1 /*
2  * Copyright 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "jit_memory_region.h"
18 
19 #include <fcntl.h>
20 #include <unistd.h>
21 
22 #include <android-base/unique_fd.h>
23 #include "base/bit_utils.h"  // For RoundDown, RoundUp
24 #include "base/globals.h"
25 #include "base/logging.h"  // For VLOG.
26 #include "base/membarrier.h"
27 #include "base/memfd.h"
28 #include "base/systrace.h"
29 #include "gc/allocator/dlmalloc.h"
30 #include "jit/jit_scoped_code_cache_write.h"
31 #include "oat_quick_method_header.h"
32 #include "palette/palette.h"
33 
34 using android::base::unique_fd;
35 
36 namespace art {
37 namespace jit {
38 
39 // Data cache will be half of the capacity
40 // Code cache will be the other half of the capacity.
41 // TODO: Make this variable?
42 static constexpr size_t kCodeAndDataCapacityDivider = 2;
43 
Initialize(size_t initial_capacity,size_t max_capacity,bool rwx_memory_allowed,bool is_zygote,std::string * error_msg)44 bool JitMemoryRegion::Initialize(size_t initial_capacity,
45                                  size_t max_capacity,
46                                  bool rwx_memory_allowed,
47                                  bool is_zygote,
48                                  std::string* error_msg) {
49   ScopedTrace trace(__PRETTY_FUNCTION__);
50 
51   CHECK_GE(max_capacity, initial_capacity);
52   CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB";
53   // Align both capacities to page size, as that's the unit mspaces use.
54   initial_capacity_ = RoundDown(initial_capacity, 2 * kPageSize);
55   max_capacity_ = RoundDown(max_capacity, 2 * kPageSize);
56   current_capacity_ = initial_capacity,
57   data_end_ = initial_capacity / kCodeAndDataCapacityDivider;
58   exec_end_ = initial_capacity - data_end_;
59 
60   const size_t capacity = max_capacity_;
61   const size_t data_capacity = capacity / kCodeAndDataCapacityDivider;
62   const size_t exec_capacity = capacity - data_capacity;
63 
64   // File descriptor enabling dual-view mapping of code section.
65   unique_fd mem_fd;
66 
67   if (is_zygote) {
68     // Because we are not going to GC code generated by the zygote, just use all available.
69     current_capacity_ = max_capacity;
70     mem_fd = unique_fd(CreateZygoteMemory(capacity, error_msg));
71     if (mem_fd.get() < 0) {
72       return false;
73     }
74   } else {
75     // Bionic supports memfd_create, but the call may fail on older kernels.
76     mem_fd = unique_fd(art::memfd_create("jit-cache", /* flags= */ 0));
77     if (mem_fd.get() < 0) {
78       std::ostringstream oss;
79       oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno);
80       if (!rwx_memory_allowed) {
81         // Without using RWX page permissions, the JIT can not fallback to single mapping as it
82         // requires tranitioning the code pages to RWX for updates.
83         *error_msg = oss.str();
84         return false;
85       }
86       VLOG(jit) << oss.str();
87     } else if (ftruncate(mem_fd, capacity) != 0) {
88       std::ostringstream oss;
89       oss << "Failed to initialize memory file: " << strerror(errno);
90       *error_msg = oss.str();
91       return false;
92     }
93   }
94 
95   std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache";
96   std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache";
97 
98   std::string error_str;
99   // Map name specific for android_os_Debug.cpp accounting.
100   // Map in low 4gb to simplify accessing root tables for x86_64.
101   // We could do PC-relative addressing to avoid this problem, but that
102   // would require reserving code and data area before submitting, which
103   // means more windows for the code memory to be RWX.
104   int base_flags;
105   MemMap data_pages;
106   if (mem_fd.get() >= 0) {
107     // Dual view of JIT code cache case. Create an initial mapping of data pages large enough
108     // for data and non-writable view of JIT code pages. We use the memory file descriptor to
109     // enable dual mapping - we'll create a second mapping using the descriptor below. The
110     // mappings will look like:
111     //
112     //       VA                  PA
113     //
114     //       +---------------+
115     //       | non exec code |\
116     //       +---------------+ \
117     //       | writable data |\ \
118     //       +---------------+ \ \
119     //       :               :\ \ \
120     //       +---------------+.\.\.+---------------+
121     //       |  exec code    |  \ \|     code      |
122     //       +---------------+...\.+---------------+
123     //       | readonly data |    \|     data      |
124     //       +---------------+.....+---------------+
125     //
126     // In this configuration code updates are written to the non-executable view of the code
127     // cache, and the executable view of the code cache has fixed RX memory protections.
128     //
129     // This memory needs to be mapped shared as the code portions will have two mappings.
130     //
131     // Additionally, the zyzote will create a dual view of the data portion of
132     // the cache. This mapping will be read-only, whereas the second mapping
133     // will be writable.
134     base_flags = MAP_SHARED;
135     data_pages = MemMap::MapFile(
136         data_capacity + exec_capacity,
137         kProtR,
138         base_flags,
139         mem_fd,
140         /* start= */ 0,
141         /* low_4gb= */ true,
142         data_cache_name.c_str(),
143         &error_str);
144   } else {
145     // Single view of JIT code cache case. Create an initial mapping of data pages large enough
146     // for data and JIT code pages. The mappings will look like:
147     //
148     //       VA                  PA
149     //
150     //       +---------------+...+---------------+
151     //       |  exec code    |   |     code      |
152     //       +---------------+...+---------------+
153     //       |      data     |   |     data      |
154     //       +---------------+...+---------------+
155     //
156     // In this configuration code updates are written to the executable view of the code cache,
157     // and the executable view of the code cache transitions RX to RWX for the update and then
158     // back to RX after the update.
159     base_flags = MAP_PRIVATE | MAP_ANON;
160     data_pages = MemMap::MapAnonymous(
161         data_cache_name.c_str(),
162         data_capacity + exec_capacity,
163         kProtRW,
164         /* low_4gb= */ true,
165         &error_str);
166   }
167 
168   if (!data_pages.IsValid()) {
169     std::ostringstream oss;
170     oss << "Failed to create read write cache: " << error_str << " size=" << capacity;
171     *error_msg = oss.str();
172     return false;
173   }
174 
175   MemMap exec_pages;
176   MemMap non_exec_pages;
177   MemMap writable_data_pages;
178   if (exec_capacity > 0) {
179     uint8_t* const divider = data_pages.Begin() + data_capacity;
180     // Set initial permission for executable view to catch any SELinux permission problems early
181     // (for processes that cannot map WX pages). Otherwise, this region does not need to be
182     // executable as there is no code in the cache yet.
183     exec_pages = data_pages.RemapAtEnd(divider,
184                                        exec_cache_name.c_str(),
185                                        kProtRX,
186                                        base_flags | MAP_FIXED,
187                                        mem_fd.get(),
188                                        (mem_fd.get() >= 0) ? data_capacity : 0,
189                                        &error_str);
190     if (!exec_pages.IsValid()) {
191       std::ostringstream oss;
192       oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity;
193       *error_msg = oss.str();
194       return false;
195     }
196 
197     if (mem_fd.get() >= 0) {
198       // For dual view, create the secondary view of code memory used for updating code. This view
199       // is never executable.
200       std::string name = exec_cache_name + "-rw";
201       non_exec_pages = MemMap::MapFile(exec_capacity,
202                                        kProtR,
203                                        base_flags,
204                                        mem_fd,
205                                        /* start= */ data_capacity,
206                                        /* low_4GB= */ false,
207                                        name.c_str(),
208                                        &error_str);
209       if (!non_exec_pages.IsValid()) {
210         static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache";
211         if (rwx_memory_allowed) {
212           // Log and continue as single view JIT (requires RWX memory).
213           VLOG(jit) << kFailedNxView;
214         } else {
215           *error_msg = kFailedNxView;
216           return false;
217         }
218       }
219       // Create a dual view of the data cache.
220       name = data_cache_name + "-rw";
221       writable_data_pages = MemMap::MapFile(data_capacity,
222                                             kProtRW,
223                                             base_flags,
224                                             mem_fd,
225                                             /* start= */ 0,
226                                             /* low_4GB= */ false,
227                                             name.c_str(),
228                                             &error_str);
229       if (!writable_data_pages.IsValid()) {
230         std::ostringstream oss;
231         oss << "Failed to create dual data view: " << error_str;
232         *error_msg = oss.str();
233         return false;
234       }
235       if (writable_data_pages.MadviseDontFork() != 0) {
236         *error_msg = "Failed to madvise dont fork the writable data view";
237         return false;
238       }
239       if (non_exec_pages.MadviseDontFork() != 0) {
240         *error_msg = "Failed to madvise dont fork the writable code view";
241         return false;
242       }
243       // Now that we have created the writable and executable mappings, prevent creating any new
244       // ones.
245       if (is_zygote && !ProtectZygoteMemory(mem_fd.get(), error_msg)) {
246         return false;
247       }
248     }
249   } else {
250     // Profiling only. No memory for code required.
251   }
252 
253   data_pages_ = std::move(data_pages);
254   exec_pages_ = std::move(exec_pages);
255   non_exec_pages_ = std::move(non_exec_pages);
256   writable_data_pages_ = std::move(writable_data_pages);
257 
258   VLOG(jit) << "Created JitMemoryRegion"
259             << ": data_pages=" << reinterpret_cast<void*>(data_pages_.Begin())
260             << ", exec_pages=" << reinterpret_cast<void*>(exec_pages_.Begin())
261             << ", non_exec_pages=" << reinterpret_cast<void*>(non_exec_pages_.Begin())
262             << ", writable_data_pages=" << reinterpret_cast<void*>(writable_data_pages_.Begin());
263 
264   // Now that the pages are initialized, initialize the spaces.
265 
266   // Initialize the data heap.
267   data_mspace_ = create_mspace_with_base(
268       HasDualDataMapping() ? writable_data_pages_.Begin() : data_pages_.Begin(),
269       data_end_,
270       /* locked= */ false);
271   CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed";
272 
273   // Allow mspace to use the full data capacity.
274   // It will still only use as litle memory as possible and ask for MoreCore as needed.
275   CHECK(IsAlignedParam(data_capacity, kPageSize));
276   mspace_set_footprint_limit(data_mspace_, data_capacity);
277 
278   // Initialize the code heap.
279   MemMap* code_heap = nullptr;
280   if (non_exec_pages_.IsValid()) {
281     code_heap = &non_exec_pages_;
282   } else if (exec_pages_.IsValid()) {
283     code_heap = &exec_pages_;
284   }
285   if (code_heap != nullptr) {
286     // Make all pages reserved for the code heap writable. The mspace allocator, that manages the
287     // heap, will take and initialize pages in create_mspace_with_base().
288     CheckedCall(mprotect, "create code heap", code_heap->Begin(), code_heap->Size(), kProtRW);
289     exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/);
290     CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed";
291     SetFootprintLimit(current_capacity_);
292     // Protect pages containing heap metadata. Updates to the code heap toggle write permission to
293     // perform the update and there are no other times write access is required.
294     CheckedCall(mprotect, "protect code heap", code_heap->Begin(), code_heap->Size(), kProtR);
295   } else {
296     exec_mspace_ = nullptr;
297     SetFootprintLimit(current_capacity_);
298   }
299   return true;
300 }
301 
SetFootprintLimit(size_t new_footprint)302 void JitMemoryRegion::SetFootprintLimit(size_t new_footprint) {
303   size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider;
304   DCHECK(IsAlignedParam(data_space_footprint, kPageSize));
305   DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint);
306   if (HasCodeMapping()) {
307     ScopedCodeCacheWrite scc(*this);
308     mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint);
309   }
310 }
311 
IncreaseCodeCacheCapacity()312 bool JitMemoryRegion::IncreaseCodeCacheCapacity() {
313   if (current_capacity_ == max_capacity_) {
314     return false;
315   }
316 
317   // Double the capacity if we're below 1MB, or increase it by 1MB if
318   // we're above.
319   if (current_capacity_ < 1 * MB) {
320     current_capacity_ *= 2;
321   } else {
322     current_capacity_ += 1 * MB;
323   }
324   if (current_capacity_ > max_capacity_) {
325     current_capacity_ = max_capacity_;
326   }
327 
328   VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_);
329 
330   SetFootprintLimit(current_capacity_);
331 
332   return true;
333 }
334 
335 // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock
336 // is already held.
MoreCore(const void * mspace,intptr_t increment)337 void* JitMemoryRegion::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS {
338   if (mspace == exec_mspace_) {
339     CHECK(exec_mspace_ != nullptr);
340     const MemMap* const code_pages = GetUpdatableCodeMapping();
341     void* result = code_pages->Begin() + exec_end_;
342     exec_end_ += increment;
343     return result;
344   } else {
345     CHECK_EQ(data_mspace_, mspace);
346     const MemMap* const writable_data_pages = GetWritableDataMapping();
347     void* result = writable_data_pages->Begin() + data_end_;
348     data_end_ += increment;
349     return result;
350   }
351 }
352 
CommitCode(ArrayRef<const uint8_t> reserved_code,ArrayRef<const uint8_t> code,const uint8_t * stack_map,bool has_should_deoptimize_flag)353 const uint8_t* JitMemoryRegion::CommitCode(ArrayRef<const uint8_t> reserved_code,
354                                            ArrayRef<const uint8_t> code,
355                                            const uint8_t* stack_map,
356                                            bool has_should_deoptimize_flag) {
357   DCHECK(IsInExecSpace(reserved_code.data()));
358   ScopedCodeCacheWrite scc(*this);
359 
360   size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
361   size_t header_size = OatQuickMethodHeader::InstructionAlignedSize();
362   size_t total_size = header_size + code.size();
363 
364   // Each allocation should be on its own set of cache lines.
365   // `total_size` covers the OatQuickMethodHeader, the JIT generated machine code,
366   // and any alignment padding.
367   DCHECK_GT(total_size, header_size);
368   DCHECK_LE(total_size, reserved_code.size());
369   uint8_t* x_memory = const_cast<uint8_t*>(reserved_code.data());
370   uint8_t* w_memory = const_cast<uint8_t*>(GetNonExecutableAddress(x_memory));
371   // Ensure the header ends up at expected instruction alignment.
372   DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(w_memory + header_size), alignment);
373   const uint8_t* result = x_memory + header_size;
374 
375   // Write the code.
376   std::copy(code.begin(), code.end(), w_memory + header_size);
377 
378   // Write the header.
379   OatQuickMethodHeader* method_header =
380       OatQuickMethodHeader::FromCodePointer(w_memory + header_size);
381   new (method_header) OatQuickMethodHeader(
382       (stack_map != nullptr) ? result - stack_map : 0u,
383       code.size());
384   if (has_should_deoptimize_flag) {
385     method_header->SetHasShouldDeoptimizeFlag();
386   }
387 
388   // Both instruction and data caches need flushing to the point of unification where both share
389   // a common view of memory. Flushing the data cache ensures the dirty cachelines from the
390   // newly added code are written out to the point of unification. Flushing the instruction
391   // cache ensures the newly written code will be fetched from the point of unification before
392   // use. Memory in the code cache is re-cycled as code is added and removed. The flushes
393   // prevent stale code from residing in the instruction cache.
394   //
395   // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels
396   // may trigger a segfault if a page fault occurs when requesting a cache maintenance
397   // operation. This is a kernel bug that we need to work around until affected devices
398   // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed.
399   //
400   // For reference, this behavior is caused by this commit:
401   // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c
402   //
403   bool cache_flush_success = true;
404   if (HasDualCodeMapping()) {
405     // Flush d-cache for the non-executable mapping.
406     cache_flush_success = FlushCpuCaches(w_memory, w_memory + total_size);
407   }
408 
409   // Invalidate i-cache for the executable mapping.
410   if (cache_flush_success) {
411     cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size);
412   }
413 
414   // If flushing the cache has failed, reject the allocation because we can't guarantee
415   // correctness of the instructions present in the processor caches.
416   if (!cache_flush_success) {
417     PLOG(ERROR) << "Cache flush failed triggering code allocation failure";
418     return nullptr;
419   }
420 
421   // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for
422   // correctness as code may still be in instruction pipelines despite the i-cache flush. It is
423   // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB
424   // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to
425   // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have
426   // hardware support that broadcasts TLB invalidations and so their kernels have no software
427   // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to
428   // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on
429   // platforms lacking the appropriate support.
430   art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore);
431 
432   return result;
433 }
434 
FillRootTable(uint8_t * roots_data,const std::vector<Handle<mirror::Object>> & roots)435 static void FillRootTable(uint8_t* roots_data, const std::vector<Handle<mirror::Object>>& roots)
436     REQUIRES(Locks::jit_lock_)
437     REQUIRES_SHARED(Locks::mutator_lock_) {
438   GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data);
439   const uint32_t length = roots.size();
440   // Put all roots in `roots_data`.
441   for (uint32_t i = 0; i < length; ++i) {
442     ObjPtr<mirror::Object> object = roots[i].Get();
443     gc_roots[i] = GcRoot<mirror::Object>(object);
444   }
445   // Store the length of the table at the end. This will allow fetching it from a stack_map
446   // pointer.
447   reinterpret_cast<uint32_t*>(roots_data)[length] = length;
448 }
449 
CommitData(ArrayRef<const uint8_t> reserved_data,const std::vector<Handle<mirror::Object>> & roots,ArrayRef<const uint8_t> stack_map)450 bool JitMemoryRegion::CommitData(ArrayRef<const uint8_t> reserved_data,
451                                  const std::vector<Handle<mirror::Object>>& roots,
452                                  ArrayRef<const uint8_t> stack_map) {
453   DCHECK(IsInDataSpace(reserved_data.data()));
454   uint8_t* roots_data = GetWritableDataAddress(reserved_data.data());
455   size_t root_table_size = ComputeRootTableSize(roots.size());
456   uint8_t* stack_map_data = roots_data + root_table_size;
457   DCHECK_LE(root_table_size + stack_map.size(), reserved_data.size());
458   FillRootTable(roots_data, roots);
459   memcpy(stack_map_data, stack_map.data(), stack_map.size());
460   // Flush data cache, as compiled code references literals in it.
461   // TODO(oth): establish whether this is necessary.
462   if (UNLIKELY(!FlushCpuCaches(roots_data, roots_data + root_table_size + stack_map.size()))) {
463     VLOG(jit) << "Failed to flush data in CommitData";
464     return false;
465   }
466   return true;
467 }
468 
AllocateCode(size_t size)469 const uint8_t* JitMemoryRegion::AllocateCode(size_t size) {
470   size_t alignment = GetInstructionSetAlignment(kRuntimeISA);
471   void* result = mspace_memalign(exec_mspace_, alignment, size);
472   if (UNLIKELY(result == nullptr)) {
473     return nullptr;
474   }
475   used_memory_for_code_ += mspace_usable_size(result);
476   return reinterpret_cast<uint8_t*>(GetExecutableAddress(result));
477 }
478 
FreeCode(const uint8_t * code)479 void JitMemoryRegion::FreeCode(const uint8_t* code) {
480   code = GetNonExecutableAddress(code);
481   used_memory_for_code_ -= mspace_usable_size(code);
482   mspace_free(exec_mspace_, const_cast<uint8_t*>(code));
483 }
484 
AllocateData(size_t data_size)485 const uint8_t* JitMemoryRegion::AllocateData(size_t data_size) {
486   void* result = mspace_malloc(data_mspace_, data_size);
487   if (UNLIKELY(result == nullptr)) {
488     return nullptr;
489   }
490   used_memory_for_data_ += mspace_usable_size(result);
491   return reinterpret_cast<uint8_t*>(GetNonWritableDataAddress(result));
492 }
493 
FreeData(const uint8_t * data)494 void JitMemoryRegion::FreeData(const uint8_t* data) {
495   FreeWritableData(GetWritableDataAddress(data));
496 }
497 
FreeWritableData(uint8_t * writable_data)498 void JitMemoryRegion::FreeWritableData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_) {
499   used_memory_for_data_ -= mspace_usable_size(writable_data);
500   mspace_free(data_mspace_, writable_data);
501 }
502 
503 #if defined(__BIONIC__) && defined(ART_TARGET)
504 // The code below only works on bionic on target.
505 
CreateZygoteMemory(size_t capacity,std::string * error_msg)506 int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
507   if (CacheOperationsMaySegFault()) {
508     // Zygote JIT requires dual code mappings by design. We can only do this if the cache flush
509     // and invalidate instructions work without raising faults.
510     *error_msg = "Zygote memory only works with dual mappings";
511     return -1;
512   }
513   /* Check if kernel support exists, otherwise fall back to ashmem */
514   static const char* kRegionName = "jit-zygote-cache";
515   if (art::IsSealFutureWriteSupported()) {
516     int fd = art::memfd_create(kRegionName, MFD_ALLOW_SEALING);
517     if (fd == -1) {
518       std::ostringstream oss;
519       oss << "Failed to create zygote mapping: " << strerror(errno);
520       *error_msg = oss.str();
521       return -1;
522     }
523 
524     if (ftruncate(fd, capacity) != 0) {
525       std::ostringstream oss;
526       oss << "Failed to create zygote mapping: " << strerror(errno);
527       *error_msg = oss.str();
528       return -1;
529     }
530 
531     return fd;
532   }
533 
534   LOG(INFO) << "Falling back to ashmem implementation for JIT zygote mapping";
535 
536   int fd;
537   PaletteStatus status = PaletteAshmemCreateRegion(kRegionName, capacity, &fd);
538   if (status != PaletteStatus::kOkay) {
539     CHECK_EQ(status, PaletteStatus::kCheckErrno);
540     std::ostringstream oss;
541     oss << "Failed to create zygote mapping: " << strerror(errno);
542     *error_msg = oss.str();
543     return -1;
544   }
545   return fd;
546 }
547 
ProtectZygoteMemory(int fd,std::string * error_msg)548 bool JitMemoryRegion::ProtectZygoteMemory(int fd, std::string* error_msg) {
549   if (art::IsSealFutureWriteSupported()) {
550     if (fcntl(fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL | F_SEAL_FUTURE_WRITE)
551             == -1) {
552       std::ostringstream oss;
553       oss << "Failed to protect zygote mapping: " << strerror(errno);
554       *error_msg = oss.str();
555       return false;
556     }
557   } else {
558     PaletteStatus status = PaletteAshmemSetProtRegion(fd, PROT_READ);
559     if (status != PaletteStatus::kOkay) {
560       CHECK_EQ(status, PaletteStatus::kCheckErrno);
561       std::ostringstream oss;
562       oss << "Failed to protect zygote mapping: " << strerror(errno);
563       *error_msg = oss.str();
564       return false;
565     }
566   }
567   return true;
568 }
569 
570 #else
571 
CreateZygoteMemory(size_t capacity,std::string * error_msg)572 int JitMemoryRegion::CreateZygoteMemory(size_t capacity, std::string* error_msg) {
573   // To simplify host building, we don't rely on the latest memfd features.
574   LOG(WARNING) << "Returning un-sealable region on non-bionic";
575   static const char* kRegionName = "/jit-zygote-cache";
576   int fd = art::memfd_create(kRegionName, 0);
577   if (fd == -1) {
578     std::ostringstream oss;
579     oss << "Failed to create zygote mapping: " << strerror(errno);
580     *error_msg = oss.str();
581     return -1;
582   }
583   if (ftruncate(fd, capacity) != 0) {
584     std::ostringstream oss;
585     oss << "Failed to create zygote mapping: " << strerror(errno);
586     *error_msg = oss.str();
587     return -1;
588   }
589   return fd;
590 }
591 
ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,std::string * error_msg ATTRIBUTE_UNUSED)592 bool JitMemoryRegion::ProtectZygoteMemory(int fd ATTRIBUTE_UNUSED,
593                                           std::string* error_msg ATTRIBUTE_UNUSED) {
594   return true;
595 }
596 
597 #endif
598 
599 }  // namespace jit
600 }  // namespace art
601