1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "VelocityTracker"
18 //#define LOG_NDEBUG 0
19
20 // Log debug messages about velocity tracking.
21 #define DEBUG_VELOCITY 0
22
23 // Log debug messages about the progress of the algorithm itself.
24 #define DEBUG_STRATEGY 0
25
26 #include <array>
27 #include <inttypes.h>
28 #include <limits.h>
29 #include <math.h>
30 #include <optional>
31
32 #include <android-base/stringprintf.h>
33 #include <cutils/properties.h>
34 #include <input/VelocityTracker.h>
35 #include <utils/BitSet.h>
36 #include <utils/Timers.h>
37
38 namespace android {
39
40 // Nanoseconds per milliseconds.
41 static const nsecs_t NANOS_PER_MS = 1000000;
42
43 // Threshold for determining that a pointer has stopped moving.
44 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
45 // stopped. We need to detect this case so that we can accurately predict the
46 // velocity after the pointer starts moving again.
47 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
48
49
vectorDot(const float * a,const float * b,uint32_t m)50 static float vectorDot(const float* a, const float* b, uint32_t m) {
51 float r = 0;
52 for (size_t i = 0; i < m; i++) {
53 r += *(a++) * *(b++);
54 }
55 return r;
56 }
57
vectorNorm(const float * a,uint32_t m)58 static float vectorNorm(const float* a, uint32_t m) {
59 float r = 0;
60 for (size_t i = 0; i < m; i++) {
61 float t = *(a++);
62 r += t * t;
63 }
64 return sqrtf(r);
65 }
66
67 #if DEBUG_STRATEGY || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)68 static std::string vectorToString(const float* a, uint32_t m) {
69 std::string str;
70 str += "[";
71 for (size_t i = 0; i < m; i++) {
72 if (i) {
73 str += ",";
74 }
75 str += android::base::StringPrintf(" %f", *(a++));
76 }
77 str += " ]";
78 return str;
79 }
80 #endif
81
82 #if DEBUG_STRATEGY
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)83 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
84 std::string str;
85 str = "[";
86 for (size_t i = 0; i < m; i++) {
87 if (i) {
88 str += ",";
89 }
90 str += " [";
91 for (size_t j = 0; j < n; j++) {
92 if (j) {
93 str += ",";
94 }
95 str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
96 }
97 str += " ]";
98 }
99 str += " ]";
100 return str;
101 }
102 #endif
103
104
105 // --- VelocityTracker ---
106
107 // The default velocity tracker strategy.
108 // Although other strategies are available for testing and comparison purposes,
109 // this is the strategy that applications will actually use. Be very careful
110 // when adjusting the default strategy because it can dramatically affect
111 // (often in a bad way) the user experience.
112 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
113
VelocityTracker(const char * strategy)114 VelocityTracker::VelocityTracker(const char* strategy) :
115 mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
116 char value[PROPERTY_VALUE_MAX];
117
118 // Allow the default strategy to be overridden using a system property for debugging.
119 if (!strategy) {
120 int length = property_get("persist.input.velocitytracker.strategy", value, nullptr);
121 if (length > 0) {
122 strategy = value;
123 } else {
124 strategy = DEFAULT_STRATEGY;
125 }
126 }
127
128 // Configure the strategy.
129 if (!configureStrategy(strategy)) {
130 ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
131 if (!configureStrategy(DEFAULT_STRATEGY)) {
132 LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
133 strategy);
134 }
135 }
136 }
137
~VelocityTracker()138 VelocityTracker::~VelocityTracker() {
139 delete mStrategy;
140 }
141
configureStrategy(const char * strategy)142 bool VelocityTracker::configureStrategy(const char* strategy) {
143 mStrategy = createStrategy(strategy);
144 return mStrategy != nullptr;
145 }
146
createStrategy(const char * strategy)147 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
148 if (!strcmp("impulse", strategy)) {
149 // Physical model of pushing an object. Quality: VERY GOOD.
150 // Works with duplicate coordinates, unclean finger liftoff.
151 return new ImpulseVelocityTrackerStrategy();
152 }
153 if (!strcmp("lsq1", strategy)) {
154 // 1st order least squares. Quality: POOR.
155 // Frequently underfits the touch data especially when the finger accelerates
156 // or changes direction. Often underestimates velocity. The direction
157 // is overly influenced by historical touch points.
158 return new LeastSquaresVelocityTrackerStrategy(1);
159 }
160 if (!strcmp("lsq2", strategy)) {
161 // 2nd order least squares. Quality: VERY GOOD.
162 // Pretty much ideal, but can be confused by certain kinds of touch data,
163 // particularly if the panel has a tendency to generate delayed,
164 // duplicate or jittery touch coordinates when the finger is released.
165 return new LeastSquaresVelocityTrackerStrategy(2);
166 }
167 if (!strcmp("lsq3", strategy)) {
168 // 3rd order least squares. Quality: UNUSABLE.
169 // Frequently overfits the touch data yielding wildly divergent estimates
170 // of the velocity when the finger is released.
171 return new LeastSquaresVelocityTrackerStrategy(3);
172 }
173 if (!strcmp("wlsq2-delta", strategy)) {
174 // 2nd order weighted least squares, delta weighting. Quality: EXPERIMENTAL
175 return new LeastSquaresVelocityTrackerStrategy(2,
176 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
177 }
178 if (!strcmp("wlsq2-central", strategy)) {
179 // 2nd order weighted least squares, central weighting. Quality: EXPERIMENTAL
180 return new LeastSquaresVelocityTrackerStrategy(2,
181 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
182 }
183 if (!strcmp("wlsq2-recent", strategy)) {
184 // 2nd order weighted least squares, recent weighting. Quality: EXPERIMENTAL
185 return new LeastSquaresVelocityTrackerStrategy(2,
186 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
187 }
188 if (!strcmp("int1", strategy)) {
189 // 1st order integrating filter. Quality: GOOD.
190 // Not as good as 'lsq2' because it cannot estimate acceleration but it is
191 // more tolerant of errors. Like 'lsq1', this strategy tends to underestimate
192 // the velocity of a fling but this strategy tends to respond to changes in
193 // direction more quickly and accurately.
194 return new IntegratingVelocityTrackerStrategy(1);
195 }
196 if (!strcmp("int2", strategy)) {
197 // 2nd order integrating filter. Quality: EXPERIMENTAL.
198 // For comparison purposes only. Unlike 'int1' this strategy can compensate
199 // for acceleration but it typically overestimates the effect.
200 return new IntegratingVelocityTrackerStrategy(2);
201 }
202 if (!strcmp("legacy", strategy)) {
203 // Legacy velocity tracker algorithm. Quality: POOR.
204 // For comparison purposes only. This algorithm is strongly influenced by
205 // old data points, consistently underestimates velocity and takes a very long
206 // time to adjust to changes in direction.
207 return new LegacyVelocityTrackerStrategy();
208 }
209 return nullptr;
210 }
211
clear()212 void VelocityTracker::clear() {
213 mCurrentPointerIdBits.clear();
214 mActivePointerId = -1;
215
216 mStrategy->clear();
217 }
218
clearPointers(BitSet32 idBits)219 void VelocityTracker::clearPointers(BitSet32 idBits) {
220 BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
221 mCurrentPointerIdBits = remainingIdBits;
222
223 if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
224 mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
225 }
226
227 mStrategy->clearPointers(idBits);
228 }
229
addMovement(nsecs_t eventTime,BitSet32 idBits,const Position * positions)230 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
231 while (idBits.count() > MAX_POINTERS) {
232 idBits.clearLastMarkedBit();
233 }
234
235 if ((mCurrentPointerIdBits.value & idBits.value)
236 && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
237 #if DEBUG_VELOCITY
238 ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
239 (eventTime - mLastEventTime) * 0.000001f);
240 #endif
241 // We have not received any movements for too long. Assume that all pointers
242 // have stopped.
243 mStrategy->clear();
244 }
245 mLastEventTime = eventTime;
246
247 mCurrentPointerIdBits = idBits;
248 if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
249 mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
250 }
251
252 mStrategy->addMovement(eventTime, idBits, positions);
253
254 #if DEBUG_VELOCITY
255 ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
256 eventTime, idBits.value, mActivePointerId);
257 for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
258 uint32_t id = iterBits.firstMarkedBit();
259 uint32_t index = idBits.getIndexOfBit(id);
260 iterBits.clearBit(id);
261 Estimator estimator;
262 getEstimator(id, &estimator);
263 ALOGD(" %d: position (%0.3f, %0.3f), "
264 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
265 id, positions[index].x, positions[index].y,
266 int(estimator.degree),
267 vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
268 vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
269 estimator.confidence);
270 }
271 #endif
272 }
273
addMovement(const MotionEvent * event)274 void VelocityTracker::addMovement(const MotionEvent* event) {
275 int32_t actionMasked = event->getActionMasked();
276
277 switch (actionMasked) {
278 case AMOTION_EVENT_ACTION_DOWN:
279 case AMOTION_EVENT_ACTION_HOVER_ENTER:
280 // Clear all pointers on down before adding the new movement.
281 clear();
282 break;
283 case AMOTION_EVENT_ACTION_POINTER_DOWN: {
284 // Start a new movement trace for a pointer that just went down.
285 // We do this on down instead of on up because the client may want to query the
286 // final velocity for a pointer that just went up.
287 BitSet32 downIdBits;
288 downIdBits.markBit(event->getPointerId(event->getActionIndex()));
289 clearPointers(downIdBits);
290 break;
291 }
292 case AMOTION_EVENT_ACTION_MOVE:
293 case AMOTION_EVENT_ACTION_HOVER_MOVE:
294 break;
295 default:
296 // Ignore all other actions because they do not convey any new information about
297 // pointer movement. We also want to preserve the last known velocity of the pointers.
298 // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
299 // of the pointers that went up. ACTION_POINTER_UP does include the new position of
300 // pointers that remained down but we will also receive an ACTION_MOVE with this
301 // information if any of them actually moved. Since we don't know how many pointers
302 // will be going up at once it makes sense to just wait for the following ACTION_MOVE
303 // before adding the movement.
304 return;
305 }
306
307 size_t pointerCount = event->getPointerCount();
308 if (pointerCount > MAX_POINTERS) {
309 pointerCount = MAX_POINTERS;
310 }
311
312 BitSet32 idBits;
313 for (size_t i = 0; i < pointerCount; i++) {
314 idBits.markBit(event->getPointerId(i));
315 }
316
317 uint32_t pointerIndex[MAX_POINTERS];
318 for (size_t i = 0; i < pointerCount; i++) {
319 pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
320 }
321
322 nsecs_t eventTime;
323 Position positions[pointerCount];
324
325 size_t historySize = event->getHistorySize();
326 for (size_t h = 0; h < historySize; h++) {
327 eventTime = event->getHistoricalEventTime(h);
328 for (size_t i = 0; i < pointerCount; i++) {
329 uint32_t index = pointerIndex[i];
330 positions[index].x = event->getHistoricalX(i, h);
331 positions[index].y = event->getHistoricalY(i, h);
332 }
333 addMovement(eventTime, idBits, positions);
334 }
335
336 eventTime = event->getEventTime();
337 for (size_t i = 0; i < pointerCount; i++) {
338 uint32_t index = pointerIndex[i];
339 positions[index].x = event->getX(i);
340 positions[index].y = event->getY(i);
341 }
342 addMovement(eventTime, idBits, positions);
343 }
344
getVelocity(uint32_t id,float * outVx,float * outVy) const345 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
346 Estimator estimator;
347 if (getEstimator(id, &estimator) && estimator.degree >= 1) {
348 *outVx = estimator.xCoeff[1];
349 *outVy = estimator.yCoeff[1];
350 return true;
351 }
352 *outVx = 0;
353 *outVy = 0;
354 return false;
355 }
356
getEstimator(uint32_t id,Estimator * outEstimator) const357 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
358 return mStrategy->getEstimator(id, outEstimator);
359 }
360
361
362 // --- LeastSquaresVelocityTrackerStrategy ---
363
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)364 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
365 uint32_t degree, Weighting weighting) :
366 mDegree(degree), mWeighting(weighting) {
367 clear();
368 }
369
~LeastSquaresVelocityTrackerStrategy()370 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
371 }
372
clear()373 void LeastSquaresVelocityTrackerStrategy::clear() {
374 mIndex = 0;
375 mMovements[0].idBits.clear();
376 }
377
clearPointers(BitSet32 idBits)378 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
379 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
380 mMovements[mIndex].idBits = remainingIdBits;
381 }
382
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)383 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
384 const VelocityTracker::Position* positions) {
385 if (mMovements[mIndex].eventTime != eventTime) {
386 // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
387 // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
388 // the new pointer. If the eventtimes for both events are identical, just update the data
389 // for this time.
390 // We only compare against the last value, as it is likely that addMovement is called
391 // in chronological order as events occur.
392 mIndex++;
393 }
394 if (mIndex == HISTORY_SIZE) {
395 mIndex = 0;
396 }
397
398 Movement& movement = mMovements[mIndex];
399 movement.eventTime = eventTime;
400 movement.idBits = idBits;
401 uint32_t count = idBits.count();
402 for (uint32_t i = 0; i < count; i++) {
403 movement.positions[i] = positions[i];
404 }
405 }
406
407 /**
408 * Solves a linear least squares problem to obtain a N degree polynomial that fits
409 * the specified input data as nearly as possible.
410 *
411 * Returns true if a solution is found, false otherwise.
412 *
413 * The input consists of two vectors of data points X and Y with indices 0..m-1
414 * along with a weight vector W of the same size.
415 *
416 * The output is a vector B with indices 0..n that describes a polynomial
417 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
418 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
419 *
420 * Accordingly, the weight vector W should be initialized by the caller with the
421 * reciprocal square root of the variance of the error in each input data point.
422 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
423 * The weights express the relative importance of each data point. If the weights are
424 * all 1, then the data points are considered to be of equal importance when fitting
425 * the polynomial. It is a good idea to choose weights that diminish the importance
426 * of data points that may have higher than usual error margins.
427 *
428 * Errors among data points are assumed to be independent. W is represented here
429 * as a vector although in the literature it is typically taken to be a diagonal matrix.
430 *
431 * That is to say, the function that generated the input data can be approximated
432 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
433 *
434 * The coefficient of determination (R^2) is also returned to describe the goodness
435 * of fit of the model for the given data. It is a value between 0 and 1, where 1
436 * indicates perfect correspondence.
437 *
438 * This function first expands the X vector to a m by n matrix A such that
439 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
440 * multiplies it by w[i]./
441 *
442 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
443 * and an m by n upper triangular matrix R. Because R is upper triangular (lower
444 * part is all zeroes), we can simplify the decomposition into an m by n matrix
445 * Q1 and a n by n matrix R1 such that A = Q1 R1.
446 *
447 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
448 * to find B.
449 *
450 * For efficiency, we lay out A and Q column-wise in memory because we frequently
451 * operate on the column vectors. Conversely, we lay out R row-wise.
452 *
453 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
454 * http://en.wikipedia.org/wiki/Gram-Schmidt
455 */
solveLeastSquares(const float * x,const float * y,const float * w,uint32_t m,uint32_t n,float * outB,float * outDet)456 static bool solveLeastSquares(const float* x, const float* y,
457 const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
458 #if DEBUG_STRATEGY
459 ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
460 vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
461 vectorToString(w, m).c_str());
462 #endif
463
464 // Expand the X vector to a matrix A, pre-multiplied by the weights.
465 float a[n][m]; // column-major order
466 for (uint32_t h = 0; h < m; h++) {
467 a[0][h] = w[h];
468 for (uint32_t i = 1; i < n; i++) {
469 a[i][h] = a[i - 1][h] * x[h];
470 }
471 }
472 #if DEBUG_STRATEGY
473 ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
474 #endif
475
476 // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
477 float q[n][m]; // orthonormal basis, column-major order
478 float r[n][n]; // upper triangular matrix, row-major order
479 for (uint32_t j = 0; j < n; j++) {
480 for (uint32_t h = 0; h < m; h++) {
481 q[j][h] = a[j][h];
482 }
483 for (uint32_t i = 0; i < j; i++) {
484 float dot = vectorDot(&q[j][0], &q[i][0], m);
485 for (uint32_t h = 0; h < m; h++) {
486 q[j][h] -= dot * q[i][h];
487 }
488 }
489
490 float norm = vectorNorm(&q[j][0], m);
491 if (norm < 0.000001f) {
492 // vectors are linearly dependent or zero so no solution
493 #if DEBUG_STRATEGY
494 ALOGD(" - no solution, norm=%f", norm);
495 #endif
496 return false;
497 }
498
499 float invNorm = 1.0f / norm;
500 for (uint32_t h = 0; h < m; h++) {
501 q[j][h] *= invNorm;
502 }
503 for (uint32_t i = 0; i < n; i++) {
504 r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
505 }
506 }
507 #if DEBUG_STRATEGY
508 ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
509 ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
510
511 // calculate QR, if we factored A correctly then QR should equal A
512 float qr[n][m];
513 for (uint32_t h = 0; h < m; h++) {
514 for (uint32_t i = 0; i < n; i++) {
515 qr[i][h] = 0;
516 for (uint32_t j = 0; j < n; j++) {
517 qr[i][h] += q[j][h] * r[j][i];
518 }
519 }
520 }
521 ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
522 #endif
523
524 // Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
525 // We just work from bottom-right to top-left calculating B's coefficients.
526 float wy[m];
527 for (uint32_t h = 0; h < m; h++) {
528 wy[h] = y[h] * w[h];
529 }
530 for (uint32_t i = n; i != 0; ) {
531 i--;
532 outB[i] = vectorDot(&q[i][0], wy, m);
533 for (uint32_t j = n - 1; j > i; j--) {
534 outB[i] -= r[i][j] * outB[j];
535 }
536 outB[i] /= r[i][i];
537 }
538 #if DEBUG_STRATEGY
539 ALOGD(" - b=%s", vectorToString(outB, n).c_str());
540 #endif
541
542 // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
543 // SSerr is the residual sum of squares (variance of the error),
544 // and SStot is the total sum of squares (variance of the data) where each
545 // has been weighted.
546 float ymean = 0;
547 for (uint32_t h = 0; h < m; h++) {
548 ymean += y[h];
549 }
550 ymean /= m;
551
552 float sserr = 0;
553 float sstot = 0;
554 for (uint32_t h = 0; h < m; h++) {
555 float err = y[h] - outB[0];
556 float term = 1;
557 for (uint32_t i = 1; i < n; i++) {
558 term *= x[h];
559 err -= term * outB[i];
560 }
561 sserr += w[h] * w[h] * err * err;
562 float var = y[h] - ymean;
563 sstot += w[h] * w[h] * var * var;
564 }
565 *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
566 #if DEBUG_STRATEGY
567 ALOGD(" - sserr=%f", sserr);
568 ALOGD(" - sstot=%f", sstot);
569 ALOGD(" - det=%f", *outDet);
570 #endif
571 return true;
572 }
573
574 /*
575 * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
576 * the default implementation
577 */
solveUnweightedLeastSquaresDeg2(const float * x,const float * y,size_t count)578 static std::optional<std::array<float, 3>> solveUnweightedLeastSquaresDeg2(
579 const float* x, const float* y, size_t count) {
580 // Solving y = a*x^2 + b*x + c
581 float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
582
583 for (size_t i = 0; i < count; i++) {
584 float xi = x[i];
585 float yi = y[i];
586 float xi2 = xi*xi;
587 float xi3 = xi2*xi;
588 float xi4 = xi3*xi;
589 float xiyi = xi*yi;
590 float xi2yi = xi2*yi;
591
592 sxi += xi;
593 sxi2 += xi2;
594 sxiyi += xiyi;
595 sxi2yi += xi2yi;
596 syi += yi;
597 sxi3 += xi3;
598 sxi4 += xi4;
599 }
600
601 float Sxx = sxi2 - sxi*sxi / count;
602 float Sxy = sxiyi - sxi*syi / count;
603 float Sxx2 = sxi3 - sxi*sxi2 / count;
604 float Sx2y = sxi2yi - sxi2*syi / count;
605 float Sx2x2 = sxi4 - sxi2*sxi2 / count;
606
607 float denominator = Sxx*Sx2x2 - Sxx2*Sxx2;
608 if (denominator == 0) {
609 ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
610 return std::nullopt;
611 }
612 // Compute a
613 float numerator = Sx2y*Sxx - Sxy*Sxx2;
614 float a = numerator / denominator;
615
616 // Compute b
617 numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
618 float b = numerator / denominator;
619
620 // Compute c
621 float c = syi/count - b * sxi/count - a * sxi2/count;
622
623 return std::make_optional(std::array<float, 3>({c, b, a}));
624 }
625
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const626 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
627 VelocityTracker::Estimator* outEstimator) const {
628 outEstimator->clear();
629
630 // Iterate over movement samples in reverse time order and collect samples.
631 float x[HISTORY_SIZE];
632 float y[HISTORY_SIZE];
633 float w[HISTORY_SIZE];
634 float time[HISTORY_SIZE];
635 uint32_t m = 0;
636 uint32_t index = mIndex;
637 const Movement& newestMovement = mMovements[mIndex];
638 do {
639 const Movement& movement = mMovements[index];
640 if (!movement.idBits.hasBit(id)) {
641 break;
642 }
643
644 nsecs_t age = newestMovement.eventTime - movement.eventTime;
645 if (age > HORIZON) {
646 break;
647 }
648
649 const VelocityTracker::Position& position = movement.getPosition(id);
650 x[m] = position.x;
651 y[m] = position.y;
652 w[m] = chooseWeight(index);
653 time[m] = -age * 0.000000001f;
654 index = (index == 0 ? HISTORY_SIZE : index) - 1;
655 } while (++m < HISTORY_SIZE);
656
657 if (m == 0) {
658 return false; // no data
659 }
660
661 // Calculate a least squares polynomial fit.
662 uint32_t degree = mDegree;
663 if (degree > m - 1) {
664 degree = m - 1;
665 }
666
667 if (degree == 2 && mWeighting == WEIGHTING_NONE) {
668 // Optimize unweighted, quadratic polynomial fit
669 std::optional<std::array<float, 3>> xCoeff = solveUnweightedLeastSquaresDeg2(time, x, m);
670 std::optional<std::array<float, 3>> yCoeff = solveUnweightedLeastSquaresDeg2(time, y, m);
671 if (xCoeff && yCoeff) {
672 outEstimator->time = newestMovement.eventTime;
673 outEstimator->degree = 2;
674 outEstimator->confidence = 1;
675 for (size_t i = 0; i <= outEstimator->degree; i++) {
676 outEstimator->xCoeff[i] = (*xCoeff)[i];
677 outEstimator->yCoeff[i] = (*yCoeff)[i];
678 }
679 return true;
680 }
681 } else if (degree >= 1) {
682 // General case for an Nth degree polynomial fit
683 float xdet, ydet;
684 uint32_t n = degree + 1;
685 if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
686 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
687 outEstimator->time = newestMovement.eventTime;
688 outEstimator->degree = degree;
689 outEstimator->confidence = xdet * ydet;
690 #if DEBUG_STRATEGY
691 ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
692 int(outEstimator->degree),
693 vectorToString(outEstimator->xCoeff, n).c_str(),
694 vectorToString(outEstimator->yCoeff, n).c_str(),
695 outEstimator->confidence);
696 #endif
697 return true;
698 }
699 }
700
701 // No velocity data available for this pointer, but we do have its current position.
702 outEstimator->xCoeff[0] = x[0];
703 outEstimator->yCoeff[0] = y[0];
704 outEstimator->time = newestMovement.eventTime;
705 outEstimator->degree = 0;
706 outEstimator->confidence = 1;
707 return true;
708 }
709
chooseWeight(uint32_t index) const710 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
711 switch (mWeighting) {
712 case WEIGHTING_DELTA: {
713 // Weight points based on how much time elapsed between them and the next
714 // point so that points that "cover" a shorter time span are weighed less.
715 // delta 0ms: 0.5
716 // delta 10ms: 1.0
717 if (index == mIndex) {
718 return 1.0f;
719 }
720 uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
721 float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
722 * 0.000001f;
723 if (deltaMillis < 0) {
724 return 0.5f;
725 }
726 if (deltaMillis < 10) {
727 return 0.5f + deltaMillis * 0.05;
728 }
729 return 1.0f;
730 }
731
732 case WEIGHTING_CENTRAL: {
733 // Weight points based on their age, weighing very recent and very old points less.
734 // age 0ms: 0.5
735 // age 10ms: 1.0
736 // age 50ms: 1.0
737 // age 60ms: 0.5
738 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
739 * 0.000001f;
740 if (ageMillis < 0) {
741 return 0.5f;
742 }
743 if (ageMillis < 10) {
744 return 0.5f + ageMillis * 0.05;
745 }
746 if (ageMillis < 50) {
747 return 1.0f;
748 }
749 if (ageMillis < 60) {
750 return 0.5f + (60 - ageMillis) * 0.05;
751 }
752 return 0.5f;
753 }
754
755 case WEIGHTING_RECENT: {
756 // Weight points based on their age, weighing older points less.
757 // age 0ms: 1.0
758 // age 50ms: 1.0
759 // age 100ms: 0.5
760 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
761 * 0.000001f;
762 if (ageMillis < 50) {
763 return 1.0f;
764 }
765 if (ageMillis < 100) {
766 return 0.5f + (100 - ageMillis) * 0.01f;
767 }
768 return 0.5f;
769 }
770
771 case WEIGHTING_NONE:
772 default:
773 return 1.0f;
774 }
775 }
776
777
778 // --- IntegratingVelocityTrackerStrategy ---
779
IntegratingVelocityTrackerStrategy(uint32_t degree)780 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
781 mDegree(degree) {
782 }
783
~IntegratingVelocityTrackerStrategy()784 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
785 }
786
clear()787 void IntegratingVelocityTrackerStrategy::clear() {
788 mPointerIdBits.clear();
789 }
790
clearPointers(BitSet32 idBits)791 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
792 mPointerIdBits.value &= ~idBits.value;
793 }
794
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)795 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
796 const VelocityTracker::Position* positions) {
797 uint32_t index = 0;
798 for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
799 uint32_t id = iterIdBits.clearFirstMarkedBit();
800 State& state = mPointerState[id];
801 const VelocityTracker::Position& position = positions[index++];
802 if (mPointerIdBits.hasBit(id)) {
803 updateState(state, eventTime, position.x, position.y);
804 } else {
805 initState(state, eventTime, position.x, position.y);
806 }
807 }
808
809 mPointerIdBits = idBits;
810 }
811
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const812 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
813 VelocityTracker::Estimator* outEstimator) const {
814 outEstimator->clear();
815
816 if (mPointerIdBits.hasBit(id)) {
817 const State& state = mPointerState[id];
818 populateEstimator(state, outEstimator);
819 return true;
820 }
821
822 return false;
823 }
824
initState(State & state,nsecs_t eventTime,float xpos,float ypos) const825 void IntegratingVelocityTrackerStrategy::initState(State& state,
826 nsecs_t eventTime, float xpos, float ypos) const {
827 state.updateTime = eventTime;
828 state.degree = 0;
829
830 state.xpos = xpos;
831 state.xvel = 0;
832 state.xaccel = 0;
833 state.ypos = ypos;
834 state.yvel = 0;
835 state.yaccel = 0;
836 }
837
updateState(State & state,nsecs_t eventTime,float xpos,float ypos) const838 void IntegratingVelocityTrackerStrategy::updateState(State& state,
839 nsecs_t eventTime, float xpos, float ypos) const {
840 const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
841 const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
842
843 if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
844 return;
845 }
846
847 float dt = (eventTime - state.updateTime) * 0.000000001f;
848 state.updateTime = eventTime;
849
850 float xvel = (xpos - state.xpos) / dt;
851 float yvel = (ypos - state.ypos) / dt;
852 if (state.degree == 0) {
853 state.xvel = xvel;
854 state.yvel = yvel;
855 state.degree = 1;
856 } else {
857 float alpha = dt / (FILTER_TIME_CONSTANT + dt);
858 if (mDegree == 1) {
859 state.xvel += (xvel - state.xvel) * alpha;
860 state.yvel += (yvel - state.yvel) * alpha;
861 } else {
862 float xaccel = (xvel - state.xvel) / dt;
863 float yaccel = (yvel - state.yvel) / dt;
864 if (state.degree == 1) {
865 state.xaccel = xaccel;
866 state.yaccel = yaccel;
867 state.degree = 2;
868 } else {
869 state.xaccel += (xaccel - state.xaccel) * alpha;
870 state.yaccel += (yaccel - state.yaccel) * alpha;
871 }
872 state.xvel += (state.xaccel * dt) * alpha;
873 state.yvel += (state.yaccel * dt) * alpha;
874 }
875 }
876 state.xpos = xpos;
877 state.ypos = ypos;
878 }
879
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const880 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
881 VelocityTracker::Estimator* outEstimator) const {
882 outEstimator->time = state.updateTime;
883 outEstimator->confidence = 1.0f;
884 outEstimator->degree = state.degree;
885 outEstimator->xCoeff[0] = state.xpos;
886 outEstimator->xCoeff[1] = state.xvel;
887 outEstimator->xCoeff[2] = state.xaccel / 2;
888 outEstimator->yCoeff[0] = state.ypos;
889 outEstimator->yCoeff[1] = state.yvel;
890 outEstimator->yCoeff[2] = state.yaccel / 2;
891 }
892
893
894 // --- LegacyVelocityTrackerStrategy ---
895
LegacyVelocityTrackerStrategy()896 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
897 clear();
898 }
899
~LegacyVelocityTrackerStrategy()900 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
901 }
902
clear()903 void LegacyVelocityTrackerStrategy::clear() {
904 mIndex = 0;
905 mMovements[0].idBits.clear();
906 }
907
clearPointers(BitSet32 idBits)908 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
909 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
910 mMovements[mIndex].idBits = remainingIdBits;
911 }
912
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)913 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
914 const VelocityTracker::Position* positions) {
915 if (++mIndex == HISTORY_SIZE) {
916 mIndex = 0;
917 }
918
919 Movement& movement = mMovements[mIndex];
920 movement.eventTime = eventTime;
921 movement.idBits = idBits;
922 uint32_t count = idBits.count();
923 for (uint32_t i = 0; i < count; i++) {
924 movement.positions[i] = positions[i];
925 }
926 }
927
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const928 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
929 VelocityTracker::Estimator* outEstimator) const {
930 outEstimator->clear();
931
932 const Movement& newestMovement = mMovements[mIndex];
933 if (!newestMovement.idBits.hasBit(id)) {
934 return false; // no data
935 }
936
937 // Find the oldest sample that contains the pointer and that is not older than HORIZON.
938 nsecs_t minTime = newestMovement.eventTime - HORIZON;
939 uint32_t oldestIndex = mIndex;
940 uint32_t numTouches = 1;
941 do {
942 uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
943 const Movement& nextOldestMovement = mMovements[nextOldestIndex];
944 if (!nextOldestMovement.idBits.hasBit(id)
945 || nextOldestMovement.eventTime < minTime) {
946 break;
947 }
948 oldestIndex = nextOldestIndex;
949 } while (++numTouches < HISTORY_SIZE);
950
951 // Calculate an exponentially weighted moving average of the velocity estimate
952 // at different points in time measured relative to the oldest sample.
953 // This is essentially an IIR filter. Newer samples are weighted more heavily
954 // than older samples. Samples at equal time points are weighted more or less
955 // equally.
956 //
957 // One tricky problem is that the sample data may be poorly conditioned.
958 // Sometimes samples arrive very close together in time which can cause us to
959 // overestimate the velocity at that time point. Most samples might be measured
960 // 16ms apart but some consecutive samples could be only 0.5sm apart because
961 // the hardware or driver reports them irregularly or in bursts.
962 float accumVx = 0;
963 float accumVy = 0;
964 uint32_t index = oldestIndex;
965 uint32_t samplesUsed = 0;
966 const Movement& oldestMovement = mMovements[oldestIndex];
967 const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
968 nsecs_t lastDuration = 0;
969
970 while (numTouches-- > 1) {
971 if (++index == HISTORY_SIZE) {
972 index = 0;
973 }
974 const Movement& movement = mMovements[index];
975 nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
976
977 // If the duration between samples is small, we may significantly overestimate
978 // the velocity. Consequently, we impose a minimum duration constraint on the
979 // samples that we include in the calculation.
980 if (duration >= MIN_DURATION) {
981 const VelocityTracker::Position& position = movement.getPosition(id);
982 float scale = 1000000000.0f / duration; // one over time delta in seconds
983 float vx = (position.x - oldestPosition.x) * scale;
984 float vy = (position.y - oldestPosition.y) * scale;
985 accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
986 accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
987 lastDuration = duration;
988 samplesUsed += 1;
989 }
990 }
991
992 // Report velocity.
993 const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
994 outEstimator->time = newestMovement.eventTime;
995 outEstimator->confidence = 1;
996 outEstimator->xCoeff[0] = newestPosition.x;
997 outEstimator->yCoeff[0] = newestPosition.y;
998 if (samplesUsed) {
999 outEstimator->xCoeff[1] = accumVx;
1000 outEstimator->yCoeff[1] = accumVy;
1001 outEstimator->degree = 1;
1002 } else {
1003 outEstimator->degree = 0;
1004 }
1005 return true;
1006 }
1007
1008 // --- ImpulseVelocityTrackerStrategy ---
1009
ImpulseVelocityTrackerStrategy()1010 ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy() {
1011 clear();
1012 }
1013
~ImpulseVelocityTrackerStrategy()1014 ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
1015 }
1016
clear()1017 void ImpulseVelocityTrackerStrategy::clear() {
1018 mIndex = 0;
1019 mMovements[0].idBits.clear();
1020 }
1021
clearPointers(BitSet32 idBits)1022 void ImpulseVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
1023 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
1024 mMovements[mIndex].idBits = remainingIdBits;
1025 }
1026
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)1027 void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
1028 const VelocityTracker::Position* positions) {
1029 if (mMovements[mIndex].eventTime != eventTime) {
1030 // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
1031 // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
1032 // the new pointer. If the eventtimes for both events are identical, just update the data
1033 // for this time.
1034 // We only compare against the last value, as it is likely that addMovement is called
1035 // in chronological order as events occur.
1036 mIndex++;
1037 }
1038 if (mIndex == HISTORY_SIZE) {
1039 mIndex = 0;
1040 }
1041
1042 Movement& movement = mMovements[mIndex];
1043 movement.eventTime = eventTime;
1044 movement.idBits = idBits;
1045 uint32_t count = idBits.count();
1046 for (uint32_t i = 0; i < count; i++) {
1047 movement.positions[i] = positions[i];
1048 }
1049 }
1050
1051 /**
1052 * Calculate the total impulse provided to the screen and the resulting velocity.
1053 *
1054 * The touchscreen is modeled as a physical object.
1055 * Initial condition is discussed below, but for now suppose that v(t=0) = 0
1056 *
1057 * The kinetic energy of the object at the release is E=0.5*m*v^2
1058 * Then vfinal = sqrt(2E/m). The goal is to calculate E.
1059 *
1060 * The kinetic energy at the release is equal to the total work done on the object by the finger.
1061 * The total work W is the sum of all dW along the path.
1062 *
1063 * dW = F*dx, where dx is the piece of path traveled.
1064 * Force is change of momentum over time, F = dp/dt = m dv/dt.
1065 * Then substituting:
1066 * dW = m (dv/dt) * dx = m * v * dv
1067 *
1068 * Summing along the path, we get:
1069 * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv)
1070 * Since the mass stays constant, the equation for final velocity is:
1071 * vfinal = sqrt(2*sum(v * dv))
1072 *
1073 * Here,
1074 * dv : change of velocity = (v[i+1]-v[i])
1075 * dx : change of distance = (x[i+1]-x[i])
1076 * dt : change of time = (t[i+1]-t[i])
1077 * v : instantaneous velocity = dx/dt
1078 *
1079 * The final formula is:
1080 * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i
1081 * The absolute value is needed to properly account for the sign. If the velocity over a
1082 * particular segment descreases, then this indicates braking, which means that negative
1083 * work was done. So for two positive, but decreasing, velocities, this contribution would be
1084 * negative and will cause a smaller final velocity.
1085 *
1086 * Initial condition
1087 * There are two ways to deal with initial condition:
1088 * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest.
1089 * This is not entirely accurate. We are only taking the past X ms of touch data, where X is
1090 * currently equal to 100. However, a touch event that created a fling probably lasted for longer
1091 * than that, which would mean that the user has already been interacting with the touchscreen
1092 * and it has probably already been moving.
1093 * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this
1094 * initial velocity and the equivalent energy, and start with this initial energy.
1095 * Consider an example where we have the following data, consisting of 3 points:
1096 * time: t0, t1, t2
1097 * x : x0, x1, x2
1098 * v : 0 , v1, v2
1099 * Here is what will happen in each of these scenarios:
1100 * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get
1101 * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0
1102 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1)))
1103 * since velocity is a real number
1104 * 2) If we treat the screen as already moving, then it must already have an energy (per mass)
1105 * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment
1106 * will contribute to the total kinetic energy (since we can effectively consider that v0=v1).
1107 * This will give the following expression for the final velocity:
1108 * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1)))
1109 * This analysis can be generalized to an arbitrary number of samples.
1110 *
1111 *
1112 * Comparing the two equations above, we see that the only mathematical difference
1113 * is the factor of 1/2 in front of the first velocity term.
1114 * This boundary condition would allow for the "proper" calculation of the case when all of the
1115 * samples are equally spaced in time and distance, which should suggest a constant velocity.
1116 *
1117 * Note that approach 2) is sensitive to the proper ordering of the data in time, since
1118 * the boundary condition must be applied to the oldest sample to be accurate.
1119 */
kineticEnergyToVelocity(float work)1120 static float kineticEnergyToVelocity(float work) {
1121 static constexpr float sqrt2 = 1.41421356237;
1122 return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
1123 }
1124
calculateImpulseVelocity(const nsecs_t * t,const float * x,size_t count)1125 static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count) {
1126 // The input should be in reversed time order (most recent sample at index i=0)
1127 // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
1128 static constexpr float SECONDS_PER_NANO = 1E-9;
1129
1130 if (count < 2) {
1131 return 0; // if 0 or 1 points, velocity is zero
1132 }
1133 if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
1134 ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
1135 }
1136 if (count == 2) { // if 2 points, basic linear calculation
1137 if (t[1] == t[0]) {
1138 ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
1139 return 0;
1140 }
1141 return (x[1] - x[0]) / (SECONDS_PER_NANO * (t[1] - t[0]));
1142 }
1143 // Guaranteed to have at least 3 points here
1144 float work = 0;
1145 for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
1146 if (t[i] == t[i-1]) {
1147 ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
1148 continue;
1149 }
1150 float vprev = kineticEnergyToVelocity(work); // v[i-1]
1151 float vcurr = (x[i] - x[i-1]) / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i]
1152 work += (vcurr - vprev) * fabsf(vcurr);
1153 if (i == count - 1) {
1154 work *= 0.5; // initial condition, case 2) above
1155 }
1156 }
1157 return kineticEnergyToVelocity(work);
1158 }
1159
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const1160 bool ImpulseVelocityTrackerStrategy::getEstimator(uint32_t id,
1161 VelocityTracker::Estimator* outEstimator) const {
1162 outEstimator->clear();
1163
1164 // Iterate over movement samples in reverse time order and collect samples.
1165 float x[HISTORY_SIZE];
1166 float y[HISTORY_SIZE];
1167 nsecs_t time[HISTORY_SIZE];
1168 size_t m = 0; // number of points that will be used for fitting
1169 size_t index = mIndex;
1170 const Movement& newestMovement = mMovements[mIndex];
1171 do {
1172 const Movement& movement = mMovements[index];
1173 if (!movement.idBits.hasBit(id)) {
1174 break;
1175 }
1176
1177 nsecs_t age = newestMovement.eventTime - movement.eventTime;
1178 if (age > HORIZON) {
1179 break;
1180 }
1181
1182 const VelocityTracker::Position& position = movement.getPosition(id);
1183 x[m] = position.x;
1184 y[m] = position.y;
1185 time[m] = movement.eventTime;
1186 index = (index == 0 ? HISTORY_SIZE : index) - 1;
1187 } while (++m < HISTORY_SIZE);
1188
1189 if (m == 0) {
1190 return false; // no data
1191 }
1192 outEstimator->xCoeff[0] = 0;
1193 outEstimator->yCoeff[0] = 0;
1194 outEstimator->xCoeff[1] = calculateImpulseVelocity(time, x, m);
1195 outEstimator->yCoeff[1] = calculateImpulseVelocity(time, y, m);
1196 outEstimator->xCoeff[2] = 0;
1197 outEstimator->yCoeff[2] = 0;
1198 outEstimator->time = newestMovement.eventTime;
1199 outEstimator->degree = 2; // similar results to 2nd degree fit
1200 outEstimator->confidence = 1;
1201 #if DEBUG_STRATEGY
1202 ALOGD("velocity: (%f, %f)", outEstimator->xCoeff[1], outEstimator->yCoeff[1]);
1203 #endif
1204 return true;
1205 }
1206
1207 } // namespace android
1208