorCode::kDownloadStateInitializationError: // Reset the ongoing update for these errors so it starts from the // beginning next time. DeltaPerformer::ResetUpdateProgress(prefs_, false); LOG(INFO) << "Resetting update progress."; break; case ErrorCode::kPayloadTimestampError: // SafetyNet logging, b/36232423 android_errorWriteLog(0x534e4554, "36232423"); break; default: // Ignore all other error codes. break; } TerminateUpdateAndNotify(code); } void UpdateAttempterAndroid::ProcessingStopped( const ActionProcessor* processor) { TerminateUpdateAndNotify(ErrorCode::kUserCanceled); } void UpdateAttempterAndroid::ActionCompleted(ActionProcessor* processor, AbstractAction* action, ErrorCode code) { // Reset download progress regardless of whether or not the download // action succeeded. const string type = action->Type(); if (type == CleanupPreviousUpdateAction::StaticType() || (type == NoOpAction::StaticType() && status_ == UpdateStatus::CLEANUP_PREVIOUS_UPDATE)) { cleanup_previous_update_code_ = code; NotifyCleanupPreviousUpdateCallbacksAndClear(); } // download_progress_ is actually used by other actions, such as // filesystem_verify_action. Therefore we always clear it. download_progress_ = 0; if (type == PostinstallRunnerAction::StaticType()) { bool succeeded = code == ErrorCode::kSuccess || code == ErrorCode::kUpdatedButNotActive; prefs_->SetBoolean(kPrefsPostInstallSucceeded, succeeded); } if (code != ErrorCode::kSuccess) { // If an action failed, the ActionProcessor will cancel the whole thing. return; } if (type == UpdateBootFlagsAction::StaticType()) { SetStatusAndNotify(UpdateStatus::CLEANUP_PREVIOUS_UPDATE); } if (type == DownloadAction::StaticType()) { auto download_action = static_cast(action); install_plan_ = *download_action->install_plan(); SetStatusAndNotify(UpdateStatus::VERIFYING); } else if (type == FilesystemVerifierAction::StaticType()) { SetStatusAndNotify(UpdateStatus::FINALIZING); prefs_->SetBoolean(kPrefsVerityWritten, true); } } void UpdateAttempterAndroid::BytesReceived(uint64_t bytes_progressed, uint64_t bytes_received, uint64_t total) { double progress = 0; if (total) progress = static_cast(bytes_received) / static_cast(total); if (status_ != UpdateStatus::DOWNLOADING || bytes_received == total) { download_progress_ = progress; SetStatusAndNotify(UpdateStatus::DOWNLOADING); } else { ProgressUpdate(progress); } // Update the bytes downloaded in prefs. int64_t current_bytes_downloaded = metrics_utils::GetPersistedValue(kPrefsCurrentBytesDownloaded, prefs_); int64_t total_bytes_downloaded = metrics_utils::GetPersistedValue(kPrefsTotalBytesDownloaded, prefs_); prefs_->SetInt64(kPrefsCurrentBytesDownloaded, current_bytes_downloaded + bytes_progressed); prefs_->SetInt64(kPrefsTotalBytesDownloaded, total_bytes_downloaded + bytes_progressed); } bool UpdateAttempterAndroid::ShouldCancel(ErrorCode* cancel_reason) { // TODO(deymo): Notify the DownloadAction that it should cancel the update // download. return false; } void UpdateAttempterAndroid::DownloadComplete() { // Nothing needs to be done when the download completes. } void UpdateAttempterAndroid::ProgressUpdate(double progress) { // Self throttle based on progress. Also send notifications if progress is // too slow. if (progress == 1.0 || progress - download_progress_ >= kBroadcastThresholdProgress || TimeTicks::Now() - last_notify_time_ >= TimeDelta::FromSeconds(kBroadcastThresholdSeconds)) { download_progress_ = progress; SetStatusAndNotify(status_); } } void UpdateAttempterAndroid::OnVerifyProgressUpdate(double progress) { assert(status_ == UpdateStatus::VERIFYING); ProgressUpdate(progress); } void UpdateAttempterAndroid::ScheduleProcessingStart() { LOG(INFO) << "Scheduling an action processor start."; brillo::MessageLoop::current()->PostTask( FROM_HERE, Bind([](ActionProcessor* processor) { processor->StartProcessing(); }, base::Unretained(processor_.get()))); } void UpdateAttempterAndroid::TerminateUpdateAndNotify(ErrorCode error_code) { if (status_ == UpdateStatus::IDLE) { LOG(ERROR) << "No ongoing update, but TerminatedUpdate() called."; return; } if (status_ == UpdateStatus::CLEANUP_PREVIOUS_UPDATE) { LOG(INFO) << "Terminating cleanup previous update."; SetStatusAndNotify(UpdateStatus::IDLE); for (auto observer : daemon_state_->service_observers()) observer->SendPayloadApplicationComplete(error_code); return; } boot_control_->GetDynamicPartitionControl()->Cleanup(); download_progress_ = 0; UpdateStatus new_status = (error_code == ErrorCode::kSuccess ? UpdateStatus::UPDATED_NEED_REBOOT : UpdateStatus::IDLE); SetStatusAndNotify(new_status); payload_fd_.reset(); // The network id is only applicable to one download attempt and once it's // done the network id should not be re-used anymore. if (!network_selector_->SetProcessNetwork(kDefaultNetworkId)) { LOG(WARNING) << "Unable to unbind network."; } for (auto observer : daemon_state_->service_observers()) observer->SendPayloadApplicationComplete(error_code); CollectAndReportUpdateMetricsOnUpdateFinished(error_code); ClearMetricsPrefs(); if (error_code == ErrorCode::kSuccess) { // We should only reset the PayloadAttemptNumber if the update succeeds, or // we switch to a different payload. prefs_->Delete(kPrefsPayloadAttemptNumber); metrics_utils::SetSystemUpdatedMarker(clock_.get(), prefs_); // Clear the total bytes downloaded if and only if the update succeeds. prefs_->SetInt64(kPrefsTotalBytesDownloaded, 0); } } void UpdateAttempterAndroid::SetStatusAndNotify(UpdateStatus status) { status_ = status; size_t payload_size = install_plan_.payloads.empty() ? 0 : install_plan_.payloads[0].size; UpdateEngineStatus status_to_send = {.status = status_, .progress = download_progress_, .new_size_bytes = payload_size}; for (auto observer : daemon_state_->service_observers()) { observer->SendStatusUpdate(status_to_send); } last_notify_time_ = TimeTicks::Now(); } void UpdateAttempterAndroid::BuildUpdateActions(HttpFetcher* fetcher) { CHECK(!processor_->IsRunning()); processor_->set_delegate(this); // Actions: auto update_boot_flags_action = std::make_unique(boot_control_); auto cleanup_previous_update_action = boot_control_->GetDynamicPartitionControl() ->GetCleanupPreviousUpdateAction(boot_control_, prefs_, this); auto install_plan_action = std::make_unique(install_plan_); auto download_action = std::make_unique(prefs_, boot_control_, hardware_, nullptr, // system_state, not used. fetcher, // passes ownership true /* interactive */); download_action->set_delegate(this); download_action->set_base_offset(base_offset_); auto filesystem_verifier_action = std::make_unique( boot_control_->GetDynamicPartitionControl()); auto postinstall_runner_action = std::make_unique(boot_control_, hardware_); filesystem_verifier_action->set_delegate(this); postinstall_runner_action->set_delegate(this); // Bond them together. We have to use the leaf-types when calling // BondActions(). BondActions(install_plan_action.get(), download_action.get()); BondActions(download_action.get(), filesystem_verifier_action.get()); BondActions(filesystem_verifier_action.get(), postinstall_runner_action.get()); processor_->EnqueueAction(std::move(update_boot_flags_action)); processor_->EnqueueAction(std::move(cleanup_previous_update_action)); processor_->EnqueueAction(std::move(install_plan_action)); processor_->EnqueueAction(std::move(download_action)); processor_->EnqueueAction(std::move(filesystem_verifier_action)); processor_->EnqueueAction(std::move(postinstall_runner_action)); } bool UpdateAttempterAndroid::WriteUpdateCompletedMarker() { string boot_id; TEST_AND_RETURN_FALSE(utils::GetBootId(&boot_id)); prefs_->SetString(kPrefsUpdateCompletedOnBootId, boot_id); return true; } bool UpdateAttempterAndroid::UpdateCompletedOnThisBoot() { // In case of an update_engine restart without a reboot, we stored the boot_id // when the update was completed by setting a pref, so we can check whether // the last update was on this boot or a previous one. string boot_id; TEST_AND_RETURN_FALSE(utils::GetBootId(&boot_id)); string update_completed_on_boot_id; return (prefs_->Exists(kPrefsUpdateCompletedOnBootId) && prefs_->GetString(kPrefsUpdateCompletedOnBootId, &update_completed_on_boot_id) && update_completed_on_boot_id == boot_id); } // Collect and report the android metrics when we terminate the update. void UpdateAttempterAndroid::CollectAndReportUpdateMetricsOnUpdateFinished( ErrorCode error_code) { int64_t attempt_number = metrics_utils::GetPersistedValue(kPrefsPayloadAttemptNumber, prefs_); PayloadType payload_type = kPayloadTypeFull; int64_t payload_size = 0; for (const auto& p : install_plan_.payloads) { if (p.type == InstallPayloadType::kDelta) payload_type = kPayloadTypeDelta; payload_size += p.size; } metrics::AttemptResult attempt_result = metrics_utils::GetAttemptResult(error_code); Time boot_time_start = Time::FromInternalValue( metrics_utils::GetPersistedValue(kPrefsUpdateBootTimestampStart, prefs_)); Time monotonic_time_start = Time::FromInternalValue( metrics_utils::GetPersistedValue(kPrefsUpdateTimestampStart, prefs_)); TimeDelta duration = clock_->GetBootTime() - boot_time_start; TimeDelta duration_uptime = clock_->GetMonotonicTime() - monotonic_time_start; metrics_reporter_->ReportUpdateAttemptMetrics( nullptr, // system_state static_cast(attempt_number), payload_type, duration, duration_uptime, payload_size, attempt_result, error_code); int64_t current_bytes_downloaded = metrics_utils::GetPersistedValue(kPrefsCurrentBytesDownloaded, prefs_); metrics_reporter_->ReportUpdateAttemptDownloadMetrics( current_bytes_downloaded, 0, DownloadSource::kNumDownloadSources, metrics::DownloadErrorCode::kUnset, metrics::ConnectionType::kUnset); if (error_code == ErrorCode::kSuccess) { int64_t reboot_count = metrics_utils::GetPersistedValue(kPrefsNumReboots, prefs_); string build_version; prefs_->GetString(kPrefsPreviousVersion, &build_version); // For android metrics, we only care about the total bytes downloaded // for all sources; for now we assume the only download source is // HttpsServer. int64_t total_bytes_downloaded = metrics_utils::GetPersistedValue(kPrefsTotalBytesDownloaded, prefs_); int64_t num_bytes_downloaded[kNumDownloadSources] = {}; num_bytes_downloaded[DownloadSource::kDownloadSourceHttpsServer] = total_bytes_downloaded; int download_overhead_percentage = 0; if (total_bytes_downloaded >= payload_size) { CHECK_GT(payload_size, 0); download_overhead_percentage = (total_bytes_downloaded - payload_size) * 100ull / payload_size; } else { LOG(WARNING) << "Downloaded bytes " << total_bytes_downloaded << " is smaller than the payload size " << payload_size; } metrics_reporter_->ReportSuccessfulUpdateMetrics( static_cast(attempt_number), 0, // update abandoned count payload_type, payload_size, num_bytes_downloaded, download_overhead_percentage, duration, duration_uptime, static_cast(reboot_count), 0); // url_switch_count } } void UpdateAttempterAndroid::UpdatePrefsAndReportUpdateMetricsOnReboot() { string current_boot_id; TEST_AND_RETURN(utils::GetBootId(¤t_boot_id)); // Example: [ro.build.version.incremental]: [4292972] string current_version = android::base::GetProperty("ro.build.version.incremental", ""); TEST_AND_RETURN(!current_version.empty()); // If there's no record of previous version (e.g. due to a data wipe), we // save the info of current boot and skip the metrics report. if (!prefs_->Exists(kPrefsPreviousVersion)) { prefs_->SetString(kPrefsBootId, current_boot_id); prefs_->SetString(kPrefsPreviousVersion, current_version); ClearMetricsPrefs(); return; } string previous_version; // update_engine restarted under the same build. // TODO(xunchang) identify and report rollback by checking UpdateMarker. if (prefs_->GetString(kPrefsPreviousVersion, &previous_version) && previous_version == current_version) { string last_boot_id; bool is_reboot = prefs_->Exists(kPrefsBootId) && (prefs_->GetString(kPrefsBootId, &last_boot_id) && last_boot_id != current_boot_id); // Increment the reboot number if |kPrefsNumReboots| exists. That pref is // set when we start a new update. if (is_reboot && prefs_->Exists(kPrefsNumReboots)) { prefs_->SetString(kPrefsBootId, current_boot_id); int64_t reboot_count = metrics_utils::GetPersistedValue(kPrefsNumReboots, prefs_); metrics_utils::SetNumReboots(reboot_count + 1, prefs_); } return; } // Now that the build version changes, report the update metrics. // TODO(xunchang) check the build version is larger than the previous one. prefs_->SetString(kPrefsBootId, current_boot_id); prefs_->SetString(kPrefsPreviousVersion, current_version); bool previous_attempt_exists = prefs_->Exists(kPrefsPayloadAttemptNumber); // |kPrefsPayloadAttemptNumber| should be cleared upon successful update. if (previous_attempt_exists) { metrics_reporter_->ReportAbnormallyTerminatedUpdateAttemptMetrics(); } metrics_utils::LoadAndReportTimeToReboot( metrics_reporter_.get(), prefs_, clock_.get()); ClearMetricsPrefs(); // Also reset the update progress if the build version has changed. if (!DeltaPerformer::ResetUpdateProgress(prefs_, false)) { LOG(WARNING) << "Unable to reset the update progress."; } } // Save the update start time. Reset the reboot count and attempt number if the // update isn't a resume; otherwise increment the attempt number. void UpdateAttempterAndroid::UpdatePrefsOnUpdateStart(bool is_resume) { if (!is_resume) { metrics_utils::SetNumReboots(0, prefs_); metrics_utils::SetPayloadAttemptNumber(1, prefs_); } else { int64_t attempt_number = metrics_utils::GetPersistedValue(kPrefsPayloadAttemptNumber, prefs_); metrics_utils::SetPayloadAttemptNumber(attempt_number + 1, prefs_); } metrics_utils::SetUpdateTimestampStart(clock_->GetMonotonicTime(), prefs_); metrics_utils::SetUpdateBootTimestampStart(clock_->GetBootTime(), prefs_); } void UpdateAttempterAndroid::ClearMetricsPrefs() { CHECK(prefs_); prefs_->Delete(kPrefsCurrentBytesDownloaded); prefs_->Delete(kPrefsNumReboots); prefs_->Delete(kPrefsSystemUpdatedMarker); prefs_->Delete(kPrefsUpdateTimestampStart); prefs_->Delete(kPrefsUpdateBootTimestampStart); } BootControlInterface::Slot UpdateAttempterAndroid::GetCurrentSlot() const { return boot_control_->GetCurrentSlot(); } BootControlInterface::Slot UpdateAttempterAndroid::GetTargetSlot() const { return GetCurrentSlot() == 0 ? 1 : 0; } uint64_t UpdateAttempterAndroid::AllocateSpaceForPayload( const std::string& metadata_filename, const vector& key_value_pair_headers, brillo::ErrorPtr* error) { DeltaArchiveManifest manifest; if (!VerifyPayloadParseManifest(metadata_filename, &manifest, error)) { return 0; } std::map headers; if (!ParseKeyValuePairHeaders(key_value_pair_headers, &headers, error)) { return 0; } string payload_id = GetPayloadId(headers); uint64_t required_size = 0; if (!DeltaPerformer::PreparePartitionsForUpdate(prefs_, boot_control_, GetTargetSlot(), manifest, payload_id, &required_size)) { if (required_size == 0) { LogAndSetError(error, FROM_HERE, "Failed to allocate space for payload."); return 0; } else { LOG(ERROR) << "Insufficient space for payload: " << required_size << " bytes"; return required_size; } } LOG(INFO) << "Successfully allocated space for payload."; return 0; } void UpdateAttempterAndroid::CleanupSuccessfulUpdate( std::unique_ptr callback, brillo::ErrorPtr* error) { if (cleanup_previous_update_code_.has_value()) { LOG(INFO) << "CleanupSuccessfulUpdate has previously completed with " << utils::ErrorCodeToString(*cleanup_previous_update_code_); if (callback) { callback->OnCleanupComplete( static_cast(*cleanup_previous_update_code_)); } return; } if (callback) { auto callback_ptr = callback.get(); cleanup_previous_update_callbacks_.emplace_back(std::move(callback)); callback_ptr->RegisterForDeathNotifications( base::Bind(&UpdateAttempterAndroid::RemoveCleanupPreviousUpdateCallback, base::Unretained(this), base::Unretained(callback_ptr))); } ScheduleCleanupPreviousUpdate(); } void UpdateAttempterAndroid::ScheduleCleanupPreviousUpdate() { // If a previous CleanupSuccessfulUpdate call has not finished, or an update // is in progress, skip enqueueing the action. if (processor_->IsRunning()) { LOG(INFO) << "Already processing an update. CleanupPreviousUpdate should " << "be done when the current update finishes."; return; } LOG(INFO) << "Scheduling CleanupPreviousUpdateAction."; auto action = boot_control_->GetDynamicPartitionControl() ->GetCleanupPreviousUpdateAction(boot_control_, prefs_, this); processor_->EnqueueAction(std::move(action)); processor_->set_delegate(this); SetStatusAndNotify(UpdateStatus::CLEANUP_PREVIOUS_UPDATE); processor_->StartProcessing(); } void UpdateAttempterAndroid::OnCleanupProgressUpdate(double progress) { for (auto&& callback : cleanup_previous_update_callbacks_) { callback->OnCleanupProgressUpdate(progress); } } void UpdateAttempterAndroid::NotifyCleanupPreviousUpdateCallbacksAndClear() { CHECK(cleanup_previous_update_code_.has_value()); for (auto&& callback : cleanup_previous_update_callbacks_) { callback->OnCleanupComplete( static_cast(*cleanup_previous_update_code_)); } cleanup_previous_update_callbacks_.clear(); } void UpdateAttempterAndroid::RemoveCleanupPreviousUpdateCallback( CleanupSuccessfulUpdateCallbackInterface* callback) { auto end_it = std::remove_if(cleanup_previous_update_callbacks_.begin(), cleanup_previous_update_callbacks_.end(), [&](const auto& e) { return e.get() == callback; }); cleanup_previous_update_callbacks_.erase( end_it, cleanup_previous_update_callbacks_.end()); } } // namespace chromeos_update_engine