1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
19 
20 #include "arch/instruction_set.h"
21 #include "arch/instruction_set_features.h"
22 #include "base/arena_containers.h"
23 #include "base/arena_object.h"
24 #include "base/array_ref.h"
25 #include "base/bit_field.h"
26 #include "base/bit_utils.h"
27 #include "base/enums.h"
28 #include "base/globals.h"
29 #include "base/memory_region.h"
30 #include "dex/string_reference.h"
31 #include "dex/type_reference.h"
32 #include "graph_visualizer.h"
33 #include "locations.h"
34 #include "nodes.h"
35 #include "optimizing_compiler_stats.h"
36 #include "read_barrier_option.h"
37 #include "stack.h"
38 #include "utils/label.h"
39 
40 namespace art {
41 
42 // Binary encoding of 2^32 for type double.
43 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000);
44 // Binary encoding of 2^31 for type double.
45 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000);
46 
47 // Minimum value for a primitive integer.
48 static int32_t constexpr kPrimIntMin = 0x80000000;
49 // Minimum value for a primitive long.
50 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000);
51 
52 // Maximum value for a primitive integer.
53 static int32_t constexpr kPrimIntMax = 0x7fffffff;
54 // Maximum value for a primitive long.
55 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff);
56 
57 static constexpr ReadBarrierOption kCompilerReadBarrierOption =
58     kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier;
59 
60 class Assembler;
61 class CodeGenerator;
62 class CompilerOptions;
63 class StackMapStream;
64 class ParallelMoveResolver;
65 
66 namespace linker {
67 class LinkerPatch;
68 }  // namespace linker
69 
70 class CodeAllocator {
71  public:
CodeAllocator()72   CodeAllocator() {}
~CodeAllocator()73   virtual ~CodeAllocator() {}
74 
75   virtual uint8_t* Allocate(size_t size) = 0;
76   virtual ArrayRef<const uint8_t> GetMemory() const = 0;
77 
78  private:
79   DISALLOW_COPY_AND_ASSIGN(CodeAllocator);
80 };
81 
82 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> {
83  public:
SlowPathCode(HInstruction * instruction)84   explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) {
85     for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) {
86       saved_core_stack_offsets_[i] = kRegisterNotSaved;
87       saved_fpu_stack_offsets_[i] = kRegisterNotSaved;
88     }
89   }
90 
~SlowPathCode()91   virtual ~SlowPathCode() {}
92 
93   virtual void EmitNativeCode(CodeGenerator* codegen) = 0;
94 
95   // Save live core and floating-point caller-save registers and
96   // update the stack mask in `locations` for registers holding object
97   // references.
98   virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
99   // Restore live core and floating-point caller-save registers.
100   virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
101 
IsCoreRegisterSaved(int reg)102   bool IsCoreRegisterSaved(int reg) const {
103     return saved_core_stack_offsets_[reg] != kRegisterNotSaved;
104   }
105 
IsFpuRegisterSaved(int reg)106   bool IsFpuRegisterSaved(int reg) const {
107     return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved;
108   }
109 
GetStackOffsetOfCoreRegister(int reg)110   uint32_t GetStackOffsetOfCoreRegister(int reg) const {
111     return saved_core_stack_offsets_[reg];
112   }
113 
GetStackOffsetOfFpuRegister(int reg)114   uint32_t GetStackOffsetOfFpuRegister(int reg) const {
115     return saved_fpu_stack_offsets_[reg];
116   }
117 
IsFatal()118   virtual bool IsFatal() const { return false; }
119 
120   virtual const char* GetDescription() const = 0;
121 
GetEntryLabel()122   Label* GetEntryLabel() { return &entry_label_; }
GetExitLabel()123   Label* GetExitLabel() { return &exit_label_; }
124 
GetInstruction()125   HInstruction* GetInstruction() const {
126     return instruction_;
127   }
128 
GetDexPc()129   uint32_t GetDexPc() const {
130     return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc;
131   }
132 
133  protected:
134   static constexpr size_t kMaximumNumberOfExpectedRegisters = 32;
135   static constexpr uint32_t kRegisterNotSaved = -1;
136   // The instruction where this slow path is happening.
137   HInstruction* instruction_;
138   uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters];
139   uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters];
140 
141  private:
142   Label entry_label_;
143   Label exit_label_;
144 
145   DISALLOW_COPY_AND_ASSIGN(SlowPathCode);
146 };
147 
148 class InvokeDexCallingConventionVisitor {
149  public:
150   virtual Location GetNextLocation(DataType::Type type) = 0;
151   virtual Location GetReturnLocation(DataType::Type type) const = 0;
152   virtual Location GetMethodLocation() const = 0;
153 
154  protected:
InvokeDexCallingConventionVisitor()155   InvokeDexCallingConventionVisitor() {}
~InvokeDexCallingConventionVisitor()156   virtual ~InvokeDexCallingConventionVisitor() {}
157 
158   // The current index for core registers.
159   uint32_t gp_index_ = 0u;
160   // The current index for floating-point registers.
161   uint32_t float_index_ = 0u;
162   // The current stack index.
163   uint32_t stack_index_ = 0u;
164 
165  private:
166   DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor);
167 };
168 
169 class FieldAccessCallingConvention {
170  public:
171   virtual Location GetObjectLocation() const = 0;
172   virtual Location GetFieldIndexLocation() const = 0;
173   virtual Location GetReturnLocation(DataType::Type type) const = 0;
174   virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0;
175   virtual Location GetFpuLocation(DataType::Type type) const = 0;
~FieldAccessCallingConvention()176   virtual ~FieldAccessCallingConvention() {}
177 
178  protected:
FieldAccessCallingConvention()179   FieldAccessCallingConvention() {}
180 
181  private:
182   DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention);
183 };
184 
185 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> {
186  public:
187   // Compiles the graph to executable instructions.
188   void Compile(CodeAllocator* allocator);
189   static std::unique_ptr<CodeGenerator> Create(HGraph* graph,
190                                                const CompilerOptions& compiler_options,
191                                                OptimizingCompilerStats* stats = nullptr);
192   virtual ~CodeGenerator();
193 
194   // Get the graph. This is the outermost graph, never the graph of a method being inlined.
GetGraph()195   HGraph* GetGraph() const { return graph_; }
196 
197   HBasicBlock* GetNextBlockToEmit() const;
198   HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const;
199   bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const;
200 
GetStackSlotOfParameter(HParameterValue * parameter)201   size_t GetStackSlotOfParameter(HParameterValue* parameter) const {
202     // Note that this follows the current calling convention.
203     return GetFrameSize()
204         + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet()))  // Art method
205         + parameter->GetIndex() * kVRegSize;
206   }
207 
208   virtual void Initialize() = 0;
209   virtual void Finalize(CodeAllocator* allocator);
210   virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches);
211   virtual bool NeedsThunkCode(const linker::LinkerPatch& patch) const;
212   virtual void EmitThunkCode(const linker::LinkerPatch& patch,
213                              /*out*/ ArenaVector<uint8_t>* code,
214                              /*out*/ std::string* debug_name);
215   virtual void GenerateFrameEntry() = 0;
216   virtual void GenerateFrameExit() = 0;
217   virtual void Bind(HBasicBlock* block) = 0;
218   virtual void MoveConstant(Location destination, int32_t value) = 0;
219   virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0;
220   virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0;
221 
222   virtual Assembler* GetAssembler() = 0;
223   virtual const Assembler& GetAssembler() const = 0;
224   virtual size_t GetWordSize() const = 0;
225 
226   // Returns whether the target supports predicated SIMD instructions.
SupportsPredicatedSIMD()227   virtual bool SupportsPredicatedSIMD() const { return false; }
228 
229   // Get FP register width in bytes for spilling/restoring in the slow paths.
230   //
231   // Note: In SIMD graphs this should return SIMD register width as all FP and SIMD registers
232   // alias and live SIMD registers are forced to be spilled in full size in the slow paths.
GetSlowPathFPWidth()233   virtual size_t GetSlowPathFPWidth() const {
234     // Default implementation.
235     return GetCalleePreservedFPWidth();
236   }
237 
238   // Get FP register width required to be preserved by the target ABI.
239   virtual size_t GetCalleePreservedFPWidth() const  = 0;
240 
241   // Get the size of the target SIMD register in bytes.
242   virtual size_t GetSIMDRegisterWidth() const = 0;
243   virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0;
244   void InitializeCodeGeneration(size_t number_of_spill_slots,
245                                 size_t maximum_safepoint_spill_size,
246                                 size_t number_of_out_slots,
247                                 const ArenaVector<HBasicBlock*>& block_order);
248   // Backends can override this as necessary. For most, no special alignment is required.
GetPreferredSlotsAlignment()249   virtual uint32_t GetPreferredSlotsAlignment() const { return 1; }
250 
GetFrameSize()251   uint32_t GetFrameSize() const { return frame_size_; }
SetFrameSize(uint32_t size)252   void SetFrameSize(uint32_t size) { frame_size_ = size; }
GetCoreSpillMask()253   uint32_t GetCoreSpillMask() const { return core_spill_mask_; }
GetFpuSpillMask()254   uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; }
255 
GetNumberOfCoreRegisters()256   size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; }
GetNumberOfFloatingPointRegisters()257   size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; }
258   virtual void SetupBlockedRegisters() const = 0;
259 
ComputeSpillMask()260   virtual void ComputeSpillMask() {
261     core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
262     DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
263     fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
264   }
265 
ComputeRegisterMask(const int * registers,size_t length)266   static uint32_t ComputeRegisterMask(const int* registers, size_t length) {
267     uint32_t mask = 0;
268     for (size_t i = 0, e = length; i < e; ++i) {
269       mask |= (1 << registers[i]);
270     }
271     return mask;
272   }
273 
274   virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0;
275   virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0;
276   virtual InstructionSet GetInstructionSet() const = 0;
277 
GetCompilerOptions()278   const CompilerOptions& GetCompilerOptions() const { return compiler_options_; }
279 
280   // Saves the register in the stack. Returns the size taken on stack.
281   virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
282   // Restores the register from the stack. Returns the size taken on stack.
283   virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
284 
285   virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
286   virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
287 
288   virtual bool NeedsTwoRegisters(DataType::Type type) const = 0;
289   // Returns whether we should split long moves in parallel moves.
ShouldSplitLongMoves()290   virtual bool ShouldSplitLongMoves() const { return false; }
291 
GetNumberOfCoreCalleeSaveRegisters()292   size_t GetNumberOfCoreCalleeSaveRegisters() const {
293     return POPCOUNT(core_callee_save_mask_);
294   }
295 
GetNumberOfCoreCallerSaveRegisters()296   size_t GetNumberOfCoreCallerSaveRegisters() const {
297     DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters());
298     return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters();
299   }
300 
IsCoreCalleeSaveRegister(int reg)301   bool IsCoreCalleeSaveRegister(int reg) const {
302     return (core_callee_save_mask_ & (1 << reg)) != 0;
303   }
304 
IsFloatingPointCalleeSaveRegister(int reg)305   bool IsFloatingPointCalleeSaveRegister(int reg) const {
306     return (fpu_callee_save_mask_ & (1 << reg)) != 0;
307   }
308 
GetSlowPathSpills(LocationSummary * locations,bool core_registers)309   uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const {
310     DCHECK(locations->OnlyCallsOnSlowPath() ||
311            (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() &&
312                !locations->HasCustomSlowPathCallingConvention()));
313     uint32_t live_registers = core_registers
314         ? locations->GetLiveRegisters()->GetCoreRegisters()
315         : locations->GetLiveRegisters()->GetFloatingPointRegisters();
316     if (locations->HasCustomSlowPathCallingConvention()) {
317       // Save only the live registers that the custom calling convention wants us to save.
318       uint32_t caller_saves = core_registers
319           ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters()
320           : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters();
321       return live_registers & caller_saves;
322     } else {
323       // Default ABI, we need to spill non-callee-save live registers.
324       uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_;
325       return live_registers & ~callee_saves;
326     }
327   }
328 
GetNumberOfSlowPathSpills(LocationSummary * locations,bool core_registers)329   size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const {
330     return POPCOUNT(GetSlowPathSpills(locations, core_registers));
331   }
332 
GetStackOffsetOfShouldDeoptimizeFlag()333   size_t GetStackOffsetOfShouldDeoptimizeFlag() const {
334     DCHECK(GetGraph()->HasShouldDeoptimizeFlag());
335     DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize);
336     return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize;
337   }
338 
339   // Record native to dex mapping for a suspend point. Required by runtime.
340   void RecordPcInfo(HInstruction* instruction,
341                     uint32_t dex_pc,
342                     uint32_t native_pc,
343                     SlowPathCode* slow_path = nullptr,
344                     bool native_debug_info = false);
345 
346   // Record native to dex mapping for a suspend point.
347   // The native_pc is used from Assembler::CodePosition.
348   //
349   // Note: As Assembler::CodePosition is target dependent, it does not guarantee the exact native_pc
350   // for the instruction. If the exact native_pc is required it must be provided explicitly.
351   void RecordPcInfo(HInstruction* instruction,
352                     uint32_t dex_pc,
353                     SlowPathCode* slow_path = nullptr,
354                     bool native_debug_info = false);
355 
356   // Check whether we have already recorded mapping at this PC.
357   bool HasStackMapAtCurrentPc();
358 
359   // Record extra stack maps if we support native debugging.
360   //
361   // ARM specific behaviour: The recorded native PC might be a branch over pools to instructions
362   // corresponding the dex PC.
363   void MaybeRecordNativeDebugInfo(HInstruction* instruction,
364                                   uint32_t dex_pc,
365                                   SlowPathCode* slow_path = nullptr);
366 
367   bool CanMoveNullCheckToUser(HNullCheck* null_check);
368   virtual void MaybeRecordImplicitNullCheck(HInstruction* instruction);
369   LocationSummary* CreateThrowingSlowPathLocations(
370       HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty());
371   void GenerateNullCheck(HNullCheck* null_check);
372   virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0;
373   virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0;
374 
375   // Records a stack map which the runtime might use to set catch phi values
376   // during exception delivery.
377   // TODO: Replace with a catch-entering instruction that records the environment.
378   void RecordCatchBlockInfo();
379 
380   // Get the ScopedArenaAllocator used for codegen memory allocation.
381   ScopedArenaAllocator* GetScopedAllocator();
382 
383   void AddSlowPath(SlowPathCode* slow_path);
384 
385   ScopedArenaVector<uint8_t> BuildStackMaps(const dex::CodeItem* code_item_for_osr_check);
386   size_t GetNumberOfJitRoots() const;
387 
388   // Fills the `literals` array with literals collected during code generation.
389   // Also emits literal patches.
390   void EmitJitRoots(uint8_t* code,
391                     const uint8_t* roots_data,
392                     /*out*/std::vector<Handle<mirror::Object>>* roots)
393       REQUIRES_SHARED(Locks::mutator_lock_);
394 
IsLeafMethod()395   bool IsLeafMethod() const {
396     return is_leaf_;
397   }
398 
MarkNotLeaf()399   void MarkNotLeaf() {
400     is_leaf_ = false;
401     requires_current_method_ = true;
402   }
403 
SetRequiresCurrentMethod()404   void SetRequiresCurrentMethod() {
405     requires_current_method_ = true;
406   }
407 
RequiresCurrentMethod()408   bool RequiresCurrentMethod() const {
409     return requires_current_method_;
410   }
411 
412   // Clears the spill slots taken by loop phis in the `LocationSummary` of the
413   // suspend check. This is called when the code generator generates code
414   // for the suspend check at the back edge (instead of where the suspend check
415   // is, which is the loop entry). At this point, the spill slots for the phis
416   // have not been written to.
417   void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
418                                              HParallelMove* spills) const;
419 
GetBlockedCoreRegisters()420   bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; }
GetBlockedFloatingPointRegisters()421   bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; }
422 
IsBlockedCoreRegister(size_t i)423   bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; }
IsBlockedFloatingPointRegister(size_t i)424   bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; }
425 
426   // Helper that returns the offset of the array's length field.
427   // Note: Besides the normal arrays, we also use the HArrayLength for
428   // accessing the String's `count` field in String intrinsics.
429   static uint32_t GetArrayLengthOffset(HArrayLength* array_length);
430 
431   // Helper that returns the offset of the array's data.
432   // Note: Besides the normal arrays, we also use the HArrayGet for
433   // accessing the String's `value` field in String intrinsics.
434   static uint32_t GetArrayDataOffset(HArrayGet* array_get);
435 
436   void EmitParallelMoves(Location from1,
437                          Location to1,
438                          DataType::Type type1,
439                          Location from2,
440                          Location to2,
441                          DataType::Type type2);
442 
InstanceOfNeedsReadBarrier(HInstanceOf * instance_of)443   static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) {
444     // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck.
445     DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck ||
446            instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck ||
447            instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck ||
448            instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck)
449         << instance_of->GetTypeCheckKind();
450     // If the target class is in the boot image, it's non-moveable and it doesn't matter
451     // if we compare it with a from-space or to-space reference, the result is the same.
452     // It's OK to traverse a class hierarchy jumping between from-space and to-space.
453     return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage();
454   }
455 
ReadBarrierOptionForInstanceOf(HInstanceOf * instance_of)456   static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) {
457     return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier;
458   }
459 
IsTypeCheckSlowPathFatal(HCheckCast * check_cast)460   static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) {
461     switch (check_cast->GetTypeCheckKind()) {
462       case TypeCheckKind::kExactCheck:
463       case TypeCheckKind::kAbstractClassCheck:
464       case TypeCheckKind::kClassHierarchyCheck:
465       case TypeCheckKind::kArrayObjectCheck:
466       case TypeCheckKind::kInterfaceCheck: {
467         bool needs_read_barrier =
468             kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage();
469         // We do not emit read barriers for HCheckCast, so we can get false negatives
470         // and the slow path shall re-check and simply return if the cast is actually OK.
471         return !needs_read_barrier;
472       }
473       case TypeCheckKind::kArrayCheck:
474       case TypeCheckKind::kUnresolvedCheck:
475         return false;
476       case TypeCheckKind::kBitstringCheck:
477         return true;
478     }
479     LOG(FATAL) << "Unreachable";
480     UNREACHABLE();
481   }
482 
GetCheckCastCallKind(HCheckCast * check_cast)483   static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) {
484     return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock())
485         ? LocationSummary::kNoCall  // In fact, call on a fatal (non-returning) slow path.
486         : LocationSummary::kCallOnSlowPath;
487   }
488 
StoreNeedsWriteBarrier(DataType::Type type,HInstruction * value)489   static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) {
490     // Check that null value is not represented as an integer constant.
491     DCHECK(type != DataType::Type::kReference || !value->IsIntConstant());
492     return type == DataType::Type::kReference && !value->IsNullConstant();
493   }
494 
495 
496   // Performs checks pertaining to an InvokeRuntime call.
497   void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
498                              HInstruction* instruction,
499                              SlowPathCode* slow_path);
500 
501   // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call.
502   static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
503                                                           SlowPathCode* slow_path);
504 
AddAllocatedRegister(Location location)505   void AddAllocatedRegister(Location location) {
506     allocated_registers_.Add(location);
507   }
508 
HasAllocatedRegister(bool is_core,int reg)509   bool HasAllocatedRegister(bool is_core, int reg) const {
510     return is_core
511         ? allocated_registers_.ContainsCoreRegister(reg)
512         : allocated_registers_.ContainsFloatingPointRegister(reg);
513   }
514 
515   void AllocateLocations(HInstruction* instruction);
516 
517   // Tells whether the stack frame of the compiled method is
518   // considered "empty", that is either actually having a size of zero,
519   // or just containing the saved return address register.
HasEmptyFrame()520   bool HasEmptyFrame() const {
521     return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0);
522   }
523 
GetInt8ValueOf(HConstant * constant)524   static int8_t GetInt8ValueOf(HConstant* constant) {
525     DCHECK(constant->IsIntConstant());
526     return constant->AsIntConstant()->GetValue();
527   }
528 
GetInt16ValueOf(HConstant * constant)529   static int16_t GetInt16ValueOf(HConstant* constant) {
530     DCHECK(constant->IsIntConstant());
531     return constant->AsIntConstant()->GetValue();
532   }
533 
GetInt32ValueOf(HConstant * constant)534   static int32_t GetInt32ValueOf(HConstant* constant) {
535     if (constant->IsIntConstant()) {
536       return constant->AsIntConstant()->GetValue();
537     } else if (constant->IsNullConstant()) {
538       return 0;
539     } else {
540       DCHECK(constant->IsFloatConstant());
541       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
542     }
543   }
544 
GetInt64ValueOf(HConstant * constant)545   static int64_t GetInt64ValueOf(HConstant* constant) {
546     if (constant->IsIntConstant()) {
547       return constant->AsIntConstant()->GetValue();
548     } else if (constant->IsNullConstant()) {
549       return 0;
550     } else if (constant->IsFloatConstant()) {
551       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
552     } else if (constant->IsLongConstant()) {
553       return constant->AsLongConstant()->GetValue();
554     } else {
555       DCHECK(constant->IsDoubleConstant());
556       return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
557     }
558   }
559 
GetFirstRegisterSlotInSlowPath()560   size_t GetFirstRegisterSlotInSlowPath() const {
561     return first_register_slot_in_slow_path_;
562   }
563 
FrameEntrySpillSize()564   uint32_t FrameEntrySpillSize() const {
565     return GetFpuSpillSize() + GetCoreSpillSize();
566   }
567 
568   virtual ParallelMoveResolver* GetMoveResolver() = 0;
569 
570   static void CreateCommonInvokeLocationSummary(
571       HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor);
572 
573   template <typename CriticalNativeCallingConventionVisitor,
574             size_t kNativeStackAlignment,
575             size_t GetCriticalNativeDirectCallFrameSize(const char* shorty, uint32_t shorty_len)>
PrepareCriticalNativeCall(HInvokeStaticOrDirect * invoke)576   size_t PrepareCriticalNativeCall(HInvokeStaticOrDirect* invoke) {
577       DCHECK(!invoke->GetLocations()->Intrinsified());
578       CriticalNativeCallingConventionVisitor calling_convention_visitor(
579           /*for_register_allocation=*/ false);
580       HParallelMove parallel_move(GetGraph()->GetAllocator());
581       PrepareCriticalNativeArgumentMoves(invoke, &calling_convention_visitor, &parallel_move);
582       size_t out_frame_size =
583           RoundUp(calling_convention_visitor.GetStackOffset(), kNativeStackAlignment);
584       if (kIsDebugBuild) {
585         uint32_t shorty_len;
586         const char* shorty = GetCriticalNativeShorty(invoke, &shorty_len);
587         DCHECK_EQ(GetCriticalNativeDirectCallFrameSize(shorty, shorty_len), out_frame_size);
588       }
589       if (out_frame_size != 0u) {
590         FinishCriticalNativeFrameSetup(out_frame_size, &parallel_move);
591       }
592       return out_frame_size;
593   }
594 
595   void GenerateInvokeStaticOrDirectRuntimeCall(
596       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path);
597 
598   void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke);
599 
600   void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke);
601 
602   void GenerateInvokeCustomCall(HInvokeCustom* invoke);
603 
604   void CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction, Location out);
605 
606   void CreateUnresolvedFieldLocationSummary(
607       HInstruction* field_access,
608       DataType::Type field_type,
609       const FieldAccessCallingConvention& calling_convention);
610 
611   void GenerateUnresolvedFieldAccess(
612       HInstruction* field_access,
613       DataType::Type field_type,
614       uint32_t field_index,
615       uint32_t dex_pc,
616       const FieldAccessCallingConvention& calling_convention);
617 
618   static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
619                                                         Location runtime_type_index_location,
620                                                         Location runtime_return_location);
621   void GenerateLoadClassRuntimeCall(HLoadClass* cls);
622 
623   static void CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle* method_handle,
624                                                              Location runtime_handle_index_location,
625                                                              Location runtime_return_location);
626   void GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle);
627 
628   static void CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType* method_type,
629                                                              Location runtime_type_index_location,
630                                                              Location runtime_return_location);
631   void GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type);
632 
633   uint32_t GetBootImageOffset(HLoadClass* load_class);
634   uint32_t GetBootImageOffset(HLoadString* load_string);
635   uint32_t GetBootImageOffset(HInvokeStaticOrDirect* invoke);
636 
637   static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke);
638 
SetDisassemblyInformation(DisassemblyInformation * info)639   void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; }
GetDisassemblyInformation()640   DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; }
641 
642   virtual void InvokeRuntime(QuickEntrypointEnum entrypoint,
643                              HInstruction* instruction,
644                              uint32_t dex_pc,
645                              SlowPathCode* slow_path = nullptr) = 0;
646 
647   // Check if the desired_string_load_kind is supported. If it is, return it,
648   // otherwise return a fall-back kind that should be used instead.
649   virtual HLoadString::LoadKind GetSupportedLoadStringKind(
650       HLoadString::LoadKind desired_string_load_kind) = 0;
651 
652   // Check if the desired_class_load_kind is supported. If it is, return it,
653   // otherwise return a fall-back kind that should be used instead.
654   virtual HLoadClass::LoadKind GetSupportedLoadClassKind(
655       HLoadClass::LoadKind desired_class_load_kind) = 0;
656 
GetLoadStringCallKind(HLoadString * load)657   static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) {
658     switch (load->GetLoadKind()) {
659       case HLoadString::LoadKind::kBssEntry:
660         DCHECK(load->NeedsEnvironment());
661         return LocationSummary::kCallOnSlowPath;
662       case HLoadString::LoadKind::kRuntimeCall:
663         DCHECK(load->NeedsEnvironment());
664         return LocationSummary::kCallOnMainOnly;
665       case HLoadString::LoadKind::kJitTableAddress:
666         DCHECK(!load->NeedsEnvironment());
667         return kEmitCompilerReadBarrier
668             ? LocationSummary::kCallOnSlowPath
669             : LocationSummary::kNoCall;
670         break;
671       default:
672         DCHECK(!load->NeedsEnvironment());
673         return LocationSummary::kNoCall;
674     }
675   }
676 
677   // Check if the desired_dispatch_info is supported. If it is, return it,
678   // otherwise return a fall-back info that should be used instead.
679   virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
680       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
681       ArtMethod* method) = 0;
682 
683   // Generate a call to a static or direct method.
684   virtual void GenerateStaticOrDirectCall(
685       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
686   // Generate a call to a virtual method.
687   virtual void GenerateVirtualCall(
688       HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
689 
690   // Copy the result of a call into the given target.
691   virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0;
692 
693   virtual void IncreaseFrame(size_t adjustment) = 0;
694   virtual void DecreaseFrame(size_t adjustment) = 0;
695 
696   virtual void GenerateNop() = 0;
697 
698   static QuickEntrypointEnum GetArrayAllocationEntrypoint(HNewArray* new_array);
699 
700  protected:
701   // Patch info used for recording locations of required linker patches and their targets,
702   // i.e. target method, string, type or code identified by their dex file and index,
703   // or .data.bimg.rel.ro entries identified by the boot image offset.
704   template <typename LabelType>
705   struct PatchInfo {
PatchInfoPatchInfo706     PatchInfo(const DexFile* dex_file, uint32_t off_or_idx)
707         : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { }
708 
709     // Target dex file or null for .data.bmig.rel.ro patches.
710     const DexFile* target_dex_file;
711     // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index.
712     uint32_t offset_or_index;
713     // Label for the instruction to patch.
714     LabelType label;
715   };
716 
717   CodeGenerator(HGraph* graph,
718                 size_t number_of_core_registers,
719                 size_t number_of_fpu_registers,
720                 size_t number_of_register_pairs,
721                 uint32_t core_callee_save_mask,
722                 uint32_t fpu_callee_save_mask,
723                 const CompilerOptions& compiler_options,
724                 OptimizingCompilerStats* stats);
725 
726   virtual HGraphVisitor* GetLocationBuilder() = 0;
727   virtual HGraphVisitor* GetInstructionVisitor() = 0;
728 
729   // Returns the location of the first spilled entry for floating point registers,
730   // relative to the stack pointer.
GetFpuSpillStart()731   uint32_t GetFpuSpillStart() const {
732     return GetFrameSize() - FrameEntrySpillSize();
733   }
734 
GetFpuSpillSize()735   uint32_t GetFpuSpillSize() const {
736     return POPCOUNT(fpu_spill_mask_) * GetCalleePreservedFPWidth();
737   }
738 
GetCoreSpillSize()739   uint32_t GetCoreSpillSize() const {
740     return POPCOUNT(core_spill_mask_) * GetWordSize();
741   }
742 
HasAllocatedCalleeSaveRegisters()743   virtual bool HasAllocatedCalleeSaveRegisters() const {
744     // We check the core registers against 1 because it always comprises the return PC.
745     return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1)
746       || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0);
747   }
748 
CallPushesPC()749   bool CallPushesPC() const {
750     InstructionSet instruction_set = GetInstructionSet();
751     return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64;
752   }
753 
754   // Arm64 has its own type for a label, so we need to templatize these methods
755   // to share the logic.
756 
757   template <typename LabelType>
CommonInitializeLabels()758   LabelType* CommonInitializeLabels() {
759     // We use raw array allocations instead of ArenaVector<> because Labels are
760     // non-constructible and non-movable and as such cannot be held in a vector.
761     size_t size = GetGraph()->GetBlocks().size();
762     LabelType* labels =
763         GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator);
764     for (size_t i = 0; i != size; ++i) {
765       new(labels + i) LabelType();
766     }
767     return labels;
768   }
769 
770   template <typename LabelType>
CommonGetLabelOf(LabelType * raw_pointer_to_labels_array,HBasicBlock * block)771   LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const {
772     block = FirstNonEmptyBlock(block);
773     return raw_pointer_to_labels_array + block->GetBlockId();
774   }
775 
GetCurrentSlowPath()776   SlowPathCode* GetCurrentSlowPath() {
777     return current_slow_path_;
778   }
779 
780   StackMapStream* GetStackMapStream();
781 
782   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string);
783   uint64_t GetJitStringRootIndex(StringReference string_reference);
784   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass);
785   uint64_t GetJitClassRootIndex(TypeReference type_reference);
786 
787   // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code.
788   virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data);
789 
790   // Frame size required for this method.
791   uint32_t frame_size_;
792   uint32_t core_spill_mask_;
793   uint32_t fpu_spill_mask_;
794   uint32_t first_register_slot_in_slow_path_;
795 
796   // Registers that were allocated during linear scan.
797   RegisterSet allocated_registers_;
798 
799   // Arrays used when doing register allocation to know which
800   // registers we can allocate. `SetupBlockedRegisters` updates the
801   // arrays.
802   bool* const blocked_core_registers_;
803   bool* const blocked_fpu_registers_;
804   size_t number_of_core_registers_;
805   size_t number_of_fpu_registers_;
806   size_t number_of_register_pairs_;
807   const uint32_t core_callee_save_mask_;
808   const uint32_t fpu_callee_save_mask_;
809 
810   // The order to use for code generation.
811   const ArenaVector<HBasicBlock*>* block_order_;
812 
813   DisassemblyInformation* disasm_info_;
814 
815  private:
816   class CodeGenerationData;
817 
818   void InitializeCodeGenerationData();
819   size_t GetStackOffsetOfSavedRegister(size_t index);
820   void GenerateSlowPaths();
821   void BlockIfInRegister(Location location, bool is_out = false) const;
822   void EmitEnvironment(HEnvironment* environment,
823                        SlowPathCode* slow_path,
824                        bool needs_vreg_info = true);
825   void EmitVRegInfo(HEnvironment* environment, SlowPathCode* slow_path);
826 
827   static void PrepareCriticalNativeArgumentMoves(
828       HInvokeStaticOrDirect* invoke,
829       /*inout*/InvokeDexCallingConventionVisitor* visitor,
830       /*out*/HParallelMove* parallel_move);
831 
832   void FinishCriticalNativeFrameSetup(size_t out_frame_size, /*inout*/HParallelMove* parallel_move);
833 
834   static const char* GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke, uint32_t* shorty_len);
835 
836   OptimizingCompilerStats* stats_;
837 
838   HGraph* const graph_;
839   const CompilerOptions& compiler_options_;
840 
841   // The current slow-path that we're generating code for.
842   SlowPathCode* current_slow_path_;
843 
844   // The current block index in `block_order_` of the block
845   // we are generating code for.
846   size_t current_block_index_;
847 
848   // Whether the method is a leaf method.
849   bool is_leaf_;
850 
851   // Whether an instruction in the graph accesses the current method.
852   // TODO: Rename: this actually indicates that some instruction in the method
853   // needs the environment including a valid stack frame.
854   bool requires_current_method_;
855 
856   // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the
857   // ArenaStack memory allocated in previous passes instead of adding to the memory
858   // held by the ArenaAllocator. This ScopedArenaAllocator is created in
859   // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed.
860   std::unique_ptr<CodeGenerationData> code_generation_data_;
861 
862   friend class OptimizingCFITest;
863   ART_FRIEND_TEST(CodegenTest, ARM64FrameSizeSIMD);
864   ART_FRIEND_TEST(CodegenTest, ARM64FrameSizeNoSIMD);
865 
866   DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
867 };
868 
869 template <typename C, typename F>
870 class CallingConvention {
871  public:
CallingConvention(const C * registers,size_t number_of_registers,const F * fpu_registers,size_t number_of_fpu_registers,PointerSize pointer_size)872   CallingConvention(const C* registers,
873                     size_t number_of_registers,
874                     const F* fpu_registers,
875                     size_t number_of_fpu_registers,
876                     PointerSize pointer_size)
877       : registers_(registers),
878         number_of_registers_(number_of_registers),
879         fpu_registers_(fpu_registers),
880         number_of_fpu_registers_(number_of_fpu_registers),
881         pointer_size_(pointer_size) {}
882 
GetNumberOfRegisters()883   size_t GetNumberOfRegisters() const { return number_of_registers_; }
GetNumberOfFpuRegisters()884   size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; }
885 
GetRegisterAt(size_t index)886   C GetRegisterAt(size_t index) const {
887     DCHECK_LT(index, number_of_registers_);
888     return registers_[index];
889   }
890 
GetFpuRegisterAt(size_t index)891   F GetFpuRegisterAt(size_t index) const {
892     DCHECK_LT(index, number_of_fpu_registers_);
893     return fpu_registers_[index];
894   }
895 
GetStackOffsetOf(size_t index)896   size_t GetStackOffsetOf(size_t index) const {
897     // We still reserve the space for parameters passed by registers.
898     // Add space for the method pointer.
899     return static_cast<size_t>(pointer_size_) + index * kVRegSize;
900   }
901 
902  private:
903   const C* registers_;
904   const size_t number_of_registers_;
905   const F* fpu_registers_;
906   const size_t number_of_fpu_registers_;
907   const PointerSize pointer_size_;
908 
909   DISALLOW_COPY_AND_ASSIGN(CallingConvention);
910 };
911 
912 /**
913  * A templated class SlowPathGenerator with a templated method NewSlowPath()
914  * that can be used by any code generator to share equivalent slow-paths with
915  * the objective of reducing generated code size.
916  *
917  * InstructionType:  instruction that requires SlowPathCodeType
918  * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *)
919  */
920 template <typename InstructionType>
921 class SlowPathGenerator {
922   static_assert(std::is_base_of<HInstruction, InstructionType>::value,
923                 "InstructionType is not a subclass of art::HInstruction");
924 
925  public:
SlowPathGenerator(HGraph * graph,CodeGenerator * codegen)926   SlowPathGenerator(HGraph* graph, CodeGenerator* codegen)
927       : graph_(graph),
928         codegen_(codegen),
929         slow_path_map_(std::less<uint32_t>(),
930                        graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {}
931 
932   // Creates and adds a new slow-path, if needed, or returns existing one otherwise.
933   // Templating the method (rather than the whole class) on the slow-path type enables
934   // keeping this code at a generic, non architecture-specific place.
935   //
936   // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType.
937   //       To relax this requirement, we would need some RTTI on the stored slow-paths,
938   //       or template the class as a whole on SlowPathType.
939   template <typename SlowPathCodeType>
NewSlowPath(InstructionType * instruction)940   SlowPathCodeType* NewSlowPath(InstructionType* instruction) {
941     static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value,
942                   "SlowPathCodeType is not a subclass of art::SlowPathCode");
943     static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value,
944                   "SlowPathCodeType is not constructible from InstructionType*");
945     // Iterate over potential candidates for sharing. Currently, only same-typed
946     // slow-paths with exactly the same dex-pc are viable candidates.
947     // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing?
948     const uint32_t dex_pc = instruction->GetDexPc();
949     auto iter = slow_path_map_.find(dex_pc);
950     if (iter != slow_path_map_.end()) {
951       const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second;
952       for (const auto& it : candidates) {
953         InstructionType* other_instruction = it.first;
954         SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second);
955         // Determine if the instructions allow for slow-path sharing.
956         if (HaveSameLiveRegisters(instruction, other_instruction) &&
957             HaveSameStackMap(instruction, other_instruction)) {
958           // Can share: reuse existing one.
959           return other_slow_path;
960         }
961       }
962     } else {
963       // First time this dex-pc is seen.
964       iter = slow_path_map_.Put(dex_pc,
965                                 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}});
966     }
967     // Cannot share: create and add new slow-path for this particular dex-pc.
968     SlowPathCodeType* slow_path =
969         new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction);
970     iter->second.emplace_back(std::make_pair(instruction, slow_path));
971     codegen_->AddSlowPath(slow_path);
972     return slow_path;
973   }
974 
975  private:
976   // Tests if both instructions have same set of live physical registers. This ensures
977   // the slow-path has exactly the same preamble on saving these registers to stack.
HaveSameLiveRegisters(const InstructionType * i1,const InstructionType * i2)978   bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const {
979     const uint32_t core_spill = ~codegen_->GetCoreSpillMask();
980     const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask();
981     RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters();
982     RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters();
983     return (((live1->GetCoreRegisters() & core_spill) ==
984              (live2->GetCoreRegisters() & core_spill)) &&
985             ((live1->GetFloatingPointRegisters() & fpu_spill) ==
986              (live2->GetFloatingPointRegisters() & fpu_spill)));
987   }
988 
989   // Tests if both instructions have the same stack map. This ensures the interpreter
990   // will find exactly the same dex-registers at the same entries.
HaveSameStackMap(const InstructionType * i1,const InstructionType * i2)991   bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const {
992     DCHECK(i1->HasEnvironment());
993     DCHECK(i2->HasEnvironment());
994     // We conservatively test if the two instructions find exactly the same instructions
995     // and location in each dex-register. This guarantees they will have the same stack map.
996     HEnvironment* e1 = i1->GetEnvironment();
997     HEnvironment* e2 = i2->GetEnvironment();
998     if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) {
999       return false;
1000     }
1001     for (size_t i = 0, sz = e1->Size(); i < sz; ++i) {
1002       if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) ||
1003           !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) {
1004         return false;
1005       }
1006     }
1007     return true;
1008   }
1009 
1010   HGraph* const graph_;
1011   CodeGenerator* const codegen_;
1012 
1013   // Map from dex-pc to vector of already existing instruction/slow-path pairs.
1014   ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_;
1015 
1016   DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator);
1017 };
1018 
1019 class InstructionCodeGenerator : public HGraphVisitor {
1020  public:
InstructionCodeGenerator(HGraph * graph,CodeGenerator * codegen)1021   InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen)
1022       : HGraphVisitor(graph),
1023         deopt_slow_paths_(graph, codegen) {}
1024 
1025  protected:
1026   // Add slow-path generator for each instruction/slow-path combination that desires sharing.
1027   // TODO: under current regime, only deopt sharing make sense; extend later.
1028   SlowPathGenerator<HDeoptimize> deopt_slow_paths_;
1029 };
1030 
1031 }  // namespace art
1032 
1033 #endif  // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
1034