1 /*
2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 package java.util.stream;
26 
27 import java.util.AbstractMap;
28 import java.util.AbstractSet;
29 import java.util.ArrayList;
30 import java.util.Arrays;
31 import java.util.Collection;
32 import java.util.Collections;
33 import java.util.Comparator;
34 import java.util.DoubleSummaryStatistics;
35 import java.util.EnumSet;
36 import java.util.HashMap;
37 import java.util.HashSet;
38 import java.util.IntSummaryStatistics;
39 import java.util.Iterator;
40 import java.util.List;
41 import java.util.LongSummaryStatistics;
42 import java.util.Map;
43 import java.util.Objects;
44 import java.util.Optional;
45 import java.util.Set;
46 import java.util.StringJoiner;
47 import java.util.concurrent.ConcurrentHashMap;
48 import java.util.concurrent.ConcurrentMap;
49 import java.util.function.BiConsumer;
50 import java.util.function.BiFunction;
51 import java.util.function.BinaryOperator;
52 import java.util.function.Consumer;
53 import java.util.function.Function;
54 import java.util.function.Predicate;
55 import java.util.function.Supplier;
56 import java.util.function.ToDoubleFunction;
57 import java.util.function.ToIntFunction;
58 import java.util.function.ToLongFunction;
59 
60 /**
61  * Implementations of {@link Collector} that implement various useful reduction
62  * operations, such as accumulating elements into collections, summarizing
63  * elements according to various criteria, etc.
64  *
65  * <p>The following are examples of using the predefined collectors to perform
66  * common mutable reduction tasks:
67  *
68  * <pre>{@code
69  *     // Accumulate names into a List
70  *     List<String> list = people.stream().map(Person::getName).collect(Collectors.toList());
71  *
72  *     // Accumulate names into a TreeSet
73  *     Set<String> set = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new));
74  *
75  *     // Convert elements to strings and concatenate them, separated by commas
76  *     String joined = things.stream()
77  *                           .map(Object::toString)
78  *                           .collect(Collectors.joining(", "));
79  *
80  *     // Compute sum of salaries of employee
81  *     int total = employees.stream()
82  *                          .collect(Collectors.summingInt(Employee::getSalary)));
83  *
84  *     // Group employees by department
85  *     Map<Department, List<Employee>> byDept
86  *         = employees.stream()
87  *                    .collect(Collectors.groupingBy(Employee::getDepartment));
88  *
89  *     // Compute sum of salaries by department
90  *     Map<Department, Integer> totalByDept
91  *         = employees.stream()
92  *                    .collect(Collectors.groupingBy(Employee::getDepartment,
93  *                                                   Collectors.summingInt(Employee::getSalary)));
94  *
95  *     // Partition students into passing and failing
96  *     Map<Boolean, List<Student>> passingFailing =
97  *         students.stream()
98  *                 .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD));
99  *
100  * }</pre>
101  *
102  * @since 1.8
103  */
104 public final class Collectors {
105 
106     static final Set<Collector.Characteristics> CH_CONCURRENT_ID
107             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT,
108                                                      Collector.Characteristics.UNORDERED,
109                                                      Collector.Characteristics.IDENTITY_FINISH));
110     static final Set<Collector.Characteristics> CH_CONCURRENT_NOID
111             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.CONCURRENT,
112                                                      Collector.Characteristics.UNORDERED));
113     static final Set<Collector.Characteristics> CH_ID
114             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH));
115     static final Set<Collector.Characteristics> CH_UNORDERED_ID
116             = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.UNORDERED,
117                                                      Collector.Characteristics.IDENTITY_FINISH));
118     static final Set<Collector.Characteristics> CH_NOID = Collections.emptySet();
119 
Collectors()120     private Collectors() { }
121 
122     /**
123      * Returns a merge function, suitable for use in
124      * {@link Map#merge(Object, Object, BiFunction) Map.merge()} or
125      * {@link #toMap(Function, Function, BinaryOperator) toMap()}, which always
126      * throws {@code IllegalStateException}.  This can be used to enforce the
127      * assumption that the elements being collected are distinct.
128      *
129      * @param <T> the type of input arguments to the merge function
130      * @return a merge function which always throw {@code IllegalStateException}
131      */
throwingMerger()132     private static <T> BinaryOperator<T> throwingMerger() {
133         return (u,v) -> { throw new IllegalStateException(String.format("Duplicate key %s", u)); };
134     }
135 
136     @SuppressWarnings("unchecked")
castingIdentity()137     private static <I, R> Function<I, R> castingIdentity() {
138         return i -> (R) i;
139     }
140 
141     /**
142      * Simple implementation class for {@code Collector}.
143      *
144      * @param <T> the type of elements to be collected
145      * @param <R> the type of the result
146      */
147     static class CollectorImpl<T, A, R> implements Collector<T, A, R> {
148         private final Supplier<A> supplier;
149         private final BiConsumer<A, T> accumulator;
150         private final BinaryOperator<A> combiner;
151         private final Function<A, R> finisher;
152         private final Set<Characteristics> characteristics;
153 
CollectorImpl(Supplier<A> supplier, BiConsumer<A, T> accumulator, BinaryOperator<A> combiner, Function<A,R> finisher, Set<Characteristics> characteristics)154         CollectorImpl(Supplier<A> supplier,
155                       BiConsumer<A, T> accumulator,
156                       BinaryOperator<A> combiner,
157                       Function<A,R> finisher,
158                       Set<Characteristics> characteristics) {
159             this.supplier = supplier;
160             this.accumulator = accumulator;
161             this.combiner = combiner;
162             this.finisher = finisher;
163             this.characteristics = characteristics;
164         }
165 
CollectorImpl(Supplier<A> supplier, BiConsumer<A, T> accumulator, BinaryOperator<A> combiner, Set<Characteristics> characteristics)166         CollectorImpl(Supplier<A> supplier,
167                       BiConsumer<A, T> accumulator,
168                       BinaryOperator<A> combiner,
169                       Set<Characteristics> characteristics) {
170             this(supplier, accumulator, combiner, castingIdentity(), characteristics);
171         }
172 
173         @Override
accumulator()174         public BiConsumer<A, T> accumulator() {
175             return accumulator;
176         }
177 
178         @Override
supplier()179         public Supplier<A> supplier() {
180             return supplier;
181         }
182 
183         @Override
combiner()184         public BinaryOperator<A> combiner() {
185             return combiner;
186         }
187 
188         @Override
finisher()189         public Function<A, R> finisher() {
190             return finisher;
191         }
192 
193         @Override
characteristics()194         public Set<Characteristics> characteristics() {
195             return characteristics;
196         }
197     }
198 
199     /**
200      * Returns a {@code Collector} that accumulates the input elements into a
201      * new {@code Collection}, in encounter order.  The {@code Collection} is
202      * created by the provided factory.
203      *
204      * @param <T> the type of the input elements
205      * @param <C> the type of the resulting {@code Collection}
206      * @param collectionFactory a {@code Supplier} which returns a new, empty
207      * {@code Collection} of the appropriate type
208      * @return a {@code Collector} which collects all the input elements into a
209      * {@code Collection}, in encounter order
210      */
211     public static <T, C extends Collection<T>>
toCollection(Supplier<C> collectionFactory)212     Collector<T, ?, C> toCollection(Supplier<C> collectionFactory) {
213         return new CollectorImpl<>(collectionFactory, Collection<T>::add,
214                                    (r1, r2) -> { r1.addAll(r2); return r1; },
215                                    CH_ID);
216     }
217 
218     /**
219      * Returns a {@code Collector} that accumulates the input elements into a
220      * new {@code List}. There are no guarantees on the type, mutability,
221      * serializability, or thread-safety of the {@code List} returned; if more
222      * control over the returned {@code List} is required, use {@link #toCollection(Supplier)}.
223      *
224      * @param <T> the type of the input elements
225      * @return a {@code Collector} which collects all the input elements into a
226      * {@code List}, in encounter order
227      */
228     public static <T>
229     Collector<T, ?, List<T>> toList() {
230         return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add,
231                                    (left, right) -> { left.addAll(right); return left; },
232                                    CH_ID);
233     }
234 
235     /**
236      * Returns a {@code Collector} that accumulates the input elements into a
237      * new {@code Set}. There are no guarantees on the type, mutability,
238      * serializability, or thread-safety of the {@code Set} returned; if more
239      * control over the returned {@code Set} is required, use
240      * {@link #toCollection(Supplier)}.
241      *
242      * <p>This is an {@link Collector.Characteristics#UNORDERED unordered}
243      * Collector.
244      *
245      * @param <T> the type of the input elements
246      * @return a {@code Collector} which collects all the input elements into a
247      * {@code Set}
248      */
249     public static <T>
250     Collector<T, ?, Set<T>> toSet() {
251         return new CollectorImpl<>((Supplier<Set<T>>) HashSet::new, Set::add,
252                                    (left, right) -> { left.addAll(right); return left; },
253                                    CH_UNORDERED_ID);
254     }
255 
256     /**
257      * Returns a {@code Collector} that concatenates the input elements into a
258      * {@code String}, in encounter order.
259      *
260      * @return a {@code Collector} that concatenates the input elements into a
261      * {@code String}, in encounter order
262      */
263     public static Collector<CharSequence, ?, String> joining() {
264         return new CollectorImpl<CharSequence, StringBuilder, String>(
265                 StringBuilder::new, StringBuilder::append,
266                 (r1, r2) -> { r1.append(r2); return r1; },
267                 StringBuilder::toString, CH_NOID);
268     }
269 
270     /**
271      * Returns a {@code Collector} that concatenates the input elements,
272      * separated by the specified delimiter, in encounter order.
273      *
274      * @param delimiter the delimiter to be used between each element
275      * @return A {@code Collector} which concatenates CharSequence elements,
276      * separated by the specified delimiter, in encounter order
277      */
278     public static Collector<CharSequence, ?, String> joining(CharSequence delimiter) {
279         return joining(delimiter, "", "");
280     }
281 
282     /**
283      * Returns a {@code Collector} that concatenates the input elements,
284      * separated by the specified delimiter, with the specified prefix and
285      * suffix, in encounter order.
286      *
287      * @param delimiter the delimiter to be used between each element
288      * @param  prefix the sequence of characters to be used at the beginning
289      *                of the joined result
290      * @param  suffix the sequence of characters to be used at the end
291      *                of the joined result
292      * @return A {@code Collector} which concatenates CharSequence elements,
293      * separated by the specified delimiter, in encounter order
294      */
295     public static Collector<CharSequence, ?, String> joining(CharSequence delimiter,
296                                                              CharSequence prefix,
297                                                              CharSequence suffix) {
298         return new CollectorImpl<>(
299                 () -> new StringJoiner(delimiter, prefix, suffix),
300                 StringJoiner::add, StringJoiner::merge,
301                 StringJoiner::toString, CH_NOID);
302     }
303 
304     /**
305      * {@code BinaryOperator<Map>} that merges the contents of its right
306      * argument into its left argument, using the provided merge function to
307      * handle duplicate keys.
308      *
309      * @param <K> type of the map keys
310      * @param <V> type of the map values
311      * @param <M> type of the map
312      * @param mergeFunction A merge function suitable for
313      * {@link Map#merge(Object, Object, BiFunction) Map.merge()}
314      * @return a merge function for two maps
315      */
316     private static <K, V, M extends Map<K,V>>
317     BinaryOperator<M> mapMerger(BinaryOperator<V> mergeFunction) {
318         return (m1, m2) -> {
319             for (Map.Entry<K,V> e : m2.entrySet())
320                 m1.merge(e.getKey(), e.getValue(), mergeFunction);
321             return m1;
322         };
323     }
324 
325     /**
326      * Adapts a {@code Collector} accepting elements of type {@code U} to one
327      * accepting elements of type {@code T} by applying a mapping function to
328      * each input element before accumulation.
329      *
330      * @apiNote
331      * The {@code mapping()} collectors are most useful when used in a
332      * multi-level reduction, such as downstream of a {@code groupingBy} or
333      * {@code partitioningBy}.  For example, given a stream of
334      * {@code Person}, to accumulate the set of last names in each city:
335      * <pre>{@code
336      *     Map<City, Set<String>> lastNamesByCity
337      *         = people.stream().collect(groupingBy(Person::getCity,
338      *                                              mapping(Person::getLastName, toSet())));
339      * }</pre>
340      *
341      * @param <T> the type of the input elements
342      * @param <U> type of elements accepted by downstream collector
343      * @param <A> intermediate accumulation type of the downstream collector
344      * @param <R> result type of collector
345      * @param mapper a function to be applied to the input elements
346      * @param downstream a collector which will accept mapped values
347      * @return a collector which applies the mapping function to the input
348      * elements and provides the mapped results to the downstream collector
349      */
350     public static <T, U, A, R>
351     Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper,
352                                Collector<? super U, A, R> downstream) {
353         BiConsumer<A, ? super U> downstreamAccumulator = downstream.accumulator();
354         return new CollectorImpl<>(downstream.supplier(),
355                                    (r, t) -> downstreamAccumulator.accept(r, mapper.apply(t)),
356                                    downstream.combiner(), downstream.finisher(),
357                                    downstream.characteristics());
358     }
359 
360     /**
361      * Adapts a {@code Collector} to perform an additional finishing
362      * transformation.  For example, one could adapt the {@link #toList()}
363      * collector to always produce an immutable list with:
364      * <pre>{@code
365      *     List<String> people
366      *         = people.stream().collect(collectingAndThen(toList(), Collections::unmodifiableList));
367      * }</pre>
368      *
369      * @param <T> the type of the input elements
370      * @param <A> intermediate accumulation type of the downstream collector
371      * @param <R> result type of the downstream collector
372      * @param <RR> result type of the resulting collector
373      * @param downstream a collector
374      * @param finisher a function to be applied to the final result of the downstream collector
375      * @return a collector which performs the action of the downstream collector,
376      * followed by an additional finishing step
377      */
378     public static<T,A,R,RR> Collector<T,A,RR> collectingAndThen(Collector<T,A,R> downstream,
379                                                                 Function<R,RR> finisher) {
380         Set<Collector.Characteristics> characteristics = downstream.characteristics();
381         if (characteristics.contains(Collector.Characteristics.IDENTITY_FINISH)) {
382             if (characteristics.size() == 1)
383                 characteristics = Collectors.CH_NOID;
384             else {
385                 characteristics = EnumSet.copyOf(characteristics);
386                 characteristics.remove(Collector.Characteristics.IDENTITY_FINISH);
387                 characteristics = Collections.unmodifiableSet(characteristics);
388             }
389         }
390         return new CollectorImpl<>(downstream.supplier(),
391                                    downstream.accumulator(),
392                                    downstream.combiner(),
393                                    downstream.finisher().andThen(finisher),
394                                    characteristics);
395     }
396 
397     /**
398      * Returns a {@code Collector} accepting elements of type {@code T} that
399      * counts the number of input elements.  If no elements are present, the
400      * result is 0.
401      *
402      * @implSpec
403      * This produces a result equivalent to:
404      * <pre>{@code
405      *     reducing(0L, e -> 1L, Long::sum)
406      * }</pre>
407      *
408      * @param <T> the type of the input elements
409      * @return a {@code Collector} that counts the input elements
410      */
411     public static <T> Collector<T, ?, Long>
412     counting() {
413         return reducing(0L, e -> 1L, Long::sum);
414     }
415 
416     /**
417      * Returns a {@code Collector} that produces the minimal element according
418      * to a given {@code Comparator}, described as an {@code Optional<T>}.
419      *
420      * @implSpec
421      * This produces a result equivalent to:
422      * <pre>{@code
423      *     reducing(BinaryOperator.minBy(comparator))
424      * }</pre>
425      *
426      * @param <T> the type of the input elements
427      * @param comparator a {@code Comparator} for comparing elements
428      * @return a {@code Collector} that produces the minimal value
429      */
430     public static <T> Collector<T, ?, Optional<T>>
431     minBy(Comparator<? super T> comparator) {
432         return reducing(BinaryOperator.minBy(comparator));
433     }
434 
435     /**
436      * Returns a {@code Collector} that produces the maximal element according
437      * to a given {@code Comparator}, described as an {@code Optional<T>}.
438      *
439      * @implSpec
440      * This produces a result equivalent to:
441      * <pre>{@code
442      *     reducing(BinaryOperator.maxBy(comparator))
443      * }</pre>
444      *
445      * @param <T> the type of the input elements
446      * @param comparator a {@code Comparator} for comparing elements
447      * @return a {@code Collector} that produces the maximal value
448      */
449     public static <T> Collector<T, ?, Optional<T>>
450     maxBy(Comparator<? super T> comparator) {
451         return reducing(BinaryOperator.maxBy(comparator));
452     }
453 
454     /**
455      * Returns a {@code Collector} that produces the sum of a integer-valued
456      * function applied to the input elements.  If no elements are present,
457      * the result is 0.
458      *
459      * @param <T> the type of the input elements
460      * @param mapper a function extracting the property to be summed
461      * @return a {@code Collector} that produces the sum of a derived property
462      */
463     public static <T> Collector<T, ?, Integer>
464     summingInt(ToIntFunction<? super T> mapper) {
465         return new CollectorImpl<>(
466                 () -> new int[1],
467                 (a, t) -> { a[0] += mapper.applyAsInt(t); },
468                 (a, b) -> { a[0] += b[0]; return a; },
469                 a -> a[0], CH_NOID);
470     }
471 
472     /**
473      * Returns a {@code Collector} that produces the sum of a long-valued
474      * function applied to the input elements.  If no elements are present,
475      * the result is 0.
476      *
477      * @param <T> the type of the input elements
478      * @param mapper a function extracting the property to be summed
479      * @return a {@code Collector} that produces the sum of a derived property
480      */
481     public static <T> Collector<T, ?, Long>
482     summingLong(ToLongFunction<? super T> mapper) {
483         return new CollectorImpl<>(
484                 () -> new long[1],
485                 (a, t) -> { a[0] += mapper.applyAsLong(t); },
486                 (a, b) -> { a[0] += b[0]; return a; },
487                 a -> a[0], CH_NOID);
488     }
489 
490     /**
491      * Returns a {@code Collector} that produces the sum of a double-valued
492      * function applied to the input elements.  If no elements are present,
493      * the result is 0.
494      *
495      * <p>The sum returned can vary depending upon the order in which
496      * values are recorded, due to accumulated rounding error in
497      * addition of values of differing magnitudes. Values sorted by increasing
498      * absolute magnitude tend to yield more accurate results.  If any recorded
499      * value is a {@code NaN} or the sum is at any point a {@code NaN} then the
500      * sum will be {@code NaN}.
501      *
502      * @param <T> the type of the input elements
503      * @param mapper a function extracting the property to be summed
504      * @return a {@code Collector} that produces the sum of a derived property
505      */
506     public static <T> Collector<T, ?, Double>
507     summingDouble(ToDoubleFunction<? super T> mapper) {
508         /*
509          * In the arrays allocated for the collect operation, index 0
510          * holds the high-order bits of the running sum, index 1 holds
511          * the low-order bits of the sum computed via compensated
512          * summation, and index 2 holds the simple sum used to compute
513          * the proper result if the stream contains infinite values of
514          * the same sign.
515          */
516         return new CollectorImpl<>(
517                 () -> new double[3],
518                 (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t));
519                             a[2] += mapper.applyAsDouble(t);},
520                 (a, b) -> { sumWithCompensation(a, b[0]);
521                             a[2] += b[2];
522                             return sumWithCompensation(a, b[1]); },
523                 a -> computeFinalSum(a),
524                 CH_NOID);
525     }
526 
527     /**
528      * Incorporate a new double value using Kahan summation /
529      * compensation summation.
530      *
531      * High-order bits of the sum are in intermediateSum[0], low-order
532      * bits of the sum are in intermediateSum[1], any additional
533      * elements are application-specific.
534      *
535      * @param intermediateSum the high-order and low-order words of the intermediate sum
536      * @param value the name value to be included in the running sum
537      */
538     static double[] sumWithCompensation(double[] intermediateSum, double value) {
539         double tmp = value - intermediateSum[1];
540         double sum = intermediateSum[0];
541         double velvel = sum + tmp; // Little wolf of rounding error
542         intermediateSum[1] = (velvel - sum) - tmp;
543         intermediateSum[0] = velvel;
544         return intermediateSum;
545     }
546 
547     /**
548      * If the compensated sum is spuriously NaN from accumulating one
549      * or more same-signed infinite values, return the
550      * correctly-signed infinity stored in the simple sum.
551      */
552     static double computeFinalSum(double[] summands) {
553         // Better error bounds to add both terms as the final sum
554         double tmp = summands[0] + summands[1];
555         double simpleSum = summands[summands.length - 1];
556         if (Double.isNaN(tmp) && Double.isInfinite(simpleSum))
557             return simpleSum;
558         else
559             return tmp;
560     }
561 
562     /**
563      * Returns a {@code Collector} that produces the arithmetic mean of an integer-valued
564      * function applied to the input elements.  If no elements are present,
565      * the result is 0.
566      *
567      * @param <T> the type of the input elements
568      * @param mapper a function extracting the property to be summed
569      * @return a {@code Collector} that produces the sum of a derived property
570      */
571     public static <T> Collector<T, ?, Double>
572     averagingInt(ToIntFunction<? super T> mapper) {
573         return new CollectorImpl<>(
574                 () -> new long[2],
575                 (a, t) -> { a[0] += mapper.applyAsInt(t); a[1]++; },
576                 (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; },
577                 a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID);
578     }
579 
580     /**
581      * Returns a {@code Collector} that produces the arithmetic mean of a long-valued
582      * function applied to the input elements.  If no elements are present,
583      * the result is 0.
584      *
585      * @param <T> the type of the input elements
586      * @param mapper a function extracting the property to be summed
587      * @return a {@code Collector} that produces the sum of a derived property
588      */
589     public static <T> Collector<T, ?, Double>
590     averagingLong(ToLongFunction<? super T> mapper) {
591         return new CollectorImpl<>(
592                 () -> new long[2],
593                 (a, t) -> { a[0] += mapper.applyAsLong(t); a[1]++; },
594                 (a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; },
595                 a -> (a[1] == 0) ? 0.0d : (double) a[0] / a[1], CH_NOID);
596     }
597 
598     /**
599      * Returns a {@code Collector} that produces the arithmetic mean of a double-valued
600      * function applied to the input elements.  If no elements are present,
601      * the result is 0.
602      *
603      * <p>The average returned can vary depending upon the order in which
604      * values are recorded, due to accumulated rounding error in
605      * addition of values of differing magnitudes. Values sorted by increasing
606      * absolute magnitude tend to yield more accurate results.  If any recorded
607      * value is a {@code NaN} or the sum is at any point a {@code NaN} then the
608      * average will be {@code NaN}.
609      *
610      * @implNote The {@code double} format can represent all
611      * consecutive integers in the range -2<sup>53</sup> to
612      * 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup>
613      * values, the divisor in the average computation will saturate at
614      * 2<sup>53</sup>, leading to additional numerical errors.
615      *
616      * @param <T> the type of the input elements
617      * @param mapper a function extracting the property to be summed
618      * @return a {@code Collector} that produces the sum of a derived property
619      */
620     public static <T> Collector<T, ?, Double>
621     averagingDouble(ToDoubleFunction<? super T> mapper) {
622         /*
623          * In the arrays allocated for the collect operation, index 0
624          * holds the high-order bits of the running sum, index 1 holds
625          * the low-order bits of the sum computed via compensated
626          * summation, and index 2 holds the number of values seen.
627          */
628         return new CollectorImpl<>(
629                 () -> new double[4],
630                 (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2]++; a[3]+= mapper.applyAsDouble(t);},
631                 (a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; a[3] += b[3]; return a; },
632                 a -> (a[2] == 0) ? 0.0d : (computeFinalSum(a) / a[2]),
633                 CH_NOID);
634     }
635 
636     /**
637      * Returns a {@code Collector} which performs a reduction of its
638      * input elements under a specified {@code BinaryOperator} using the
639      * provided identity.
640      *
641      * @apiNote
642      * The {@code reducing()} collectors are most useful when used in a
643      * multi-level reduction, downstream of {@code groupingBy} or
644      * {@code partitioningBy}.  To perform a simple reduction on a stream,
645      * use {@link Stream#reduce(Object, BinaryOperator)}} instead.
646      *
647      * @param <T> element type for the input and output of the reduction
648      * @param identity the identity value for the reduction (also, the value
649      *                 that is returned when there are no input elements)
650      * @param op a {@code BinaryOperator<T>} used to reduce the input elements
651      * @return a {@code Collector} which implements the reduction operation
652      *
653      * @see #reducing(BinaryOperator)
654      * @see #reducing(Object, Function, BinaryOperator)
655      */
656     public static <T> Collector<T, ?, T>
657     reducing(T identity, BinaryOperator<T> op) {
658         return new CollectorImpl<>(
659                 boxSupplier(identity),
660                 (a, t) -> { a[0] = op.apply(a[0], t); },
661                 (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; },
662                 a -> a[0],
663                 CH_NOID);
664     }
665 
666     @SuppressWarnings("unchecked")
667     private static <T> Supplier<T[]> boxSupplier(T identity) {
668         return () -> (T[]) new Object[] { identity };
669     }
670 
671     /**
672      * Returns a {@code Collector} which performs a reduction of its
673      * input elements under a specified {@code BinaryOperator}.  The result
674      * is described as an {@code Optional<T>}.
675      *
676      * @apiNote
677      * The {@code reducing()} collectors are most useful when used in a
678      * multi-level reduction, downstream of {@code groupingBy} or
679      * {@code partitioningBy}.  To perform a simple reduction on a stream,
680      * use {@link Stream#reduce(BinaryOperator)} instead.
681      *
682      * <p>For example, given a stream of {@code Person}, to calculate tallest
683      * person in each city:
684      * <pre>{@code
685      *     Comparator<Person> byHeight = Comparator.comparing(Person::getHeight);
686      *     Map<City, Person> tallestByCity
687      *         = people.stream().collect(groupingBy(Person::getCity, reducing(BinaryOperator.maxBy(byHeight))));
688      * }</pre>
689      *
690      * @param <T> element type for the input and output of the reduction
691      * @param op a {@code BinaryOperator<T>} used to reduce the input elements
692      * @return a {@code Collector} which implements the reduction operation
693      *
694      * @see #reducing(Object, BinaryOperator)
695      * @see #reducing(Object, Function, BinaryOperator)
696      */
697     public static <T> Collector<T, ?, Optional<T>>
698     reducing(BinaryOperator<T> op) {
699         class OptionalBox implements Consumer<T> {
700             T value = null;
701             boolean present = false;
702 
703             @Override
704             public void accept(T t) {
705                 if (present) {
706                     value = op.apply(value, t);
707                 }
708                 else {
709                     value = t;
710                     present = true;
711                 }
712             }
713         }
714 
715         return new CollectorImpl<T, OptionalBox, Optional<T>>(
716                 OptionalBox::new, OptionalBox::accept,
717                 (a, b) -> { if (b.present) a.accept(b.value); return a; },
718                 a -> Optional.ofNullable(a.value), CH_NOID);
719     }
720 
721     /**
722      * Returns a {@code Collector} which performs a reduction of its
723      * input elements under a specified mapping function and
724      * {@code BinaryOperator}. This is a generalization of
725      * {@link #reducing(Object, BinaryOperator)} which allows a transformation
726      * of the elements before reduction.
727      *
728      * @apiNote
729      * The {@code reducing()} collectors are most useful when used in a
730      * multi-level reduction, downstream of {@code groupingBy} or
731      * {@code partitioningBy}.  To perform a simple map-reduce on a stream,
732      * use {@link Stream#map(Function)} and {@link Stream#reduce(Object, BinaryOperator)}
733      * instead.
734      *
735      * <p>For example, given a stream of {@code Person}, to calculate the longest
736      * last name of residents in each city:
737      * <pre>{@code
738      *     Comparator<String> byLength = Comparator.comparing(String::length);
739      *     Map<City, String> longestLastNameByCity
740      *         = people.stream().collect(groupingBy(Person::getCity,
741      *                                              reducing(Person::getLastName, BinaryOperator.maxBy(byLength))));
742      * }</pre>
743      *
744      * @param <T> the type of the input elements
745      * @param <U> the type of the mapped values
746      * @param identity the identity value for the reduction (also, the value
747      *                 that is returned when there are no input elements)
748      * @param mapper a mapping function to apply to each input value
749      * @param op a {@code BinaryOperator<U>} used to reduce the mapped values
750      * @return a {@code Collector} implementing the map-reduce operation
751      *
752      * @see #reducing(Object, BinaryOperator)
753      * @see #reducing(BinaryOperator)
754      */
755     public static <T, U>
756     Collector<T, ?, U> reducing(U identity,
757                                 Function<? super T, ? extends U> mapper,
758                                 BinaryOperator<U> op) {
759         return new CollectorImpl<>(
760                 boxSupplier(identity),
761                 (a, t) -> { a[0] = op.apply(a[0], mapper.apply(t)); },
762                 (a, b) -> { a[0] = op.apply(a[0], b[0]); return a; },
763                 a -> a[0], CH_NOID);
764     }
765 
766     /**
767      * Returns a {@code Collector} implementing a "group by" operation on
768      * input elements of type {@code T}, grouping elements according to a
769      * classification function, and returning the results in a {@code Map}.
770      *
771      * <p>The classification function maps elements to some key type {@code K}.
772      * The collector produces a {@code Map<K, List<T>>} whose keys are the
773      * values resulting from applying the classification function to the input
774      * elements, and whose corresponding values are {@code List}s containing the
775      * input elements which map to the associated key under the classification
776      * function.
777      *
778      * <p>There are no guarantees on the type, mutability, serializability, or
779      * thread-safety of the {@code Map} or {@code List} objects returned.
780      * @implSpec
781      * This produces a result similar to:
782      * <pre>{@code
783      *     groupingBy(classifier, toList());
784      * }</pre>
785      *
786      * @implNote
787      * The returned {@code Collector} is not concurrent.  For parallel stream
788      * pipelines, the {@code combiner} function operates by merging the keys
789      * from one map into another, which can be an expensive operation.  If
790      * preservation of the order in which elements appear in the resulting {@code Map}
791      * collector is not required, using {@link #groupingByConcurrent(Function)}
792      * may offer better parallel performance.
793      *
794      * @param <T> the type of the input elements
795      * @param <K> the type of the keys
796      * @param classifier the classifier function mapping input elements to keys
797      * @return a {@code Collector} implementing the group-by operation
798      *
799      * @see #groupingBy(Function, Collector)
800      * @see #groupingBy(Function, Supplier, Collector)
801      * @see #groupingByConcurrent(Function)
802      */
803     public static <T, K> Collector<T, ?, Map<K, List<T>>>
804     groupingBy(Function<? super T, ? extends K> classifier) {
805         return groupingBy(classifier, toList());
806     }
807 
808     /**
809      * Returns a {@code Collector} implementing a cascaded "group by" operation
810      * on input elements of type {@code T}, grouping elements according to a
811      * classification function, and then performing a reduction operation on
812      * the values associated with a given key using the specified downstream
813      * {@code Collector}.
814      *
815      * <p>The classification function maps elements to some key type {@code K}.
816      * The downstream collector operates on elements of type {@code T} and
817      * produces a result of type {@code D}. The resulting collector produces a
818      * {@code Map<K, D>}.
819      *
820      * <p>There are no guarantees on the type, mutability,
821      * serializability, or thread-safety of the {@code Map} returned.
822      *
823      * <p>For example, to compute the set of last names of people in each city:
824      * <pre>{@code
825      *     Map<City, Set<String>> namesByCity
826      *         = people.stream().collect(groupingBy(Person::getCity,
827      *                                              mapping(Person::getLastName, toSet())));
828      * }</pre>
829      *
830      * @implNote
831      * The returned {@code Collector} is not concurrent.  For parallel stream
832      * pipelines, the {@code combiner} function operates by merging the keys
833      * from one map into another, which can be an expensive operation.  If
834      * preservation of the order in which elements are presented to the downstream
835      * collector is not required, using {@link #groupingByConcurrent(Function, Collector)}
836      * may offer better parallel performance.
837      *
838      * @param <T> the type of the input elements
839      * @param <K> the type of the keys
840      * @param <A> the intermediate accumulation type of the downstream collector
841      * @param <D> the result type of the downstream reduction
842      * @param classifier a classifier function mapping input elements to keys
843      * @param downstream a {@code Collector} implementing the downstream reduction
844      * @return a {@code Collector} implementing the cascaded group-by operation
845      * @see #groupingBy(Function)
846      *
847      * @see #groupingBy(Function, Supplier, Collector)
848      * @see #groupingByConcurrent(Function, Collector)
849      */
850     public static <T, K, A, D>
851     Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier,
852                                           Collector<? super T, A, D> downstream) {
853         return groupingBy(classifier, HashMap::new, downstream);
854     }
855 
856     /**
857      * Returns a {@code Collector} implementing a cascaded "group by" operation
858      * on input elements of type {@code T}, grouping elements according to a
859      * classification function, and then performing a reduction operation on
860      * the values associated with a given key using the specified downstream
861      * {@code Collector}.  The {@code Map} produced by the Collector is created
862      * with the supplied factory function.
863      *
864      * <p>The classification function maps elements to some key type {@code K}.
865      * The downstream collector operates on elements of type {@code T} and
866      * produces a result of type {@code D}. The resulting collector produces a
867      * {@code Map<K, D>}.
868      *
869      * <p>For example, to compute the set of last names of people in each city,
870      * where the city names are sorted:
871      * <pre>{@code
872      *     Map<City, Set<String>> namesByCity
873      *         = people.stream().collect(groupingBy(Person::getCity, TreeMap::new,
874      *                                              mapping(Person::getLastName, toSet())));
875      * }</pre>
876      *
877      * @implNote
878      * The returned {@code Collector} is not concurrent.  For parallel stream
879      * pipelines, the {@code combiner} function operates by merging the keys
880      * from one map into another, which can be an expensive operation.  If
881      * preservation of the order in which elements are presented to the downstream
882      * collector is not required, using {@link #groupingByConcurrent(Function, Supplier, Collector)}
883      * may offer better parallel performance.
884      *
885      * @param <T> the type of the input elements
886      * @param <K> the type of the keys
887      * @param <A> the intermediate accumulation type of the downstream collector
888      * @param <D> the result type of the downstream reduction
889      * @param <M> the type of the resulting {@code Map}
890      * @param classifier a classifier function mapping input elements to keys
891      * @param downstream a {@code Collector} implementing the downstream reduction
892      * @param mapFactory a function which, when called, produces a new empty
893      *                   {@code Map} of the desired type
894      * @return a {@code Collector} implementing the cascaded group-by operation
895      *
896      * @see #groupingBy(Function, Collector)
897      * @see #groupingBy(Function)
898      * @see #groupingByConcurrent(Function, Supplier, Collector)
899      */
900     public static <T, K, D, A, M extends Map<K, D>>
901     Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier,
902                                   Supplier<M> mapFactory,
903                                   Collector<? super T, A, D> downstream) {
904         Supplier<A> downstreamSupplier = downstream.supplier();
905         BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator();
906         BiConsumer<Map<K, A>, T> accumulator = (m, t) -> {
907             K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
908             A container = m.computeIfAbsent(key, k -> downstreamSupplier.get());
909             downstreamAccumulator.accept(container, t);
910         };
911         BinaryOperator<Map<K, A>> merger = Collectors.<K, A, Map<K, A>>mapMerger(downstream.combiner());
912         @SuppressWarnings("unchecked")
913         Supplier<Map<K, A>> mangledFactory = (Supplier<Map<K, A>>) mapFactory;
914 
915         if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) {
916             return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_ID);
917         }
918         else {
919             @SuppressWarnings("unchecked")
920             Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher();
921             Function<Map<K, A>, M> finisher = intermediate -> {
922                 intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v));
923                 @SuppressWarnings("unchecked")
924                 M castResult = (M) intermediate;
925                 return castResult;
926             };
927             return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_NOID);
928         }
929     }
930 
931     /**
932      * Returns a concurrent {@code Collector} implementing a "group by"
933      * operation on input elements of type {@code T}, grouping elements
934      * according to a classification function.
935      *
936      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
937      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
938      *
939      * <p>The classification function maps elements to some key type {@code K}.
940      * The collector produces a {@code ConcurrentMap<K, List<T>>} whose keys are the
941      * values resulting from applying the classification function to the input
942      * elements, and whose corresponding values are {@code List}s containing the
943      * input elements which map to the associated key under the classification
944      * function.
945      *
946      * <p>There are no guarantees on the type, mutability, or serializability
947      * of the {@code Map} or {@code List} objects returned, or of the
948      * thread-safety of the {@code List} objects returned.
949      * @implSpec
950      * This produces a result similar to:
951      * <pre>{@code
952      *     groupingByConcurrent(classifier, toList());
953      * }</pre>
954      *
955      * @param <T> the type of the input elements
956      * @param <K> the type of the keys
957      * @param classifier a classifier function mapping input elements to keys
958      * @return a concurrent, unordered {@code Collector} implementing the group-by operation
959      *
960      * @see #groupingBy(Function)
961      * @see #groupingByConcurrent(Function, Collector)
962      * @see #groupingByConcurrent(Function, Supplier, Collector)
963      */
964     public static <T, K>
965     Collector<T, ?, ConcurrentMap<K, List<T>>>
966     groupingByConcurrent(Function<? super T, ? extends K> classifier) {
967         return groupingByConcurrent(classifier, ConcurrentHashMap::new, toList());
968     }
969 
970     /**
971      * Returns a concurrent {@code Collector} implementing a cascaded "group by"
972      * operation on input elements of type {@code T}, grouping elements
973      * according to a classification function, and then performing a reduction
974      * operation on the values associated with a given key using the specified
975      * downstream {@code Collector}.
976      *
977      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
978      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
979      *
980      * <p>The classification function maps elements to some key type {@code K}.
981      * The downstream collector operates on elements of type {@code T} and
982      * produces a result of type {@code D}. The resulting collector produces a
983      * {@code Map<K, D>}.
984      *
985      * <p>For example, to compute the set of last names of people in each city,
986      * where the city names are sorted:
987      * <pre>{@code
988      *     ConcurrentMap<City, Set<String>> namesByCity
989      *         = people.stream().collect(groupingByConcurrent(Person::getCity,
990      *                                                        mapping(Person::getLastName, toSet())));
991      * }</pre>
992      *
993      * @param <T> the type of the input elements
994      * @param <K> the type of the keys
995      * @param <A> the intermediate accumulation type of the downstream collector
996      * @param <D> the result type of the downstream reduction
997      * @param classifier a classifier function mapping input elements to keys
998      * @param downstream a {@code Collector} implementing the downstream reduction
999      * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation
1000      *
1001      * @see #groupingBy(Function, Collector)
1002      * @see #groupingByConcurrent(Function)
1003      * @see #groupingByConcurrent(Function, Supplier, Collector)
1004      */
1005     public static <T, K, A, D>
1006     Collector<T, ?, ConcurrentMap<K, D>> groupingByConcurrent(Function<? super T, ? extends K> classifier,
1007                                                               Collector<? super T, A, D> downstream) {
1008         return groupingByConcurrent(classifier, ConcurrentHashMap::new, downstream);
1009     }
1010 
1011     /**
1012      * Returns a concurrent {@code Collector} implementing a cascaded "group by"
1013      * operation on input elements of type {@code T}, grouping elements
1014      * according to a classification function, and then performing a reduction
1015      * operation on the values associated with a given key using the specified
1016      * downstream {@code Collector}.  The {@code ConcurrentMap} produced by the
1017      * Collector is created with the supplied factory function.
1018      *
1019      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1020      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1021      *
1022      * <p>The classification function maps elements to some key type {@code K}.
1023      * The downstream collector operates on elements of type {@code T} and
1024      * produces a result of type {@code D}. The resulting collector produces a
1025      * {@code Map<K, D>}.
1026      *
1027      * <p>For example, to compute the set of last names of people in each city,
1028      * where the city names are sorted:
1029      * <pre>{@code
1030      *     ConcurrentMap<City, Set<String>> namesByCity
1031      *         = people.stream().collect(groupingBy(Person::getCity, ConcurrentSkipListMap::new,
1032      *                                              mapping(Person::getLastName, toSet())));
1033      * }</pre>
1034      *
1035      *
1036      * @param <T> the type of the input elements
1037      * @param <K> the type of the keys
1038      * @param <A> the intermediate accumulation type of the downstream collector
1039      * @param <D> the result type of the downstream reduction
1040      * @param <M> the type of the resulting {@code ConcurrentMap}
1041      * @param classifier a classifier function mapping input elements to keys
1042      * @param downstream a {@code Collector} implementing the downstream reduction
1043      * @param mapFactory a function which, when called, produces a new empty
1044      *                   {@code ConcurrentMap} of the desired type
1045      * @return a concurrent, unordered {@code Collector} implementing the cascaded group-by operation
1046      *
1047      * @see #groupingByConcurrent(Function)
1048      * @see #groupingByConcurrent(Function, Collector)
1049      * @see #groupingBy(Function, Supplier, Collector)
1050      */
1051     public static <T, K, A, D, M extends ConcurrentMap<K, D>>
1052     Collector<T, ?, M> groupingByConcurrent(Function<? super T, ? extends K> classifier,
1053                                             Supplier<M> mapFactory,
1054                                             Collector<? super T, A, D> downstream) {
1055         Supplier<A> downstreamSupplier = downstream.supplier();
1056         BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator();
1057         BinaryOperator<ConcurrentMap<K, A>> merger = Collectors.<K, A, ConcurrentMap<K, A>>mapMerger(downstream.combiner());
1058         @SuppressWarnings("unchecked")
1059         Supplier<ConcurrentMap<K, A>> mangledFactory = (Supplier<ConcurrentMap<K, A>>) mapFactory;
1060         BiConsumer<ConcurrentMap<K, A>, T> accumulator;
1061         if (downstream.characteristics().contains(Collector.Characteristics.CONCURRENT)) {
1062             accumulator = (m, t) -> {
1063                 K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
1064                 A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get());
1065                 downstreamAccumulator.accept(resultContainer, t);
1066             };
1067         }
1068         else {
1069             accumulator = (m, t) -> {
1070                 K key = Objects.requireNonNull(classifier.apply(t), "element cannot be mapped to a null key");
1071                 A resultContainer = m.computeIfAbsent(key, k -> downstreamSupplier.get());
1072                 synchronized (resultContainer) {
1073                     downstreamAccumulator.accept(resultContainer, t);
1074                 }
1075             };
1076         }
1077 
1078         if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) {
1079             return new CollectorImpl<>(mangledFactory, accumulator, merger, CH_CONCURRENT_ID);
1080         }
1081         else {
1082             @SuppressWarnings("unchecked")
1083             Function<A, A> downstreamFinisher = (Function<A, A>) downstream.finisher();
1084             Function<ConcurrentMap<K, A>, M> finisher = intermediate -> {
1085                 intermediate.replaceAll((k, v) -> downstreamFinisher.apply(v));
1086                 @SuppressWarnings("unchecked")
1087                 M castResult = (M) intermediate;
1088                 return castResult;
1089             };
1090             return new CollectorImpl<>(mangledFactory, accumulator, merger, finisher, CH_CONCURRENT_NOID);
1091         }
1092     }
1093 
1094     /**
1095      * Returns a {@code Collector} which partitions the input elements according
1096      * to a {@code Predicate}, and organizes them into a
1097      * {@code Map<Boolean, List<T>>}.
1098      *
1099      * There are no guarantees on the type, mutability,
1100      * serializability, or thread-safety of the {@code Map} returned.
1101      *
1102      * @param <T> the type of the input elements
1103      * @param predicate a predicate used for classifying input elements
1104      * @return a {@code Collector} implementing the partitioning operation
1105      *
1106      * @see #partitioningBy(Predicate, Collector)
1107      */
1108     public static <T>
1109     Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) {
1110         return partitioningBy(predicate, toList());
1111     }
1112 
1113     /**
1114      * Returns a {@code Collector} which partitions the input elements according
1115      * to a {@code Predicate}, reduces the values in each partition according to
1116      * another {@code Collector}, and organizes them into a
1117      * {@code Map<Boolean, D>} whose values are the result of the downstream
1118      * reduction.
1119      *
1120      * <p>There are no guarantees on the type, mutability,
1121      * serializability, or thread-safety of the {@code Map} returned.
1122      *
1123      * @param <T> the type of the input elements
1124      * @param <A> the intermediate accumulation type of the downstream collector
1125      * @param <D> the result type of the downstream reduction
1126      * @param predicate a predicate used for classifying input elements
1127      * @param downstream a {@code Collector} implementing the downstream
1128      *                   reduction
1129      * @return a {@code Collector} implementing the cascaded partitioning
1130      *         operation
1131      *
1132      * @see #partitioningBy(Predicate)
1133      */
1134     public static <T, D, A>
1135     Collector<T, ?, Map<Boolean, D>> partitioningBy(Predicate<? super T> predicate,
1136                                                     Collector<? super T, A, D> downstream) {
1137         BiConsumer<A, ? super T> downstreamAccumulator = downstream.accumulator();
1138         BiConsumer<Partition<A>, T> accumulator = (result, t) ->
1139                 downstreamAccumulator.accept(predicate.test(t) ? result.forTrue : result.forFalse, t);
1140         BinaryOperator<A> op = downstream.combiner();
1141         BinaryOperator<Partition<A>> merger = (left, right) ->
1142                 new Partition<>(op.apply(left.forTrue, right.forTrue),
1143                                 op.apply(left.forFalse, right.forFalse));
1144         Supplier<Partition<A>> supplier = () ->
1145                 new Partition<>(downstream.supplier().get(),
1146                                 downstream.supplier().get());
1147         if (downstream.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)) {
1148             return new CollectorImpl<>(supplier, accumulator, merger, CH_ID);
1149         }
1150         else {
1151             Function<Partition<A>, Map<Boolean, D>> finisher = par ->
1152                     new Partition<>(downstream.finisher().apply(par.forTrue),
1153                                     downstream.finisher().apply(par.forFalse));
1154             return new CollectorImpl<>(supplier, accumulator, merger, finisher, CH_NOID);
1155         }
1156     }
1157 
1158     /**
1159      * Returns a {@code Collector} that accumulates elements into a
1160      * {@code Map} whose keys and values are the result of applying the provided
1161      * mapping functions to the input elements.
1162      *
1163      * <p>If the mapped keys contains duplicates (according to
1164      * {@link Object#equals(Object)}), an {@code IllegalStateException} is
1165      * thrown when the collection operation is performed.  If the mapped keys
1166      * may have duplicates, use {@link #toMap(Function, Function, BinaryOperator)}
1167      * instead.
1168      *
1169      * @apiNote
1170      * It is common for either the key or the value to be the input elements.
1171      * In this case, the utility method
1172      * {@link java.util.function.Function#identity()} may be helpful.
1173      * For example, the following produces a {@code Map} mapping
1174      * students to their grade point average:
1175      * <pre>{@code
1176      *     Map<Student, Double> studentToGPA
1177      *         students.stream().collect(toMap(Functions.identity(),
1178      *                                         student -> computeGPA(student)));
1179      * }</pre>
1180      * And the following produces a {@code Map} mapping a unique identifier to
1181      * students:
1182      * <pre>{@code
1183      *     Map<String, Student> studentIdToStudent
1184      *         students.stream().collect(toMap(Student::getId,
1185      *                                         Functions.identity());
1186      * }</pre>
1187      *
1188      * @implNote
1189      * The returned {@code Collector} is not concurrent.  For parallel stream
1190      * pipelines, the {@code combiner} function operates by merging the keys
1191      * from one map into another, which can be an expensive operation.  If it is
1192      * not required that results are inserted into the {@code Map} in encounter
1193      * order, using {@link #toConcurrentMap(Function, Function)}
1194      * may offer better parallel performance.
1195      *
1196      * @param <T> the type of the input elements
1197      * @param <K> the output type of the key mapping function
1198      * @param <U> the output type of the value mapping function
1199      * @param keyMapper a mapping function to produce keys
1200      * @param valueMapper a mapping function to produce values
1201      * @return a {@code Collector} which collects elements into a {@code Map}
1202      * whose keys and values are the result of applying mapping functions to
1203      * the input elements
1204      *
1205      * @see #toMap(Function, Function, BinaryOperator)
1206      * @see #toMap(Function, Function, BinaryOperator, Supplier)
1207      * @see #toConcurrentMap(Function, Function)
1208      */
1209     public static <T, K, U>
1210     Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
1211                                     Function<? super T, ? extends U> valueMapper) {
1212         return toMap(keyMapper, valueMapper, throwingMerger(), HashMap::new);
1213     }
1214 
1215     /**
1216      * Returns a {@code Collector} that accumulates elements into a
1217      * {@code Map} whose keys and values are the result of applying the provided
1218      * mapping functions to the input elements.
1219      *
1220      * <p>If the mapped
1221      * keys contains duplicates (according to {@link Object#equals(Object)}),
1222      * the value mapping function is applied to each equal element, and the
1223      * results are merged using the provided merging function.
1224      *
1225      * @apiNote
1226      * There are multiple ways to deal with collisions between multiple elements
1227      * mapping to the same key.  The other forms of {@code toMap} simply use
1228      * a merge function that throws unconditionally, but you can easily write
1229      * more flexible merge policies.  For example, if you have a stream
1230      * of {@code Person}, and you want to produce a "phone book" mapping name to
1231      * address, but it is possible that two persons have the same name, you can
1232      * do as follows to gracefully deals with these collisions, and produce a
1233      * {@code Map} mapping names to a concatenated list of addresses:
1234      * <pre>{@code
1235      *     Map<String, String> phoneBook
1236      *         people.stream().collect(toMap(Person::getName,
1237      *                                       Person::getAddress,
1238      *                                       (s, a) -> s + ", " + a));
1239      * }</pre>
1240      *
1241      * @implNote
1242      * The returned {@code Collector} is not concurrent.  For parallel stream
1243      * pipelines, the {@code combiner} function operates by merging the keys
1244      * from one map into another, which can be an expensive operation.  If it is
1245      * not required that results are merged into the {@code Map} in encounter
1246      * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator)}
1247      * may offer better parallel performance.
1248      *
1249      * @param <T> the type of the input elements
1250      * @param <K> the output type of the key mapping function
1251      * @param <U> the output type of the value mapping function
1252      * @param keyMapper a mapping function to produce keys
1253      * @param valueMapper a mapping function to produce values
1254      * @param mergeFunction a merge function, used to resolve collisions between
1255      *                      values associated with the same key, as supplied
1256      *                      to {@link Map#merge(Object, Object, BiFunction)}
1257      * @return a {@code Collector} which collects elements into a {@code Map}
1258      * whose keys are the result of applying a key mapping function to the input
1259      * elements, and whose values are the result of applying a value mapping
1260      * function to all input elements equal to the key and combining them
1261      * using the merge function
1262      *
1263      * @see #toMap(Function, Function)
1264      * @see #toMap(Function, Function, BinaryOperator, Supplier)
1265      * @see #toConcurrentMap(Function, Function, BinaryOperator)
1266      */
1267     public static <T, K, U>
1268     Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
1269                                     Function<? super T, ? extends U> valueMapper,
1270                                     BinaryOperator<U> mergeFunction) {
1271         return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new);
1272     }
1273 
1274     /**
1275      * Returns a {@code Collector} that accumulates elements into a
1276      * {@code Map} whose keys and values are the result of applying the provided
1277      * mapping functions to the input elements.
1278      *
1279      * <p>If the mapped
1280      * keys contains duplicates (according to {@link Object#equals(Object)}),
1281      * the value mapping function is applied to each equal element, and the
1282      * results are merged using the provided merging function.  The {@code Map}
1283      * is created by a provided supplier function.
1284      *
1285      * @implNote
1286      * The returned {@code Collector} is not concurrent.  For parallel stream
1287      * pipelines, the {@code combiner} function operates by merging the keys
1288      * from one map into another, which can be an expensive operation.  If it is
1289      * not required that results are merged into the {@code Map} in encounter
1290      * order, using {@link #toConcurrentMap(Function, Function, BinaryOperator, Supplier)}
1291      * may offer better parallel performance.
1292      *
1293      * @param <T> the type of the input elements
1294      * @param <K> the output type of the key mapping function
1295      * @param <U> the output type of the value mapping function
1296      * @param <M> the type of the resulting {@code Map}
1297      * @param keyMapper a mapping function to produce keys
1298      * @param valueMapper a mapping function to produce values
1299      * @param mergeFunction a merge function, used to resolve collisions between
1300      *                      values associated with the same key, as supplied
1301      *                      to {@link Map#merge(Object, Object, BiFunction)}
1302      * @param mapSupplier a function which returns a new, empty {@code Map} into
1303      *                    which the results will be inserted
1304      * @return a {@code Collector} which collects elements into a {@code Map}
1305      * whose keys are the result of applying a key mapping function to the input
1306      * elements, and whose values are the result of applying a value mapping
1307      * function to all input elements equal to the key and combining them
1308      * using the merge function
1309      *
1310      * @see #toMap(Function, Function)
1311      * @see #toMap(Function, Function, BinaryOperator)
1312      * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier)
1313      */
1314     public static <T, K, U, M extends Map<K, U>>
1315     Collector<T, ?, M> toMap(Function<? super T, ? extends K> keyMapper,
1316                                 Function<? super T, ? extends U> valueMapper,
1317                                 BinaryOperator<U> mergeFunction,
1318                                 Supplier<M> mapSupplier) {
1319         BiConsumer<M, T> accumulator
1320                 = (map, element) -> map.merge(keyMapper.apply(element),
1321                                               valueMapper.apply(element), mergeFunction);
1322         return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_ID);
1323     }
1324 
1325     /**
1326      * Returns a concurrent {@code Collector} that accumulates elements into a
1327      * {@code ConcurrentMap} whose keys and values are the result of applying
1328      * the provided mapping functions to the input elements.
1329      *
1330      * <p>If the mapped keys contains duplicates (according to
1331      * {@link Object#equals(Object)}), an {@code IllegalStateException} is
1332      * thrown when the collection operation is performed.  If the mapped keys
1333      * may have duplicates, use
1334      * {@link #toConcurrentMap(Function, Function, BinaryOperator)} instead.
1335      *
1336      * @apiNote
1337      * It is common for either the key or the value to be the input elements.
1338      * In this case, the utility method
1339      * {@link java.util.function.Function#identity()} may be helpful.
1340      * For example, the following produces a {@code Map} mapping
1341      * students to their grade point average:
1342      * <pre>{@code
1343      *     Map<Student, Double> studentToGPA
1344      *         students.stream().collect(toMap(Functions.identity(),
1345      *                                         student -> computeGPA(student)));
1346      * }</pre>
1347      * And the following produces a {@code Map} mapping a unique identifier to
1348      * students:
1349      * <pre>{@code
1350      *     Map<String, Student> studentIdToStudent
1351      *         students.stream().collect(toConcurrentMap(Student::getId,
1352      *                                                   Functions.identity());
1353      * }</pre>
1354      *
1355      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1356      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1357      *
1358      * @param <T> the type of the input elements
1359      * @param <K> the output type of the key mapping function
1360      * @param <U> the output type of the value mapping function
1361      * @param keyMapper the mapping function to produce keys
1362      * @param valueMapper the mapping function to produce values
1363      * @return a concurrent, unordered {@code Collector} which collects elements into a
1364      * {@code ConcurrentMap} whose keys are the result of applying a key mapping
1365      * function to the input elements, and whose values are the result of
1366      * applying a value mapping function to the input elements
1367      *
1368      * @see #toMap(Function, Function)
1369      * @see #toConcurrentMap(Function, Function, BinaryOperator)
1370      * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier)
1371      */
1372     public static <T, K, U>
1373     Collector<T, ?, ConcurrentMap<K,U>> toConcurrentMap(Function<? super T, ? extends K> keyMapper,
1374                                                         Function<? super T, ? extends U> valueMapper) {
1375         return toConcurrentMap(keyMapper, valueMapper, throwingMerger(), ConcurrentHashMap::new);
1376     }
1377 
1378     /**
1379      * Returns a concurrent {@code Collector} that accumulates elements into a
1380      * {@code ConcurrentMap} whose keys and values are the result of applying
1381      * the provided mapping functions to the input elements.
1382      *
1383      * <p>If the mapped keys contains duplicates (according to {@link Object#equals(Object)}),
1384      * the value mapping function is applied to each equal element, and the
1385      * results are merged using the provided merging function.
1386      *
1387      * @apiNote
1388      * There are multiple ways to deal with collisions between multiple elements
1389      * mapping to the same key.  The other forms of {@code toConcurrentMap} simply use
1390      * a merge function that throws unconditionally, but you can easily write
1391      * more flexible merge policies.  For example, if you have a stream
1392      * of {@code Person}, and you want to produce a "phone book" mapping name to
1393      * address, but it is possible that two persons have the same name, you can
1394      * do as follows to gracefully deals with these collisions, and produce a
1395      * {@code Map} mapping names to a concatenated list of addresses:
1396      * <pre>{@code
1397      *     Map<String, String> phoneBook
1398      *         people.stream().collect(toConcurrentMap(Person::getName,
1399      *                                                 Person::getAddress,
1400      *                                                 (s, a) -> s + ", " + a));
1401      * }</pre>
1402      *
1403      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1404      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1405      *
1406      * @param <T> the type of the input elements
1407      * @param <K> the output type of the key mapping function
1408      * @param <U> the output type of the value mapping function
1409      * @param keyMapper a mapping function to produce keys
1410      * @param valueMapper a mapping function to produce values
1411      * @param mergeFunction a merge function, used to resolve collisions between
1412      *                      values associated with the same key, as supplied
1413      *                      to {@link Map#merge(Object, Object, BiFunction)}
1414      * @return a concurrent, unordered {@code Collector} which collects elements into a
1415      * {@code ConcurrentMap} whose keys are the result of applying a key mapping
1416      * function to the input elements, and whose values are the result of
1417      * applying a value mapping function to all input elements equal to the key
1418      * and combining them using the merge function
1419      *
1420      * @see #toConcurrentMap(Function, Function)
1421      * @see #toConcurrentMap(Function, Function, BinaryOperator, Supplier)
1422      * @see #toMap(Function, Function, BinaryOperator)
1423      */
1424     public static <T, K, U>
1425     Collector<T, ?, ConcurrentMap<K,U>>
1426     toConcurrentMap(Function<? super T, ? extends K> keyMapper,
1427                     Function<? super T, ? extends U> valueMapper,
1428                     BinaryOperator<U> mergeFunction) {
1429         return toConcurrentMap(keyMapper, valueMapper, mergeFunction, ConcurrentHashMap::new);
1430     }
1431 
1432     /**
1433      * Returns a concurrent {@code Collector} that accumulates elements into a
1434      * {@code ConcurrentMap} whose keys and values are the result of applying
1435      * the provided mapping functions to the input elements.
1436      *
1437      * <p>If the mapped keys contains duplicates (according to {@link Object#equals(Object)}),
1438      * the value mapping function is applied to each equal element, and the
1439      * results are merged using the provided merging function.  The
1440      * {@code ConcurrentMap} is created by a provided supplier function.
1441      *
1442      * <p>This is a {@link Collector.Characteristics#CONCURRENT concurrent} and
1443      * {@link Collector.Characteristics#UNORDERED unordered} Collector.
1444      *
1445      * @param <T> the type of the input elements
1446      * @param <K> the output type of the key mapping function
1447      * @param <U> the output type of the value mapping function
1448      * @param <M> the type of the resulting {@code ConcurrentMap}
1449      * @param keyMapper a mapping function to produce keys
1450      * @param valueMapper a mapping function to produce values
1451      * @param mergeFunction a merge function, used to resolve collisions between
1452      *                      values associated with the same key, as supplied
1453      *                      to {@link Map#merge(Object, Object, BiFunction)}
1454      * @param mapSupplier a function which returns a new, empty {@code Map} into
1455      *                    which the results will be inserted
1456      * @return a concurrent, unordered {@code Collector} which collects elements into a
1457      * {@code ConcurrentMap} whose keys are the result of applying a key mapping
1458      * function to the input elements, and whose values are the result of
1459      * applying a value mapping function to all input elements equal to the key
1460      * and combining them using the merge function
1461      *
1462      * @see #toConcurrentMap(Function, Function)
1463      * @see #toConcurrentMap(Function, Function, BinaryOperator)
1464      * @see #toMap(Function, Function, BinaryOperator, Supplier)
1465      */
1466     public static <T, K, U, M extends ConcurrentMap<K, U>>
1467     Collector<T, ?, M> toConcurrentMap(Function<? super T, ? extends K> keyMapper,
1468                                        Function<? super T, ? extends U> valueMapper,
1469                                        BinaryOperator<U> mergeFunction,
1470                                        Supplier<M> mapSupplier) {
1471         BiConsumer<M, T> accumulator
1472                 = (map, element) -> map.merge(keyMapper.apply(element),
1473                                               valueMapper.apply(element), mergeFunction);
1474         return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_CONCURRENT_ID);
1475     }
1476 
1477     /**
1478      * Returns a {@code Collector} which applies an {@code int}-producing
1479      * mapping function to each input element, and returns summary statistics
1480      * for the resulting values.
1481      *
1482      * @param <T> the type of the input elements
1483      * @param mapper a mapping function to apply to each element
1484      * @return a {@code Collector} implementing the summary-statistics reduction
1485      *
1486      * @see #summarizingDouble(ToDoubleFunction)
1487      * @see #summarizingLong(ToLongFunction)
1488      */
1489     public static <T>
1490     Collector<T, ?, IntSummaryStatistics> summarizingInt(ToIntFunction<? super T> mapper) {
1491         return new CollectorImpl<T, IntSummaryStatistics, IntSummaryStatistics>(
1492                 IntSummaryStatistics::new,
1493                 (r, t) -> r.accept(mapper.applyAsInt(t)),
1494                 (l, r) -> { l.combine(r); return l; }, CH_ID);
1495     }
1496 
1497     /**
1498      * Returns a {@code Collector} which applies an {@code long}-producing
1499      * mapping function to each input element, and returns summary statistics
1500      * for the resulting values.
1501      *
1502      * @param <T> the type of the input elements
1503      * @param mapper the mapping function to apply to each element
1504      * @return a {@code Collector} implementing the summary-statistics reduction
1505      *
1506      * @see #summarizingDouble(ToDoubleFunction)
1507      * @see #summarizingInt(ToIntFunction)
1508      */
1509     public static <T>
1510     Collector<T, ?, LongSummaryStatistics> summarizingLong(ToLongFunction<? super T> mapper) {
1511         return new CollectorImpl<T, LongSummaryStatistics, LongSummaryStatistics>(
1512                 LongSummaryStatistics::new,
1513                 (r, t) -> r.accept(mapper.applyAsLong(t)),
1514                 (l, r) -> { l.combine(r); return l; }, CH_ID);
1515     }
1516 
1517     /**
1518      * Returns a {@code Collector} which applies an {@code double}-producing
1519      * mapping function to each input element, and returns summary statistics
1520      * for the resulting values.
1521      *
1522      * @param <T> the type of the input elements
1523      * @param mapper a mapping function to apply to each element
1524      * @return a {@code Collector} implementing the summary-statistics reduction
1525      *
1526      * @see #summarizingLong(ToLongFunction)
1527      * @see #summarizingInt(ToIntFunction)
1528      */
1529     public static <T>
1530     Collector<T, ?, DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<? super T> mapper) {
1531         return new CollectorImpl<T, DoubleSummaryStatistics, DoubleSummaryStatistics>(
1532                 DoubleSummaryStatistics::new,
1533                 (r, t) -> r.accept(mapper.applyAsDouble(t)),
1534                 (l, r) -> { l.combine(r); return l; }, CH_ID);
1535     }
1536 
1537     /**
1538      * Implementation class used by partitioningBy.
1539      */
1540     private static final class Partition<T>
1541             extends AbstractMap<Boolean, T>
1542             implements Map<Boolean, T> {
1543         final T forTrue;
1544         final T forFalse;
1545 
1546         Partition(T forTrue, T forFalse) {
1547             this.forTrue = forTrue;
1548             this.forFalse = forFalse;
1549         }
1550 
1551         @Override
1552         public Set<Map.Entry<Boolean, T>> entrySet() {
1553             return new AbstractSet<Map.Entry<Boolean, T>>() {
1554                 @Override
1555                 public Iterator<Map.Entry<Boolean, T>> iterator() {
1556                     Map.Entry<Boolean, T> falseEntry = new SimpleImmutableEntry<>(false, forFalse);
1557                     Map.Entry<Boolean, T> trueEntry = new SimpleImmutableEntry<>(true, forTrue);
1558                     return Arrays.asList(falseEntry, trueEntry).iterator();
1559                 }
1560 
1561                 @Override
1562                 public int size() {
1563                     return 2;
1564                 }
1565             };
1566         }
1567     }
1568 }
1569