1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "BufferLayer"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22 #include "BufferLayer.h"
23
24 #include <compositionengine/CompositionEngine.h>
25 #include <compositionengine/Display.h>
26 #include <compositionengine/Layer.h>
27 #include <compositionengine/LayerCreationArgs.h>
28 #include <compositionengine/OutputLayer.h>
29 #include <compositionengine/impl/LayerCompositionState.h>
30 #include <compositionengine/impl/OutputLayerCompositionState.h>
31 #include <cutils/compiler.h>
32 #include <cutils/native_handle.h>
33 #include <cutils/properties.h>
34 #include <gui/BufferItem.h>
35 #include <gui/BufferQueue.h>
36 #include <gui/LayerDebugInfo.h>
37 #include <gui/Surface.h>
38 #include <renderengine/RenderEngine.h>
39 #include <ui/DebugUtils.h>
40 #include <utils/Errors.h>
41 #include <utils/Log.h>
42 #include <utils/NativeHandle.h>
43 #include <utils/StopWatch.h>
44 #include <utils/Trace.h>
45
46 #include <cmath>
47 #include <cstdlib>
48 #include <mutex>
49 #include <sstream>
50
51 #include "Colorizer.h"
52 #include "DisplayDevice.h"
53 #include "LayerRejecter.h"
54 #include "TimeStats/TimeStats.h"
55
56 namespace android {
57
BufferLayer(const LayerCreationArgs & args)58 BufferLayer::BufferLayer(const LayerCreationArgs& args)
59 : Layer(args),
60 mTextureName(args.flinger->getNewTexture()),
61 mCompositionLayer{mFlinger->getCompositionEngine().createLayer(
62 compositionengine::LayerCreationArgs{this})} {
63 ALOGV("Creating Layer %s", args.name.string());
64
65 mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
66
67 mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
68 mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
69 }
70
~BufferLayer()71 BufferLayer::~BufferLayer() {
72 mFlinger->deleteTextureAsync(mTextureName);
73 mFlinger->mTimeStats->onDestroy(getSequence());
74 }
75
useSurfaceDamage()76 void BufferLayer::useSurfaceDamage() {
77 if (mFlinger->mForceFullDamage) {
78 surfaceDamageRegion = Region::INVALID_REGION;
79 } else {
80 surfaceDamageRegion = getDrawingSurfaceDamage();
81 }
82 }
83
useEmptyDamage()84 void BufferLayer::useEmptyDamage() {
85 surfaceDamageRegion.clear();
86 }
87
isOpaque(const Layer::State & s) const88 bool BufferLayer::isOpaque(const Layer::State& s) const {
89 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
90 // layer's opaque flag.
91 if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
92 return false;
93 }
94
95 // if the layer has the opaque flag, then we're always opaque,
96 // otherwise we use the current buffer's format.
97 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
98 }
99
isVisible() const100 bool BufferLayer::isVisible() const {
101 bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
102 (mActiveBuffer != nullptr || mSidebandStream != nullptr);
103 mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible);
104
105 return visible;
106 }
107
isFixedSize() const108 bool BufferLayer::isFixedSize() const {
109 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
110 }
111
usesSourceCrop() const112 bool BufferLayer::usesSourceCrop() const {
113 return true;
114 }
115
inverseOrientation(uint32_t transform)116 static constexpr mat4 inverseOrientation(uint32_t transform) {
117 const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
118 const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
119 const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
120 mat4 tr;
121
122 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
123 tr = tr * rot90;
124 }
125 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
126 tr = tr * flipH;
127 }
128 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
129 tr = tr * flipV;
130 }
131 return inverse(tr);
132 }
133
prepareClientLayer(const RenderArea & renderArea,const Region & clip,bool useIdentityTransform,Region & clearRegion,const bool supportProtectedContent,renderengine::LayerSettings & layer)134 bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip,
135 bool useIdentityTransform, Region& clearRegion,
136 const bool supportProtectedContent,
137 renderengine::LayerSettings& layer) {
138 ATRACE_CALL();
139 Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion,
140 supportProtectedContent, layer);
141 if (CC_UNLIKELY(mActiveBuffer == 0)) {
142 // the texture has not been created yet, this Layer has
143 // in fact never been drawn into. This happens frequently with
144 // SurfaceView because the WindowManager can't know when the client
145 // has drawn the first time.
146
147 // If there is nothing under us, we paint the screen in black, otherwise
148 // we just skip this update.
149
150 // figure out if there is something below us
151 Region under;
152 bool finished = false;
153 mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
154 if (finished || layer == static_cast<BufferLayer const*>(this)) {
155 finished = true;
156 return;
157 }
158 under.orSelf(layer->visibleRegion);
159 });
160 // if not everything below us is covered, we plug the holes!
161 Region holes(clip.subtract(under));
162 if (!holes.isEmpty()) {
163 clearRegion.orSelf(holes);
164 }
165 return false;
166 }
167 bool blackOutLayer =
168 (isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure());
169 const State& s(getDrawingState());
170 if (!blackOutLayer) {
171 layer.source.buffer.buffer = mActiveBuffer;
172 layer.source.buffer.isOpaque = isOpaque(s);
173 layer.source.buffer.fence = mActiveBufferFence;
174 layer.source.buffer.textureName = mTextureName;
175 layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
176 layer.source.buffer.isY410BT2020 = isHdrY410();
177 // TODO: we could be more subtle with isFixedSize()
178 const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) ||
179 renderArea.needsFiltering() || isFixedSize();
180
181 // Query the texture matrix given our current filtering mode.
182 float textureMatrix[16];
183 setFilteringEnabled(useFiltering);
184 getDrawingTransformMatrix(textureMatrix);
185
186 if (getTransformToDisplayInverse()) {
187 /*
188 * the code below applies the primary display's inverse transform to
189 * the texture transform
190 */
191 uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
192 mat4 tr = inverseOrientation(transform);
193
194 /**
195 * TODO(b/36727915): This is basically a hack.
196 *
197 * Ensure that regardless of the parent transformation,
198 * this buffer is always transformed from native display
199 * orientation to display orientation. For example, in the case
200 * of a camera where the buffer remains in native orientation,
201 * we want the pixels to always be upright.
202 */
203 sp<Layer> p = mDrawingParent.promote();
204 if (p != nullptr) {
205 const auto parentTransform = p->getTransform();
206 tr = tr * inverseOrientation(parentTransform.getOrientation());
207 }
208
209 // and finally apply it to the original texture matrix
210 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
211 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
212 }
213
214 const Rect win{getBounds()};
215 float bufferWidth = getBufferSize(s).getWidth();
216 float bufferHeight = getBufferSize(s).getHeight();
217
218 // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
219 // been set and there is no parent layer bounds. In that case, the scale is meaningless so
220 // ignore them.
221 if (!getBufferSize(s).isValid()) {
222 bufferWidth = float(win.right) - float(win.left);
223 bufferHeight = float(win.bottom) - float(win.top);
224 }
225
226 const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
227 const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
228 const float translateY = float(win.top) / bufferHeight;
229 const float translateX = float(win.left) / bufferWidth;
230
231 // Flip y-coordinates because GLConsumer expects OpenGL convention.
232 mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
233 mat4::translate(vec4(-.5, -.5, 0, 1)) *
234 mat4::translate(vec4(translateX, translateY, 0, 1)) *
235 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
236
237 layer.source.buffer.useTextureFiltering = useFiltering;
238 layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
239 } else {
240 // If layer is blacked out, force alpha to 1 so that we draw a black color
241 // layer.
242 layer.source.buffer.buffer = nullptr;
243 layer.alpha = 1.0;
244 }
245
246 return true;
247 }
248
isHdrY410() const249 bool BufferLayer::isHdrY410() const {
250 // pixel format is HDR Y410 masquerading as RGBA_1010102
251 return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
252 getDrawingApi() == NATIVE_WINDOW_API_MEDIA &&
253 getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
254 }
255
getPixelFormat() const256 PixelFormat BufferLayer::getPixelFormat() const {
257 if (!mActiveBuffer) {
258 return PIXEL_FORMAT_NONE;
259 }
260 return mActiveBuffer->format;
261 }
262
setPerFrameData(const sp<const DisplayDevice> & displayDevice,const ui::Transform & transform,const Rect & viewport,int32_t supportedPerFrameMetadata,const ui::Dataspace targetDataspace)263 void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice,
264 const ui::Transform& transform, const Rect& viewport,
265 int32_t supportedPerFrameMetadata,
266 const ui::Dataspace targetDataspace) {
267 RETURN_IF_NO_HWC_LAYER(displayDevice);
268
269 // Apply this display's projection's viewport to the visible region
270 // before giving it to the HWC HAL.
271 Region visible = transform.transform(visibleRegion.intersect(viewport));
272
273 const auto outputLayer = findOutputLayerForDisplay(displayDevice);
274 LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc);
275
276 auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer;
277 auto error = hwcLayer->setVisibleRegion(visible);
278 if (error != HWC2::Error::None) {
279 ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
280 to_string(error).c_str(), static_cast<int32_t>(error));
281 visible.dump(LOG_TAG);
282 }
283 outputLayer->editState().visibleRegion = visible;
284
285 auto& layerCompositionState = getCompositionLayer()->editState().frontEnd;
286
287 error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
288 if (error != HWC2::Error::None) {
289 ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
290 to_string(error).c_str(), static_cast<int32_t>(error));
291 surfaceDamageRegion.dump(LOG_TAG);
292 }
293 layerCompositionState.surfaceDamage = surfaceDamageRegion;
294
295 // Sideband layers
296 if (layerCompositionState.sidebandStream.get()) {
297 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND);
298 ALOGV("[%s] Requesting Sideband composition", mName.string());
299 error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle());
300 if (error != HWC2::Error::None) {
301 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
302 layerCompositionState.sidebandStream->handle(), to_string(error).c_str(),
303 static_cast<int32_t>(error));
304 }
305 layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
306 return;
307 }
308
309 // Device or Cursor layers
310 if (mPotentialCursor) {
311 ALOGV("[%s] Requesting Cursor composition", mName.string());
312 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR);
313 } else {
314 ALOGV("[%s] Requesting Device composition", mName.string());
315 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE);
316 }
317
318 ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN
319 ? targetDataspace
320 : mCurrentDataSpace;
321 error = hwcLayer->setDataspace(dataspace);
322 if (error != HWC2::Error::None) {
323 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace,
324 to_string(error).c_str(), static_cast<int32_t>(error));
325 }
326
327 const HdrMetadata& metadata = getDrawingHdrMetadata();
328 error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata);
329 if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
330 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
331 to_string(error).c_str(), static_cast<int32_t>(error));
332 }
333
334 error = hwcLayer->setColorTransform(getColorTransform());
335 if (error == HWC2::Error::Unsupported) {
336 // If per layer color transform is not supported, we use GPU composition.
337 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT);
338 } else if (error != HWC2::Error::None) {
339 ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(),
340 to_string(error).c_str(), static_cast<int32_t>(error));
341 }
342 layerCompositionState.dataspace = mCurrentDataSpace;
343 layerCompositionState.colorTransform = getColorTransform();
344 layerCompositionState.hdrMetadata = metadata;
345
346 setHwcLayerBuffer(displayDevice);
347 }
348
onPreComposition(nsecs_t refreshStartTime)349 bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
350 if (mBufferLatched) {
351 Mutex::Autolock lock(mFrameEventHistoryMutex);
352 mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
353 }
354 mRefreshPending = false;
355 return hasReadyFrame();
356 }
357
onPostComposition(const std::optional<DisplayId> & displayId,const std::shared_ptr<FenceTime> & glDoneFence,const std::shared_ptr<FenceTime> & presentFence,const CompositorTiming & compositorTiming)358 bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId,
359 const std::shared_ptr<FenceTime>& glDoneFence,
360 const std::shared_ptr<FenceTime>& presentFence,
361 const CompositorTiming& compositorTiming) {
362 // mFrameLatencyNeeded is true when a new frame was latched for the
363 // composition.
364 if (!mFrameLatencyNeeded) return false;
365
366 // Update mFrameEventHistory.
367 {
368 Mutex::Autolock lock(mFrameEventHistoryMutex);
369 mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
370 compositorTiming);
371 }
372
373 // Update mFrameTracker.
374 nsecs_t desiredPresentTime = getDesiredPresentTime();
375 mFrameTracker.setDesiredPresentTime(desiredPresentTime);
376
377 const int32_t layerID = getSequence();
378 mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime);
379
380 std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime();
381 if (frameReadyFence->isValid()) {
382 mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
383 } else {
384 // There was no fence for this frame, so assume that it was ready
385 // to be presented at the desired present time.
386 mFrameTracker.setFrameReadyTime(desiredPresentTime);
387 }
388
389 if (presentFence->isValid()) {
390 mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence);
391 mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
392 } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
393 // The HWC doesn't support present fences, so use the refresh
394 // timestamp instead.
395 const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
396 mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime);
397 mFrameTracker.setActualPresentTime(actualPresentTime);
398 }
399
400 mFrameTracker.advanceFrame();
401 mFrameLatencyNeeded = false;
402 return true;
403 }
404
latchBuffer(bool & recomputeVisibleRegions,nsecs_t latchTime)405 bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
406 ATRACE_CALL();
407
408 bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
409
410 if (refreshRequired) {
411 return refreshRequired;
412 }
413
414 if (!hasReadyFrame()) {
415 return false;
416 }
417
418 // if we've already called updateTexImage() without going through
419 // a composition step, we have to skip this layer at this point
420 // because we cannot call updateTeximage() without a corresponding
421 // compositionComplete() call.
422 // we'll trigger an update in onPreComposition().
423 if (mRefreshPending) {
424 return false;
425 }
426
427 // If the head buffer's acquire fence hasn't signaled yet, return and
428 // try again later
429 if (!fenceHasSignaled()) {
430 ATRACE_NAME("!fenceHasSignaled()");
431 mFlinger->signalLayerUpdate();
432 return false;
433 }
434
435 // Capture the old state of the layer for comparisons later
436 const State& s(getDrawingState());
437 const bool oldOpacity = isOpaque(s);
438 sp<GraphicBuffer> oldBuffer = mActiveBuffer;
439
440 if (!allTransactionsSignaled()) {
441 mFlinger->setTransactionFlags(eTraversalNeeded);
442 return false;
443 }
444
445 status_t err = updateTexImage(recomputeVisibleRegions, latchTime);
446 if (err != NO_ERROR) {
447 return false;
448 }
449
450 err = updateActiveBuffer();
451 if (err != NO_ERROR) {
452 return false;
453 }
454
455 mBufferLatched = true;
456
457 err = updateFrameNumber(latchTime);
458 if (err != NO_ERROR) {
459 return false;
460 }
461
462 mRefreshPending = true;
463 mFrameLatencyNeeded = true;
464 if (oldBuffer == nullptr) {
465 // the first time we receive a buffer, we need to trigger a
466 // geometry invalidation.
467 recomputeVisibleRegions = true;
468 }
469
470 ui::Dataspace dataSpace = getDrawingDataSpace();
471 // translate legacy dataspaces to modern dataspaces
472 switch (dataSpace) {
473 case ui::Dataspace::SRGB:
474 dataSpace = ui::Dataspace::V0_SRGB;
475 break;
476 case ui::Dataspace::SRGB_LINEAR:
477 dataSpace = ui::Dataspace::V0_SRGB_LINEAR;
478 break;
479 case ui::Dataspace::JFIF:
480 dataSpace = ui::Dataspace::V0_JFIF;
481 break;
482 case ui::Dataspace::BT601_625:
483 dataSpace = ui::Dataspace::V0_BT601_625;
484 break;
485 case ui::Dataspace::BT601_525:
486 dataSpace = ui::Dataspace::V0_BT601_525;
487 break;
488 case ui::Dataspace::BT709:
489 dataSpace = ui::Dataspace::V0_BT709;
490 break;
491 default:
492 break;
493 }
494 mCurrentDataSpace = dataSpace;
495
496 Rect crop(getDrawingCrop());
497 const uint32_t transform(getDrawingTransform());
498 const uint32_t scalingMode(getDrawingScalingMode());
499 const bool transformToDisplayInverse(getTransformToDisplayInverse());
500 if ((crop != mCurrentCrop) || (transform != mCurrentTransform) ||
501 (scalingMode != mCurrentScalingMode) ||
502 (transformToDisplayInverse != mTransformToDisplayInverse)) {
503 mCurrentCrop = crop;
504 mCurrentTransform = transform;
505 mCurrentScalingMode = scalingMode;
506 mTransformToDisplayInverse = transformToDisplayInverse;
507 recomputeVisibleRegions = true;
508 }
509
510 if (oldBuffer != nullptr) {
511 uint32_t bufWidth = mActiveBuffer->getWidth();
512 uint32_t bufHeight = mActiveBuffer->getHeight();
513 if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) {
514 recomputeVisibleRegions = true;
515 }
516 }
517
518 if (oldOpacity != isOpaque(s)) {
519 recomputeVisibleRegions = true;
520 }
521
522 // Remove any sync points corresponding to the buffer which was just
523 // latched
524 {
525 Mutex::Autolock lock(mLocalSyncPointMutex);
526 auto point = mLocalSyncPoints.begin();
527 while (point != mLocalSyncPoints.end()) {
528 if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
529 // This sync point must have been added since we started
530 // latching. Don't drop it yet.
531 ++point;
532 continue;
533 }
534
535 if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
536 std::stringstream ss;
537 ss << "Dropping sync point " << (*point)->getFrameNumber();
538 ATRACE_NAME(ss.str().c_str());
539 point = mLocalSyncPoints.erase(point);
540 } else {
541 ++point;
542 }
543 }
544 }
545
546 return true;
547 }
548
549 // transaction
notifyAvailableFrames()550 void BufferLayer::notifyAvailableFrames() {
551 const auto headFrameNumber = getHeadFrameNumber();
552 const bool headFenceSignaled = fenceHasSignaled();
553 const bool presentTimeIsCurrent = framePresentTimeIsCurrent();
554 Mutex::Autolock lock(mLocalSyncPointMutex);
555 for (auto& point : mLocalSyncPoints) {
556 if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled &&
557 presentTimeIsCurrent) {
558 point->setFrameAvailable();
559 sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer();
560 if (requestedSyncLayer) {
561 // Need to update the transaction flag to ensure the layer's pending transaction
562 // gets applied.
563 requestedSyncLayer->setTransactionFlags(eTransactionNeeded);
564 }
565 }
566 }
567 }
568
hasReadyFrame() const569 bool BufferLayer::hasReadyFrame() const {
570 return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
571 }
572
getEffectiveScalingMode() const573 uint32_t BufferLayer::getEffectiveScalingMode() const {
574 if (mOverrideScalingMode >= 0) {
575 return mOverrideScalingMode;
576 }
577
578 return mCurrentScalingMode;
579 }
580
isProtected() const581 bool BufferLayer::isProtected() const {
582 const sp<GraphicBuffer>& buffer(mActiveBuffer);
583 return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
584 }
585
latchUnsignaledBuffers()586 bool BufferLayer::latchUnsignaledBuffers() {
587 static bool propertyLoaded = false;
588 static bool latch = false;
589 static std::mutex mutex;
590 std::lock_guard<std::mutex> lock(mutex);
591 if (!propertyLoaded) {
592 char value[PROPERTY_VALUE_MAX] = {};
593 property_get("debug.sf.latch_unsignaled", value, "0");
594 latch = atoi(value);
595 propertyLoaded = true;
596 }
597 return latch;
598 }
599
600 // h/w composer set-up
allTransactionsSignaled()601 bool BufferLayer::allTransactionsSignaled() {
602 auto headFrameNumber = getHeadFrameNumber();
603 bool matchingFramesFound = false;
604 bool allTransactionsApplied = true;
605 Mutex::Autolock lock(mLocalSyncPointMutex);
606
607 for (auto& point : mLocalSyncPoints) {
608 if (point->getFrameNumber() > headFrameNumber) {
609 break;
610 }
611 matchingFramesFound = true;
612
613 if (!point->frameIsAvailable()) {
614 // We haven't notified the remote layer that the frame for
615 // this point is available yet. Notify it now, and then
616 // abort this attempt to latch.
617 point->setFrameAvailable();
618 allTransactionsApplied = false;
619 break;
620 }
621
622 allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
623 }
624 return !matchingFramesFound || allTransactionsApplied;
625 }
626
627 // As documented in libhardware header, formats in the range
628 // 0x100 - 0x1FF are specific to the HAL implementation, and
629 // are known to have no alpha channel
630 // TODO: move definition for device-specific range into
631 // hardware.h, instead of using hard-coded values here.
632 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
633
getOpacityForFormat(uint32_t format)634 bool BufferLayer::getOpacityForFormat(uint32_t format) {
635 if (HARDWARE_IS_DEVICE_FORMAT(format)) {
636 return true;
637 }
638 switch (format) {
639 case HAL_PIXEL_FORMAT_RGBA_8888:
640 case HAL_PIXEL_FORMAT_BGRA_8888:
641 case HAL_PIXEL_FORMAT_RGBA_FP16:
642 case HAL_PIXEL_FORMAT_RGBA_1010102:
643 return false;
644 }
645 // in all other case, we have no blending (also for unknown formats)
646 return true;
647 }
648
needsFiltering(const sp<const DisplayDevice> & displayDevice) const649 bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const {
650 // If we are not capturing based on the state of a known display device, we
651 // only return mNeedsFiltering
652 if (displayDevice == nullptr) {
653 return mNeedsFiltering;
654 }
655
656 const auto outputLayer = findOutputLayerForDisplay(displayDevice);
657 if (outputLayer == nullptr) {
658 return mNeedsFiltering;
659 }
660
661 const auto& compositionState = outputLayer->getState();
662 const auto displayFrame = compositionState.displayFrame;
663 const auto sourceCrop = compositionState.sourceCrop;
664 return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() ||
665 sourceCrop.getWidth() != displayFrame.getWidth();
666 }
667
getHeadFrameNumber() const668 uint64_t BufferLayer::getHeadFrameNumber() const {
669 if (hasFrameUpdate()) {
670 return getFrameNumber();
671 } else {
672 return mCurrentFrameNumber;
673 }
674 }
675
getBufferSize(const State & s) const676 Rect BufferLayer::getBufferSize(const State& s) const {
677 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
678 // we cannot determine the buffer size.
679 if ((s.sidebandStream != nullptr) ||
680 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
681 return Rect(getActiveWidth(s), getActiveHeight(s));
682 }
683
684 if (mActiveBuffer == nullptr) {
685 return Rect::INVALID_RECT;
686 }
687
688 uint32_t bufWidth = mActiveBuffer->getWidth();
689 uint32_t bufHeight = mActiveBuffer->getHeight();
690
691 // Undo any transformations on the buffer and return the result.
692 if (mCurrentTransform & ui::Transform::ROT_90) {
693 std::swap(bufWidth, bufHeight);
694 }
695
696 if (getTransformToDisplayInverse()) {
697 uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
698 if (invTransform & ui::Transform::ROT_90) {
699 std::swap(bufWidth, bufHeight);
700 }
701 }
702
703 return Rect(bufWidth, bufHeight);
704 }
705
getCompositionLayer() const706 std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const {
707 return mCompositionLayer;
708 }
709
computeSourceBounds(const FloatRect & parentBounds) const710 FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
711 const State& s(getDrawingState());
712
713 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
714 // we cannot determine the buffer size.
715 if ((s.sidebandStream != nullptr) ||
716 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
717 return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
718 }
719
720 if (mActiveBuffer == nullptr) {
721 return parentBounds;
722 }
723
724 uint32_t bufWidth = mActiveBuffer->getWidth();
725 uint32_t bufHeight = mActiveBuffer->getHeight();
726
727 // Undo any transformations on the buffer and return the result.
728 if (mCurrentTransform & ui::Transform::ROT_90) {
729 std::swap(bufWidth, bufHeight);
730 }
731
732 if (getTransformToDisplayInverse()) {
733 uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
734 if (invTransform & ui::Transform::ROT_90) {
735 std::swap(bufWidth, bufHeight);
736 }
737 }
738
739 return FloatRect(0, 0, bufWidth, bufHeight);
740 }
741
742 } // namespace android
743
744 #if defined(__gl_h_)
745 #error "don't include gl/gl.h in this file"
746 #endif
747
748 #if defined(__gl2_h_)
749 #error "don't include gl2/gl2.h in this file"
750 #endif
751