1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator.h"
18 
19 #ifdef ART_ENABLE_CODEGEN_arm
20 #include "code_generator_arm_vixl.h"
21 #endif
22 
23 #ifdef ART_ENABLE_CODEGEN_arm64
24 #include "code_generator_arm64.h"
25 #endif
26 
27 #ifdef ART_ENABLE_CODEGEN_x86
28 #include "code_generator_x86.h"
29 #endif
30 
31 #ifdef ART_ENABLE_CODEGEN_x86_64
32 #include "code_generator_x86_64.h"
33 #endif
34 
35 #include "art_method-inl.h"
36 #include "base/bit_utils.h"
37 #include "base/bit_utils_iterator.h"
38 #include "base/casts.h"
39 #include "base/leb128.h"
40 #include "class_linker.h"
41 #include "compiled_method.h"
42 #include "dex/bytecode_utils.h"
43 #include "dex/code_item_accessors-inl.h"
44 #include "dex/verified_method.h"
45 #include "graph_visualizer.h"
46 #include "image.h"
47 #include "gc/space/image_space.h"
48 #include "intern_table.h"
49 #include "intrinsics.h"
50 #include "mirror/array-inl.h"
51 #include "mirror/object_array-inl.h"
52 #include "mirror/object_reference.h"
53 #include "mirror/reference.h"
54 #include "mirror/string.h"
55 #include "parallel_move_resolver.h"
56 #include "scoped_thread_state_change-inl.h"
57 #include "ssa_liveness_analysis.h"
58 #include "stack_map.h"
59 #include "stack_map_stream.h"
60 #include "string_builder_append.h"
61 #include "thread-current-inl.h"
62 #include "utils/assembler.h"
63 
64 namespace art {
65 
66 // Return whether a location is consistent with a type.
CheckType(DataType::Type type,Location location)67 static bool CheckType(DataType::Type type, Location location) {
68   if (location.IsFpuRegister()
69       || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
70     return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
71   } else if (location.IsRegister() ||
72              (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
73     return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
74   } else if (location.IsRegisterPair()) {
75     return type == DataType::Type::kInt64;
76   } else if (location.IsFpuRegisterPair()) {
77     return type == DataType::Type::kFloat64;
78   } else if (location.IsStackSlot()) {
79     return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
80            || (type == DataType::Type::kFloat32)
81            || (type == DataType::Type::kReference);
82   } else if (location.IsDoubleStackSlot()) {
83     return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
84   } else if (location.IsConstant()) {
85     if (location.GetConstant()->IsIntConstant()) {
86       return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
87     } else if (location.GetConstant()->IsNullConstant()) {
88       return type == DataType::Type::kReference;
89     } else if (location.GetConstant()->IsLongConstant()) {
90       return type == DataType::Type::kInt64;
91     } else if (location.GetConstant()->IsFloatConstant()) {
92       return type == DataType::Type::kFloat32;
93     } else {
94       return location.GetConstant()->IsDoubleConstant()
95           && (type == DataType::Type::kFloat64);
96     }
97   } else {
98     return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
99   }
100 }
101 
102 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)103 static bool CheckTypeConsistency(HInstruction* instruction) {
104   LocationSummary* locations = instruction->GetLocations();
105   if (locations == nullptr) {
106     return true;
107   }
108 
109   if (locations->Out().IsUnallocated()
110       && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
111     DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
112         << instruction->GetType()
113         << " " << locations->InAt(0);
114   } else {
115     DCHECK(CheckType(instruction->GetType(), locations->Out()))
116         << instruction->GetType()
117         << " " << locations->Out();
118   }
119 
120   HConstInputsRef inputs = instruction->GetInputs();
121   for (size_t i = 0; i < inputs.size(); ++i) {
122     DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
123       << inputs[i]->GetType() << " " << locations->InAt(i);
124   }
125 
126   HEnvironment* environment = instruction->GetEnvironment();
127   for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
128     if (environment->GetInstructionAt(i) != nullptr) {
129       DataType::Type type = environment->GetInstructionAt(i)->GetType();
130       DCHECK(CheckType(type, environment->GetLocationAt(i)))
131         << type << " " << environment->GetLocationAt(i);
132     } else {
133       DCHECK(environment->GetLocationAt(i).IsInvalid())
134         << environment->GetLocationAt(i);
135     }
136   }
137   return true;
138 }
139 
140 class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> {
141  public:
Create(ArenaStack * arena_stack,InstructionSet instruction_set)142   static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack,
143                                                     InstructionSet instruction_set) {
144     ScopedArenaAllocator allocator(arena_stack);
145     void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator);
146     return std::unique_ptr<CodeGenerationData>(
147         ::new (memory) CodeGenerationData(std::move(allocator), instruction_set));
148   }
149 
GetScopedAllocator()150   ScopedArenaAllocator* GetScopedAllocator() {
151     return &allocator_;
152   }
153 
AddSlowPath(SlowPathCode * slow_path)154   void AddSlowPath(SlowPathCode* slow_path) {
155     slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path));
156   }
157 
GetSlowPaths() const158   ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const {
159     return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_);
160   }
161 
GetStackMapStream()162   StackMapStream* GetStackMapStream() { return &stack_map_stream_; }
163 
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)164   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) {
165     jit_string_roots_.Overwrite(string_reference,
166                                 reinterpret_cast64<uint64_t>(string.GetReference()));
167   }
168 
GetJitStringRootIndex(StringReference string_reference) const169   uint64_t GetJitStringRootIndex(StringReference string_reference) const {
170     return jit_string_roots_.Get(string_reference);
171   }
172 
GetNumberOfJitStringRoots() const173   size_t GetNumberOfJitStringRoots() const {
174     return jit_string_roots_.size();
175   }
176 
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)177   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
178     jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference()));
179   }
180 
GetJitClassRootIndex(TypeReference type_reference) const181   uint64_t GetJitClassRootIndex(TypeReference type_reference) const {
182     return jit_class_roots_.Get(type_reference);
183   }
184 
GetNumberOfJitClassRoots() const185   size_t GetNumberOfJitClassRoots() const {
186     return jit_class_roots_.size();
187   }
188 
GetNumberOfJitRoots() const189   size_t GetNumberOfJitRoots() const {
190     return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots();
191   }
192 
193   void EmitJitRoots(/*out*/std::vector<Handle<mirror::Object>>* roots)
194       REQUIRES_SHARED(Locks::mutator_lock_);
195 
196  private:
CodeGenerationData(ScopedArenaAllocator && allocator,InstructionSet instruction_set)197   CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set)
198       : allocator_(std::move(allocator)),
199         stack_map_stream_(&allocator_, instruction_set),
200         slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)),
201         jit_string_roots_(StringReferenceValueComparator(),
202                           allocator_.Adapter(kArenaAllocCodeGenerator)),
203         jit_class_roots_(TypeReferenceValueComparator(),
204                          allocator_.Adapter(kArenaAllocCodeGenerator)) {
205     slow_paths_.reserve(kDefaultSlowPathsCapacity);
206   }
207 
208   static constexpr size_t kDefaultSlowPathsCapacity = 8;
209 
210   ScopedArenaAllocator allocator_;
211   StackMapStream stack_map_stream_;
212   ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_;
213 
214   // Maps a StringReference (dex_file, string_index) to the index in the literal table.
215   // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
216   // will compute all the indices.
217   ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_;
218 
219   // Maps a ClassReference (dex_file, type_index) to the index in the literal table.
220   // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
221   // will compute all the indices.
222   ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_;
223 };
224 
EmitJitRoots(std::vector<Handle<mirror::Object>> * roots)225 void CodeGenerator::CodeGenerationData::EmitJitRoots(
226     /*out*/std::vector<Handle<mirror::Object>>* roots) {
227   DCHECK(roots->empty());
228   roots->reserve(GetNumberOfJitRoots());
229   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
230   size_t index = 0;
231   for (auto& entry : jit_string_roots_) {
232     // Update the `roots` with the string, and replace the address temporarily
233     // stored to the index in the table.
234     uint64_t address = entry.second;
235     roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
236     DCHECK(roots->back() != nullptr);
237     DCHECK(roots->back()->IsString());
238     entry.second = index;
239     // Ensure the string is strongly interned. This is a requirement on how the JIT
240     // handles strings. b/32995596
241     class_linker->GetInternTable()->InternStrong(roots->back()->AsString());
242     ++index;
243   }
244   for (auto& entry : jit_class_roots_) {
245     // Update the `roots` with the class, and replace the address temporarily
246     // stored to the index in the table.
247     uint64_t address = entry.second;
248     roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
249     DCHECK(roots->back() != nullptr);
250     DCHECK(roots->back()->IsClass());
251     entry.second = index;
252     ++index;
253   }
254 }
255 
GetScopedAllocator()256 ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
257   DCHECK(code_generation_data_ != nullptr);
258   return code_generation_data_->GetScopedAllocator();
259 }
260 
GetStackMapStream()261 StackMapStream* CodeGenerator::GetStackMapStream() {
262   DCHECK(code_generation_data_ != nullptr);
263   return code_generation_data_->GetStackMapStream();
264 }
265 
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)266 void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
267                                          Handle<mirror::String> string) {
268   DCHECK(code_generation_data_ != nullptr);
269   code_generation_data_->ReserveJitStringRoot(string_reference, string);
270 }
271 
GetJitStringRootIndex(StringReference string_reference)272 uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
273   DCHECK(code_generation_data_ != nullptr);
274   return code_generation_data_->GetJitStringRootIndex(string_reference);
275 }
276 
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)277 void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
278   DCHECK(code_generation_data_ != nullptr);
279   code_generation_data_->ReserveJitClassRoot(type_reference, klass);
280 }
281 
GetJitClassRootIndex(TypeReference type_reference)282 uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
283   DCHECK(code_generation_data_ != nullptr);
284   return code_generation_data_->GetJitClassRootIndex(type_reference);
285 }
286 
EmitJitRootPatches(uint8_t * code ATTRIBUTE_UNUSED,const uint8_t * roots_data ATTRIBUTE_UNUSED)287 void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED,
288                                        const uint8_t* roots_data ATTRIBUTE_UNUSED) {
289   DCHECK(code_generation_data_ != nullptr);
290   DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
291   DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
292 }
293 
GetArrayLengthOffset(HArrayLength * array_length)294 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
295   return array_length->IsStringLength()
296       ? mirror::String::CountOffset().Uint32Value()
297       : mirror::Array::LengthOffset().Uint32Value();
298 }
299 
GetArrayDataOffset(HArrayGet * array_get)300 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
301   DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
302   return array_get->IsStringCharAt()
303       ? mirror::String::ValueOffset().Uint32Value()
304       : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
305 }
306 
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const307 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
308   DCHECK_EQ((*block_order_)[current_block_index_], current);
309   return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
310 }
311 
GetNextBlockToEmit() const312 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
313   for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
314     HBasicBlock* block = (*block_order_)[i];
315     if (!block->IsSingleJump()) {
316       return block;
317     }
318   }
319   return nullptr;
320 }
321 
FirstNonEmptyBlock(HBasicBlock * block) const322 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
323   while (block->IsSingleJump()) {
324     block = block->GetSuccessors()[0];
325   }
326   return block;
327 }
328 
329 class DisassemblyScope {
330  public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)331   DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
332       : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
333     if (codegen_.GetDisassemblyInformation() != nullptr) {
334       start_offset_ = codegen_.GetAssembler().CodeSize();
335     }
336   }
337 
~DisassemblyScope()338   ~DisassemblyScope() {
339     // We avoid building this data when we know it will not be used.
340     if (codegen_.GetDisassemblyInformation() != nullptr) {
341       codegen_.GetDisassemblyInformation()->AddInstructionInterval(
342           instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
343     }
344   }
345 
346  private:
347   const CodeGenerator& codegen_;
348   HInstruction* instruction_;
349   size_t start_offset_;
350 };
351 
352 
GenerateSlowPaths()353 void CodeGenerator::GenerateSlowPaths() {
354   DCHECK(code_generation_data_ != nullptr);
355   size_t code_start = 0;
356   for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
357     SlowPathCode* slow_path = slow_path_ptr.get();
358     current_slow_path_ = slow_path;
359     if (disasm_info_ != nullptr) {
360       code_start = GetAssembler()->CodeSize();
361     }
362     // Record the dex pc at start of slow path (required for java line number mapping).
363     MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
364     slow_path->EmitNativeCode(this);
365     if (disasm_info_ != nullptr) {
366       disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
367     }
368   }
369   current_slow_path_ = nullptr;
370 }
371 
InitializeCodeGenerationData()372 void CodeGenerator::InitializeCodeGenerationData() {
373   DCHECK(code_generation_data_ == nullptr);
374   code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
375 }
376 
Compile(CodeAllocator * allocator)377 void CodeGenerator::Compile(CodeAllocator* allocator) {
378   InitializeCodeGenerationData();
379 
380   // The register allocator already called `InitializeCodeGeneration`,
381   // where the frame size has been computed.
382   DCHECK(block_order_ != nullptr);
383   Initialize();
384 
385   HGraphVisitor* instruction_visitor = GetInstructionVisitor();
386   DCHECK_EQ(current_block_index_, 0u);
387 
388   GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
389                                    core_spill_mask_,
390                                    fpu_spill_mask_,
391                                    GetGraph()->GetNumberOfVRegs(),
392                                    GetGraph()->IsCompilingBaseline());
393 
394   size_t frame_start = GetAssembler()->CodeSize();
395   GenerateFrameEntry();
396   DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
397   if (disasm_info_ != nullptr) {
398     disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
399   }
400 
401   for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
402     HBasicBlock* block = (*block_order_)[current_block_index_];
403     // Don't generate code for an empty block. Its predecessors will branch to its successor
404     // directly. Also, the label of that block will not be emitted, so this helps catch
405     // errors where we reference that label.
406     if (block->IsSingleJump()) continue;
407     Bind(block);
408     // This ensures that we have correct native line mapping for all native instructions.
409     // It is necessary to make stepping over a statement work. Otherwise, any initial
410     // instructions (e.g. moves) would be assumed to be the start of next statement.
411     MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc());
412     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
413       HInstruction* current = it.Current();
414       if (current->HasEnvironment()) {
415         // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
416         // Note that we need correct mapping for the native PC of the call instruction,
417         // so the runtime's stackmap is not sufficient since it is at PC after the call.
418         MaybeRecordNativeDebugInfo(current, block->GetDexPc());
419       }
420       DisassemblyScope disassembly_scope(current, *this);
421       DCHECK(CheckTypeConsistency(current));
422       current->Accept(instruction_visitor);
423     }
424   }
425 
426   GenerateSlowPaths();
427 
428   // Emit catch stack maps at the end of the stack map stream as expected by the
429   // runtime exception handler.
430   if (graph_->HasTryCatch()) {
431     RecordCatchBlockInfo();
432   }
433 
434   // Finalize instructions in assember;
435   Finalize(allocator);
436 
437   GetStackMapStream()->EndMethod();
438 }
439 
Finalize(CodeAllocator * allocator)440 void CodeGenerator::Finalize(CodeAllocator* allocator) {
441   size_t code_size = GetAssembler()->CodeSize();
442   uint8_t* buffer = allocator->Allocate(code_size);
443 
444   MemoryRegion code(buffer, code_size);
445   GetAssembler()->FinalizeInstructions(code);
446 }
447 
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)448 void CodeGenerator::EmitLinkerPatches(
449     ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
450   // No linker patches by default.
451 }
452 
NeedsThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED) const453 bool CodeGenerator::NeedsThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED) const {
454   // Code generators that create patches requiring thunk compilation should override this function.
455   return false;
456 }
457 
EmitThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED,ArenaVector<uint8_t> * code ATTRIBUTE_UNUSED,std::string * debug_name ATTRIBUTE_UNUSED)458 void CodeGenerator::EmitThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED,
459                                   /*out*/ ArenaVector<uint8_t>* code ATTRIBUTE_UNUSED,
460                                   /*out*/ std::string* debug_name ATTRIBUTE_UNUSED) {
461   // Code generators that create patches requiring thunk compilation should override this function.
462   LOG(FATAL) << "Unexpected call to EmitThunkCode().";
463 }
464 
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)465 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
466                                              size_t maximum_safepoint_spill_size,
467                                              size_t number_of_out_slots,
468                                              const ArenaVector<HBasicBlock*>& block_order) {
469   block_order_ = &block_order;
470   DCHECK(!block_order.empty());
471   DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
472   ComputeSpillMask();
473   first_register_slot_in_slow_path_ = RoundUp(
474       (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
475 
476   if (number_of_spill_slots == 0
477       && !HasAllocatedCalleeSaveRegisters()
478       && IsLeafMethod()
479       && !RequiresCurrentMethod()) {
480     DCHECK_EQ(maximum_safepoint_spill_size, 0u);
481     SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
482   } else {
483     SetFrameSize(RoundUp(
484         first_register_slot_in_slow_path_
485         + maximum_safepoint_spill_size
486         + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
487         + FrameEntrySpillSize(),
488         kStackAlignment));
489   }
490 }
491 
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)492 void CodeGenerator::CreateCommonInvokeLocationSummary(
493     HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
494   ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
495   LocationSummary* locations = new (allocator) LocationSummary(invoke,
496                                                                LocationSummary::kCallOnMainOnly);
497 
498   for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
499     HInstruction* input = invoke->InputAt(i);
500     locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
501   }
502 
503   locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
504 
505   if (invoke->IsInvokeStaticOrDirect()) {
506     HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
507     HInvokeStaticOrDirect::MethodLoadKind method_load_kind = call->GetMethodLoadKind();
508     HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = call->GetCodePtrLocation();
509     if (code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallCriticalNative) {
510       locations->AddTemp(Location::RequiresRegister());  // For target method.
511     }
512     if (code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallCriticalNative ||
513         method_load_kind == HInvokeStaticOrDirect::MethodLoadKind::kRecursive) {
514       // For `kCallCriticalNative` we need the current method as the hidden argument
515       // if we reach the dlsym lookup stub for @CriticalNative.
516       locations->SetInAt(call->GetCurrentMethodIndex(), visitor->GetMethodLocation());
517     } else {
518       locations->AddTemp(visitor->GetMethodLocation());
519       if (method_load_kind == HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall) {
520         locations->SetInAt(call->GetCurrentMethodIndex(), Location::RequiresRegister());
521       }
522     }
523   } else if (!invoke->IsInvokePolymorphic()) {
524     locations->AddTemp(visitor->GetMethodLocation());
525   }
526 }
527 
PrepareCriticalNativeArgumentMoves(HInvokeStaticOrDirect * invoke,InvokeDexCallingConventionVisitor * visitor,HParallelMove * parallel_move)528 void CodeGenerator::PrepareCriticalNativeArgumentMoves(
529     HInvokeStaticOrDirect* invoke,
530     /*inout*/InvokeDexCallingConventionVisitor* visitor,
531     /*out*/HParallelMove* parallel_move) {
532   LocationSummary* locations = invoke->GetLocations();
533   for (size_t i = 0, num = invoke->GetNumberOfArguments(); i != num; ++i) {
534     Location in_location = locations->InAt(i);
535     DataType::Type type = invoke->InputAt(i)->GetType();
536     DCHECK_NE(type, DataType::Type::kReference);
537     Location out_location = visitor->GetNextLocation(type);
538     if (out_location.IsStackSlot() || out_location.IsDoubleStackSlot()) {
539       // Stack arguments will need to be moved after adjusting the SP.
540       parallel_move->AddMove(in_location, out_location, type, /*instruction=*/ nullptr);
541     } else {
542       // Register arguments should have been assigned their final locations for register allocation.
543       DCHECK(out_location.Equals(in_location)) << in_location << " -> " << out_location;
544     }
545   }
546 }
547 
FinishCriticalNativeFrameSetup(size_t out_frame_size,HParallelMove * parallel_move)548 void CodeGenerator::FinishCriticalNativeFrameSetup(size_t out_frame_size,
549                                                    /*inout*/HParallelMove* parallel_move) {
550   DCHECK_NE(out_frame_size, 0u);
551   IncreaseFrame(out_frame_size);
552   // Adjust the source stack offsets by `out_frame_size`, i.e. the additional
553   // frame size needed for outgoing stack arguments.
554   for (size_t i = 0, num = parallel_move->NumMoves(); i != num; ++i) {
555     MoveOperands* operands = parallel_move->MoveOperandsAt(i);
556     Location source = operands->GetSource();
557     if (operands->GetSource().IsStackSlot()) {
558       operands->SetSource(Location::StackSlot(source.GetStackIndex() +  out_frame_size));
559     } else if (operands->GetSource().IsDoubleStackSlot()) {
560       operands->SetSource(Location::DoubleStackSlot(source.GetStackIndex() +  out_frame_size));
561     }
562   }
563   // Emit the moves.
564   GetMoveResolver()->EmitNativeCode(parallel_move);
565 }
566 
GetCriticalNativeShorty(HInvokeStaticOrDirect * invoke,uint32_t * shorty_len)567 const char* CodeGenerator::GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke,
568                                                    uint32_t* shorty_len) {
569   ScopedObjectAccess soa(Thread::Current());
570   DCHECK(invoke->GetResolvedMethod()->IsCriticalNative());
571   return invoke->GetResolvedMethod()->GetShorty(shorty_len);
572 }
573 
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)574 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
575     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
576   MoveConstant(temp, invoke->GetDexMethodIndex());
577 
578   // The access check is unnecessary but we do not want to introduce
579   // extra entrypoints for the codegens that do not support some
580   // invoke type and fall back to the runtime call.
581 
582   // Initialize to anything to silent compiler warnings.
583   QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
584   switch (invoke->GetInvokeType()) {
585     case kStatic:
586       entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
587       break;
588     case kDirect:
589       entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
590       break;
591     case kSuper:
592       entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
593       break;
594     case kVirtual:
595     case kInterface:
596     case kPolymorphic:
597     case kCustom:
598       LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
599       UNREACHABLE();
600   }
601 
602   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
603 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)604 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
605   MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
606 
607   // Initialize to anything to silent compiler warnings.
608   QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
609   switch (invoke->GetInvokeType()) {
610     case kStatic:
611       entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
612       break;
613     case kDirect:
614       entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
615       break;
616     case kVirtual:
617       entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
618       break;
619     case kSuper:
620       entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
621       break;
622     case kInterface:
623       entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
624       break;
625     case kPolymorphic:
626     case kCustom:
627       LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
628       UNREACHABLE();
629   }
630   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
631 }
632 
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke)633 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) {
634   // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
635   // method index) since it requires multiple info from the instruction (registers A, B, H). Not
636   // using the reservation has no effect on the registers used in the runtime call.
637   QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
638   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
639 }
640 
GenerateInvokeCustomCall(HInvokeCustom * invoke)641 void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
642   MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
643   QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
644   InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
645 }
646 
CreateStringBuilderAppendLocations(HStringBuilderAppend * instruction,Location out)647 void CodeGenerator::CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction,
648                                                        Location out) {
649   ArenaAllocator* allocator = GetGraph()->GetAllocator();
650   LocationSummary* locations =
651       new (allocator) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
652   locations->SetOut(out);
653   instruction->GetLocations()->SetInAt(instruction->FormatIndex(),
654                                        Location::ConstantLocation(instruction->GetFormat()));
655 
656   uint32_t format = static_cast<uint32_t>(instruction->GetFormat()->GetValue());
657   uint32_t f = format;
658   PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
659   size_t stack_offset = static_cast<size_t>(pointer_size);  // Start after the ArtMethod*.
660   for (size_t i = 0, num_args = instruction->GetNumberOfArguments(); i != num_args; ++i) {
661     StringBuilderAppend::Argument arg_type =
662         static_cast<StringBuilderAppend::Argument>(f & StringBuilderAppend::kArgMask);
663     switch (arg_type) {
664       case StringBuilderAppend::Argument::kStringBuilder:
665       case StringBuilderAppend::Argument::kString:
666       case StringBuilderAppend::Argument::kCharArray:
667         static_assert(sizeof(StackReference<mirror::Object>) == sizeof(uint32_t), "Size check.");
668         FALLTHROUGH_INTENDED;
669       case StringBuilderAppend::Argument::kBoolean:
670       case StringBuilderAppend::Argument::kChar:
671       case StringBuilderAppend::Argument::kInt:
672       case StringBuilderAppend::Argument::kFloat:
673         locations->SetInAt(i, Location::StackSlot(stack_offset));
674         break;
675       case StringBuilderAppend::Argument::kLong:
676       case StringBuilderAppend::Argument::kDouble:
677         stack_offset = RoundUp(stack_offset, sizeof(uint64_t));
678         locations->SetInAt(i, Location::DoubleStackSlot(stack_offset));
679         // Skip the low word, let the common code skip the high word.
680         stack_offset += sizeof(uint32_t);
681         break;
682       default:
683         LOG(FATAL) << "Unexpected arg format: 0x" << std::hex
684             << (f & StringBuilderAppend::kArgMask) << " full format: 0x" << format;
685         UNREACHABLE();
686     }
687     f >>= StringBuilderAppend::kBitsPerArg;
688     stack_offset += sizeof(uint32_t);
689   }
690   DCHECK_EQ(f, 0u);
691 
692   size_t param_size = stack_offset - static_cast<size_t>(pointer_size);
693   DCHECK_ALIGNED(param_size, kVRegSize);
694   size_t num_vregs = param_size / kVRegSize;
695   graph_->UpdateMaximumNumberOfOutVRegs(num_vregs);
696 }
697 
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,DataType::Type field_type,const FieldAccessCallingConvention & calling_convention)698 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
699     HInstruction* field_access,
700     DataType::Type field_type,
701     const FieldAccessCallingConvention& calling_convention) {
702   bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
703       || field_access->IsUnresolvedInstanceFieldSet();
704   bool is_get = field_access->IsUnresolvedInstanceFieldGet()
705       || field_access->IsUnresolvedStaticFieldGet();
706 
707   ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
708   LocationSummary* locations =
709       new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
710 
711   locations->AddTemp(calling_convention.GetFieldIndexLocation());
712 
713   if (is_instance) {
714     // Add the `this` object for instance field accesses.
715     locations->SetInAt(0, calling_convention.GetObjectLocation());
716   }
717 
718   // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
719   // regardless of the the type. Because of that we forced to special case
720   // the access to floating point values.
721   if (is_get) {
722     if (DataType::IsFloatingPointType(field_type)) {
723       // The return value will be stored in regular registers while register
724       // allocator expects it in a floating point register.
725       // Note We don't need to request additional temps because the return
726       // register(s) are already blocked due the call and they may overlap with
727       // the input or field index.
728       // The transfer between the two will be done at codegen level.
729       locations->SetOut(calling_convention.GetFpuLocation(field_type));
730     } else {
731       locations->SetOut(calling_convention.GetReturnLocation(field_type));
732     }
733   } else {
734      size_t set_index = is_instance ? 1 : 0;
735      if (DataType::IsFloatingPointType(field_type)) {
736       // The set value comes from a float location while the calling convention
737       // expects it in a regular register location. Allocate a temp for it and
738       // make the transfer at codegen.
739       AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
740       locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
741     } else {
742       locations->SetInAt(set_index,
743           calling_convention.GetSetValueLocation(field_type, is_instance));
744     }
745   }
746 }
747 
GenerateUnresolvedFieldAccess(HInstruction * field_access,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)748 void CodeGenerator::GenerateUnresolvedFieldAccess(
749     HInstruction* field_access,
750     DataType::Type field_type,
751     uint32_t field_index,
752     uint32_t dex_pc,
753     const FieldAccessCallingConvention& calling_convention) {
754   LocationSummary* locations = field_access->GetLocations();
755 
756   MoveConstant(locations->GetTemp(0), field_index);
757 
758   bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
759       || field_access->IsUnresolvedInstanceFieldSet();
760   bool is_get = field_access->IsUnresolvedInstanceFieldGet()
761       || field_access->IsUnresolvedStaticFieldGet();
762 
763   if (!is_get && DataType::IsFloatingPointType(field_type)) {
764     // Copy the float value to be set into the calling convention register.
765     // Note that using directly the temp location is problematic as we don't
766     // support temp register pairs. To avoid boilerplate conversion code, use
767     // the location from the calling convention.
768     MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
769                  locations->InAt(is_instance ? 1 : 0),
770                  (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
771                                                     : DataType::Type::kInt32));
772   }
773 
774   QuickEntrypointEnum entrypoint = kQuickSet8Static;  // Initialize to anything to avoid warnings.
775   switch (field_type) {
776     case DataType::Type::kBool:
777       entrypoint = is_instance
778           ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
779           : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
780       break;
781     case DataType::Type::kInt8:
782       entrypoint = is_instance
783           ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
784           : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
785       break;
786     case DataType::Type::kInt16:
787       entrypoint = is_instance
788           ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
789           : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
790       break;
791     case DataType::Type::kUint16:
792       entrypoint = is_instance
793           ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
794           : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
795       break;
796     case DataType::Type::kInt32:
797     case DataType::Type::kFloat32:
798       entrypoint = is_instance
799           ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
800           : (is_get ? kQuickGet32Static : kQuickSet32Static);
801       break;
802     case DataType::Type::kReference:
803       entrypoint = is_instance
804           ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
805           : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
806       break;
807     case DataType::Type::kInt64:
808     case DataType::Type::kFloat64:
809       entrypoint = is_instance
810           ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
811           : (is_get ? kQuickGet64Static : kQuickSet64Static);
812       break;
813     default:
814       LOG(FATAL) << "Invalid type " << field_type;
815   }
816   InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
817 
818   if (is_get && DataType::IsFloatingPointType(field_type)) {
819     MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
820   }
821 }
822 
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)823 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
824                                                               Location runtime_type_index_location,
825                                                               Location runtime_return_location) {
826   DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
827   DCHECK_EQ(cls->InputCount(), 1u);
828   LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
829       cls, LocationSummary::kCallOnMainOnly);
830   locations->SetInAt(0, Location::NoLocation());
831   locations->AddTemp(runtime_type_index_location);
832   locations->SetOut(runtime_return_location);
833 }
834 
GenerateLoadClassRuntimeCall(HLoadClass * cls)835 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
836   DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
837   DCHECK(!cls->MustGenerateClinitCheck());
838   LocationSummary* locations = cls->GetLocations();
839   MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
840   if (cls->NeedsAccessCheck()) {
841     CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
842     InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc());
843   } else {
844     CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
845     InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc());
846   }
847 }
848 
CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle * method_handle,Location runtime_proto_index_location,Location runtime_return_location)849 void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
850     HLoadMethodHandle* method_handle,
851     Location runtime_proto_index_location,
852     Location runtime_return_location) {
853   DCHECK_EQ(method_handle->InputCount(), 1u);
854   LocationSummary* locations =
855       new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
856           method_handle, LocationSummary::kCallOnMainOnly);
857   locations->SetInAt(0, Location::NoLocation());
858   locations->AddTemp(runtime_proto_index_location);
859   locations->SetOut(runtime_return_location);
860 }
861 
GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle * method_handle)862 void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
863   LocationSummary* locations = method_handle->GetLocations();
864   MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
865   CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
866   InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc());
867 }
868 
CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType * method_type,Location runtime_proto_index_location,Location runtime_return_location)869 void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
870     HLoadMethodType* method_type,
871     Location runtime_proto_index_location,
872     Location runtime_return_location) {
873   DCHECK_EQ(method_type->InputCount(), 1u);
874   LocationSummary* locations =
875       new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
876           method_type, LocationSummary::kCallOnMainOnly);
877   locations->SetInAt(0, Location::NoLocation());
878   locations->AddTemp(runtime_proto_index_location);
879   locations->SetOut(runtime_return_location);
880 }
881 
GenerateLoadMethodTypeRuntimeCall(HLoadMethodType * method_type)882 void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
883   LocationSummary* locations = method_type->GetLocations();
884   MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
885   CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
886   InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc());
887 }
888 
GetBootImageOffsetImpl(const void * object,ImageHeader::ImageSections section)889 static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
890   Runtime* runtime = Runtime::Current();
891   DCHECK(runtime->IsAotCompiler());
892   const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
893       runtime->GetHeap()->GetBootImageSpaces();
894   // Check that the `object` is in the expected section of one of the boot image files.
895   DCHECK(std::any_of(boot_image_spaces.begin(),
896                      boot_image_spaces.end(),
897                      [object, section](gc::space::ImageSpace* space) {
898                        uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
899                        uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
900                        return space->GetImageHeader().GetImageSection(section).Contains(offset);
901                      }));
902   uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
903   uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
904   return dchecked_integral_cast<uint32_t>(offset);
905 }
906 
907 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffset(HLoadClass * load_class)908 uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
909   DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
910   ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
911   DCHECK(klass != nullptr);
912   return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
913 }
914 
915 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
GetBootImageOffset(HLoadString * load_string)916 uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
917   DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
918   ObjPtr<mirror::String> string = load_string->GetString().Get();
919   DCHECK(string != nullptr);
920   return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
921 }
922 
GetBootImageOffset(HInvokeStaticOrDirect * invoke)923 uint32_t CodeGenerator::GetBootImageOffset(HInvokeStaticOrDirect* invoke) {
924   DCHECK_EQ(invoke->GetMethodLoadKind(), HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo);
925   ArtMethod* method = invoke->GetResolvedMethod();
926   DCHECK(method != nullptr);
927   return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
928 }
929 
BlockIfInRegister(Location location,bool is_out) const930 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
931   // The DCHECKS below check that a register is not specified twice in
932   // the summary. The out location can overlap with an input, so we need
933   // to special case it.
934   if (location.IsRegister()) {
935     DCHECK(is_out || !blocked_core_registers_[location.reg()]);
936     blocked_core_registers_[location.reg()] = true;
937   } else if (location.IsFpuRegister()) {
938     DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
939     blocked_fpu_registers_[location.reg()] = true;
940   } else if (location.IsFpuRegisterPair()) {
941     DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
942     blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
943     DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
944     blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
945   } else if (location.IsRegisterPair()) {
946     DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
947     blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
948     DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
949     blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
950   }
951 }
952 
AllocateLocations(HInstruction * instruction)953 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
954   for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
955     env->AllocateLocations();
956   }
957   instruction->Accept(GetLocationBuilder());
958   DCHECK(CheckTypeConsistency(instruction));
959   LocationSummary* locations = instruction->GetLocations();
960   if (!instruction->IsSuspendCheckEntry()) {
961     if (locations != nullptr) {
962       if (locations->CanCall()) {
963         MarkNotLeaf();
964       } else if (locations->Intrinsified() &&
965                  instruction->IsInvokeStaticOrDirect() &&
966                  !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
967         // A static method call that has been fully intrinsified, and cannot call on the slow
968         // path or refer to the current method directly, no longer needs current method.
969         return;
970       }
971     }
972     if (instruction->NeedsCurrentMethod()) {
973       SetRequiresCurrentMethod();
974     }
975   }
976 }
977 
Create(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)978 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
979                                                      const CompilerOptions& compiler_options,
980                                                      OptimizingCompilerStats* stats) {
981   ArenaAllocator* allocator = graph->GetAllocator();
982   switch (compiler_options.GetInstructionSet()) {
983 #ifdef ART_ENABLE_CODEGEN_arm
984     case InstructionSet::kArm:
985     case InstructionSet::kThumb2: {
986       return std::unique_ptr<CodeGenerator>(
987           new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
988     }
989 #endif
990 #ifdef ART_ENABLE_CODEGEN_arm64
991     case InstructionSet::kArm64: {
992       return std::unique_ptr<CodeGenerator>(
993           new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
994     }
995 #endif
996 #ifdef ART_ENABLE_CODEGEN_x86
997     case InstructionSet::kX86: {
998       return std::unique_ptr<CodeGenerator>(
999           new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
1000     }
1001 #endif
1002 #ifdef ART_ENABLE_CODEGEN_x86_64
1003     case InstructionSet::kX86_64: {
1004       return std::unique_ptr<CodeGenerator>(
1005           new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
1006     }
1007 #endif
1008     default:
1009       return nullptr;
1010   }
1011 }
1012 
CodeGenerator(HGraph * graph,size_t number_of_core_registers,size_t number_of_fpu_registers,size_t number_of_register_pairs,uint32_t core_callee_save_mask,uint32_t fpu_callee_save_mask,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1013 CodeGenerator::CodeGenerator(HGraph* graph,
1014                              size_t number_of_core_registers,
1015                              size_t number_of_fpu_registers,
1016                              size_t number_of_register_pairs,
1017                              uint32_t core_callee_save_mask,
1018                              uint32_t fpu_callee_save_mask,
1019                              const CompilerOptions& compiler_options,
1020                              OptimizingCompilerStats* stats)
1021     : frame_size_(0),
1022       core_spill_mask_(0),
1023       fpu_spill_mask_(0),
1024       first_register_slot_in_slow_path_(0),
1025       allocated_registers_(RegisterSet::Empty()),
1026       blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
1027                                                                       kArenaAllocCodeGenerator)),
1028       blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
1029                                                                      kArenaAllocCodeGenerator)),
1030       number_of_core_registers_(number_of_core_registers),
1031       number_of_fpu_registers_(number_of_fpu_registers),
1032       number_of_register_pairs_(number_of_register_pairs),
1033       core_callee_save_mask_(core_callee_save_mask),
1034       fpu_callee_save_mask_(fpu_callee_save_mask),
1035       block_order_(nullptr),
1036       disasm_info_(nullptr),
1037       stats_(stats),
1038       graph_(graph),
1039       compiler_options_(compiler_options),
1040       current_slow_path_(nullptr),
1041       current_block_index_(0),
1042       is_leaf_(true),
1043       requires_current_method_(false),
1044       code_generation_data_() {
1045   if (GetGraph()->IsCompilingOsr()) {
1046     // Make OSR methods have all registers spilled, this simplifies the logic of
1047     // jumping to the compiled code directly.
1048     for (size_t i = 0; i < number_of_core_registers_; ++i) {
1049       if (IsCoreCalleeSaveRegister(i)) {
1050         AddAllocatedRegister(Location::RegisterLocation(i));
1051       }
1052     }
1053     for (size_t i = 0; i < number_of_fpu_registers_; ++i) {
1054       if (IsFloatingPointCalleeSaveRegister(i)) {
1055         AddAllocatedRegister(Location::FpuRegisterLocation(i));
1056       }
1057     }
1058   }
1059 }
1060 
~CodeGenerator()1061 CodeGenerator::~CodeGenerator() {}
1062 
GetNumberOfJitRoots() const1063 size_t CodeGenerator::GetNumberOfJitRoots() const {
1064   DCHECK(code_generation_data_ != nullptr);
1065   return code_generation_data_->GetNumberOfJitRoots();
1066 }
1067 
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)1068 static void CheckCovers(uint32_t dex_pc,
1069                         const HGraph& graph,
1070                         const CodeInfo& code_info,
1071                         const ArenaVector<HSuspendCheck*>& loop_headers,
1072                         ArenaVector<size_t>* covered) {
1073   for (size_t i = 0; i < loop_headers.size(); ++i) {
1074     if (loop_headers[i]->GetDexPc() == dex_pc) {
1075       if (graph.IsCompilingOsr()) {
1076         DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
1077       }
1078       ++(*covered)[i];
1079     }
1080   }
1081 }
1082 
1083 // Debug helper to ensure loop entries in compiled code are matched by
1084 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const dex::CodeItem & code_item)1085 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
1086                                             const CodeInfo& code_info,
1087                                             const dex::CodeItem& code_item) {
1088   if (graph.HasTryCatch()) {
1089     // One can write loops through try/catch, which we do not support for OSR anyway.
1090     return;
1091   }
1092   ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
1093   for (HBasicBlock* block : graph.GetReversePostOrder()) {
1094     if (block->IsLoopHeader()) {
1095       HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
1096       if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
1097         loop_headers.push_back(suspend_check);
1098       }
1099     }
1100   }
1101   ArenaVector<size_t> covered(
1102       loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
1103   for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
1104                                                                       &code_item)) {
1105     const uint32_t dex_pc = pair.DexPc();
1106     const Instruction& instruction = pair.Inst();
1107     if (instruction.IsBranch()) {
1108       uint32_t target = dex_pc + instruction.GetTargetOffset();
1109       CheckCovers(target, graph, code_info, loop_headers, &covered);
1110     } else if (instruction.IsSwitch()) {
1111       DexSwitchTable table(instruction, dex_pc);
1112       uint16_t num_entries = table.GetNumEntries();
1113       size_t offset = table.GetFirstValueIndex();
1114 
1115       // Use a larger loop counter type to avoid overflow issues.
1116       for (size_t i = 0; i < num_entries; ++i) {
1117         // The target of the case.
1118         uint32_t target = dex_pc + table.GetEntryAt(i + offset);
1119         CheckCovers(target, graph, code_info, loop_headers, &covered);
1120       }
1121     }
1122   }
1123 
1124   for (size_t i = 0; i < covered.size(); ++i) {
1125     DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
1126   }
1127 }
1128 
BuildStackMaps(const dex::CodeItem * code_item)1129 ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
1130   ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
1131   if (kIsDebugBuild && code_item != nullptr) {
1132     CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
1133   }
1134   return stack_map;
1135 }
1136 
1137 // Returns whether stackmap dex register info is needed for the instruction.
1138 //
1139 // The following cases mandate having a dex register map:
1140 //  * Deoptimization
1141 //    when we need to obtain the values to restore actual vregisters for interpreter.
1142 //  * Debuggability
1143 //    when we want to observe the values / asynchronously deoptimize.
1144 //  * Monitor operations
1145 //    to allow dumping in a stack trace locked dex registers for non-debuggable code.
1146 //  * On-stack-replacement (OSR)
1147 //    when entering compiled for OSR code from the interpreter we need to initialize the compiled
1148 //    code values with the values from the vregisters.
1149 //  * Method local catch blocks
1150 //    a catch block must see the environment of the instruction from the same method that can
1151 //    throw to this block.
NeedsVregInfo(HInstruction * instruction,bool osr)1152 static bool NeedsVregInfo(HInstruction* instruction, bool osr) {
1153   HGraph* graph = instruction->GetBlock()->GetGraph();
1154   return instruction->IsDeoptimize() ||
1155          graph->IsDebuggable() ||
1156          graph->HasMonitorOperations() ||
1157          osr ||
1158          instruction->CanThrowIntoCatchBlock();
1159 }
1160 
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path,bool native_debug_info)1161 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1162                                  uint32_t dex_pc,
1163                                  SlowPathCode* slow_path,
1164                                  bool native_debug_info) {
1165   RecordPcInfo(instruction, dex_pc, GetAssembler()->CodePosition(), slow_path, native_debug_info);
1166 }
1167 
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,uint32_t native_pc,SlowPathCode * slow_path,bool native_debug_info)1168 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1169                                  uint32_t dex_pc,
1170                                  uint32_t native_pc,
1171                                  SlowPathCode* slow_path,
1172                                  bool native_debug_info) {
1173   if (instruction != nullptr) {
1174     // The code generated for some type conversions
1175     // may call the runtime, thus normally requiring a subsequent
1176     // call to this method. However, the method verifier does not
1177     // produce PC information for certain instructions, which are
1178     // considered "atomic" (they cannot join a GC).
1179     // Therefore we do not currently record PC information for such
1180     // instructions.  As this may change later, we added this special
1181     // case so that code generators may nevertheless call
1182     // CodeGenerator::RecordPcInfo without triggering an error in
1183     // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
1184     // thereafter.
1185     if (instruction->IsTypeConversion()) {
1186       return;
1187     }
1188     if (instruction->IsRem()) {
1189       DataType::Type type = instruction->AsRem()->GetResultType();
1190       if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
1191         return;
1192       }
1193     }
1194   }
1195 
1196   StackMapStream* stack_map_stream = GetStackMapStream();
1197   if (instruction == nullptr) {
1198     // For stack overflow checks and native-debug-info entries without dex register
1199     // mapping (i.e. start of basic block or start of slow path).
1200     stack_map_stream->BeginStackMapEntry(dex_pc, native_pc);
1201     stack_map_stream->EndStackMapEntry();
1202     return;
1203   }
1204 
1205   LocationSummary* locations = instruction->GetLocations();
1206   uint32_t register_mask = locations->GetRegisterMask();
1207   DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
1208   if (locations->OnlyCallsOnSlowPath()) {
1209     // In case of slow path, we currently set the location of caller-save registers
1210     // to register (instead of their stack location when pushed before the slow-path
1211     // call). Therefore register_mask contains both callee-save and caller-save
1212     // registers that hold objects. We must remove the spilled caller-save from the
1213     // mask, since they will be overwritten by the callee.
1214     uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
1215     register_mask &= ~spills;
1216   } else {
1217     // The register mask must be a subset of callee-save registers.
1218     DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
1219   }
1220 
1221   uint32_t outer_dex_pc = dex_pc;
1222   uint32_t outer_environment_size = 0u;
1223   uint32_t inlining_depth = 0;
1224   HEnvironment* const environment = instruction->GetEnvironment();
1225   if (environment != nullptr) {
1226     HEnvironment* outer_environment = environment;
1227     while (outer_environment->GetParent() != nullptr) {
1228       outer_environment = outer_environment->GetParent();
1229       ++inlining_depth;
1230     }
1231     outer_dex_pc = outer_environment->GetDexPc();
1232     outer_environment_size = outer_environment->Size();
1233   }
1234 
1235   HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
1236   bool osr =
1237       instruction->IsSuspendCheck() &&
1238       (info != nullptr) &&
1239       graph_->IsCompilingOsr() &&
1240       (inlining_depth == 0);
1241   StackMap::Kind kind = native_debug_info
1242       ? StackMap::Kind::Debug
1243       : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
1244   bool needs_vreg_info = NeedsVregInfo(instruction, osr);
1245   stack_map_stream->BeginStackMapEntry(outer_dex_pc,
1246                                        native_pc,
1247                                        register_mask,
1248                                        locations->GetStackMask(),
1249                                        kind,
1250                                        needs_vreg_info);
1251 
1252   EmitEnvironment(environment, slow_path, needs_vreg_info);
1253   stack_map_stream->EndStackMapEntry();
1254 
1255   if (osr) {
1256     DCHECK_EQ(info->GetSuspendCheck(), instruction);
1257     DCHECK(info->IsIrreducible());
1258     DCHECK(environment != nullptr);
1259     if (kIsDebugBuild) {
1260       for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1261         HInstruction* in_environment = environment->GetInstructionAt(i);
1262         if (in_environment != nullptr) {
1263           DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
1264           Location location = environment->GetLocationAt(i);
1265           DCHECK(location.IsStackSlot() ||
1266                  location.IsDoubleStackSlot() ||
1267                  location.IsConstant() ||
1268                  location.IsInvalid());
1269           if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
1270             DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
1271           }
1272         }
1273       }
1274     }
1275   }
1276 }
1277 
HasStackMapAtCurrentPc()1278 bool CodeGenerator::HasStackMapAtCurrentPc() {
1279   uint32_t pc = GetAssembler()->CodeSize();
1280   StackMapStream* stack_map_stream = GetStackMapStream();
1281   size_t count = stack_map_stream->GetNumberOfStackMaps();
1282   if (count == 0) {
1283     return false;
1284   }
1285   return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
1286 }
1287 
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1288 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
1289                                                uint32_t dex_pc,
1290                                                SlowPathCode* slow_path) {
1291   if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1292     if (HasStackMapAtCurrentPc()) {
1293       // Ensure that we do not collide with the stack map of the previous instruction.
1294       GenerateNop();
1295     }
1296     RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true);
1297   }
1298 }
1299 
RecordCatchBlockInfo()1300 void CodeGenerator::RecordCatchBlockInfo() {
1301   StackMapStream* stack_map_stream = GetStackMapStream();
1302 
1303   for (HBasicBlock* block : *block_order_) {
1304     if (!block->IsCatchBlock()) {
1305       continue;
1306     }
1307 
1308     uint32_t dex_pc = block->GetDexPc();
1309     uint32_t num_vregs = graph_->GetNumberOfVRegs();
1310     uint32_t native_pc = GetAddressOf(block);
1311 
1312     stack_map_stream->BeginStackMapEntry(dex_pc,
1313                                          native_pc,
1314                                          /* register_mask= */ 0,
1315                                          /* sp_mask= */ nullptr,
1316                                          StackMap::Kind::Catch);
1317 
1318     HInstruction* current_phi = block->GetFirstPhi();
1319     for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
1320       while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
1321         HInstruction* next_phi = current_phi->GetNext();
1322         DCHECK(next_phi == nullptr ||
1323                current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
1324             << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
1325         current_phi = next_phi;
1326       }
1327 
1328       if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
1329         stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1330       } else {
1331         Location location = current_phi->GetLocations()->Out();
1332         switch (location.GetKind()) {
1333           case Location::kStackSlot: {
1334             stack_map_stream->AddDexRegisterEntry(
1335                 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1336             break;
1337           }
1338           case Location::kDoubleStackSlot: {
1339             stack_map_stream->AddDexRegisterEntry(
1340                 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1341             stack_map_stream->AddDexRegisterEntry(
1342                 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1343             ++vreg;
1344             DCHECK_LT(vreg, num_vregs);
1345             break;
1346           }
1347           default: {
1348             // All catch phis must be allocated to a stack slot.
1349             LOG(FATAL) << "Unexpected kind " << location.GetKind();
1350             UNREACHABLE();
1351           }
1352         }
1353       }
1354     }
1355 
1356     stack_map_stream->EndStackMapEntry();
1357   }
1358 }
1359 
AddSlowPath(SlowPathCode * slow_path)1360 void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
1361   DCHECK(code_generation_data_ != nullptr);
1362   code_generation_data_->AddSlowPath(slow_path);
1363 }
1364 
EmitVRegInfo(HEnvironment * environment,SlowPathCode * slow_path)1365 void CodeGenerator::EmitVRegInfo(HEnvironment* environment, SlowPathCode* slow_path) {
1366   StackMapStream* stack_map_stream = GetStackMapStream();
1367   // Walk over the environment, and record the location of dex registers.
1368   for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1369     HInstruction* current = environment->GetInstructionAt(i);
1370     if (current == nullptr) {
1371       stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1372       continue;
1373     }
1374 
1375     using Kind = DexRegisterLocation::Kind;
1376     Location location = environment->GetLocationAt(i);
1377     switch (location.GetKind()) {
1378       case Location::kConstant: {
1379         DCHECK_EQ(current, location.GetConstant());
1380         if (current->IsLongConstant()) {
1381           int64_t value = current->AsLongConstant()->GetValue();
1382           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1383           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1384           ++i;
1385           DCHECK_LT(i, environment_size);
1386         } else if (current->IsDoubleConstant()) {
1387           int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1388           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1389           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1390           ++i;
1391           DCHECK_LT(i, environment_size);
1392         } else if (current->IsIntConstant()) {
1393           int32_t value = current->AsIntConstant()->GetValue();
1394           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1395         } else if (current->IsNullConstant()) {
1396           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
1397         } else {
1398           DCHECK(current->IsFloatConstant()) << current->DebugName();
1399           int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1400           stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1401         }
1402         break;
1403       }
1404 
1405       case Location::kStackSlot: {
1406         stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1407         break;
1408       }
1409 
1410       case Location::kDoubleStackSlot: {
1411         stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1412         stack_map_stream->AddDexRegisterEntry(
1413             Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1414         ++i;
1415         DCHECK_LT(i, environment_size);
1416         break;
1417       }
1418 
1419       case Location::kRegister : {
1420         int id = location.reg();
1421         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1422           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1423           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1424           if (current->GetType() == DataType::Type::kInt64) {
1425             stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1426             ++i;
1427             DCHECK_LT(i, environment_size);
1428           }
1429         } else {
1430           stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
1431           if (current->GetType() == DataType::Type::kInt64) {
1432             stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
1433             ++i;
1434             DCHECK_LT(i, environment_size);
1435           }
1436         }
1437         break;
1438       }
1439 
1440       case Location::kFpuRegister : {
1441         int id = location.reg();
1442         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1443           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1444           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1445           if (current->GetType() == DataType::Type::kFloat64) {
1446             stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1447             ++i;
1448             DCHECK_LT(i, environment_size);
1449           }
1450         } else {
1451           stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
1452           if (current->GetType() == DataType::Type::kFloat64) {
1453             stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
1454             ++i;
1455             DCHECK_LT(i, environment_size);
1456           }
1457         }
1458         break;
1459       }
1460 
1461       case Location::kFpuRegisterPair : {
1462         int low = location.low();
1463         int high = location.high();
1464         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1465           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1466           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1467         } else {
1468           stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
1469         }
1470         if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1471           uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1472           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1473           ++i;
1474         } else {
1475           stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
1476           ++i;
1477         }
1478         DCHECK_LT(i, environment_size);
1479         break;
1480       }
1481 
1482       case Location::kRegisterPair : {
1483         int low = location.low();
1484         int high = location.high();
1485         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1486           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1487           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1488         } else {
1489           stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
1490         }
1491         if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1492           uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1493           stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1494         } else {
1495           stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
1496         }
1497         ++i;
1498         DCHECK_LT(i, environment_size);
1499         break;
1500       }
1501 
1502       case Location::kInvalid: {
1503         stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
1504         break;
1505       }
1506 
1507       default:
1508         LOG(FATAL) << "Unexpected kind " << location.GetKind();
1509     }
1510   }
1511 }
1512 
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path,bool needs_vreg_info)1513 void CodeGenerator::EmitEnvironment(HEnvironment* environment,
1514                                     SlowPathCode* slow_path,
1515                                     bool needs_vreg_info) {
1516   if (environment == nullptr) return;
1517 
1518   StackMapStream* stack_map_stream = GetStackMapStream();
1519   bool emit_inline_info = environment->GetParent() != nullptr;
1520 
1521   if (emit_inline_info) {
1522     // We emit the parent environment first.
1523     EmitEnvironment(environment->GetParent(), slow_path, needs_vreg_info);
1524     stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
1525                                            environment->GetDexPc(),
1526                                            needs_vreg_info ? environment->Size() : 0,
1527                                            &graph_->GetDexFile());
1528   }
1529 
1530   if (needs_vreg_info) {
1531     // If a dex register map is not required we just won't emit it.
1532     EmitVRegInfo(environment, slow_path);
1533   }
1534 
1535   if (emit_inline_info) {
1536     stack_map_stream->EndInlineInfoEntry();
1537   }
1538 }
1539 
CanMoveNullCheckToUser(HNullCheck * null_check)1540 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1541   return null_check->IsEmittedAtUseSite();
1542 }
1543 
MaybeRecordImplicitNullCheck(HInstruction * instr)1544 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1545   HNullCheck* null_check = instr->GetImplicitNullCheck();
1546   if (null_check != nullptr) {
1547     RecordPcInfo(null_check, null_check->GetDexPc(), GetAssembler()->CodePosition());
1548   }
1549 }
1550 
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1551 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1552                                                                 RegisterSet caller_saves) {
1553   // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1554   // HSuspendCheck from entry block). However, it will still get a valid stack frame
1555   // because the HNullCheck needs an environment.
1556   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1557   // When throwing from a try block, we may need to retrieve dalvik registers from
1558   // physical registers and we also need to set up stack mask for GC. This is
1559   // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1560   bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1561   if (can_throw_into_catch_block) {
1562     call_kind = LocationSummary::kCallOnSlowPath;
1563   }
1564   LocationSummary* locations =
1565       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
1566   if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1567     locations->SetCustomSlowPathCallerSaves(caller_saves);  // Default: no caller-save registers.
1568   }
1569   DCHECK(!instruction->HasUses());
1570   return locations;
1571 }
1572 
GenerateNullCheck(HNullCheck * instruction)1573 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1574   if (compiler_options_.GetImplicitNullChecks()) {
1575     MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
1576     GenerateImplicitNullCheck(instruction);
1577   } else {
1578     MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
1579     GenerateExplicitNullCheck(instruction);
1580   }
1581 }
1582 
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check,HParallelMove * spills) const1583 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
1584                                                           HParallelMove* spills) const {
1585   LocationSummary* locations = suspend_check->GetLocations();
1586   HBasicBlock* block = suspend_check->GetBlock();
1587   DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1588   DCHECK(block->IsLoopHeader());
1589   DCHECK(block->GetFirstInstruction() == spills);
1590 
1591   for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
1592     Location dest = spills->MoveOperandsAt(i)->GetDestination();
1593     // All parallel moves in loop headers are spills.
1594     DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
1595     // Clear the stack bit marking a reference. Do not bother to check if the spill is
1596     // actually a reference spill, clearing bits that are already zero is harmless.
1597     locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
1598   }
1599 }
1600 
EmitParallelMoves(Location from1,Location to1,DataType::Type type1,Location from2,Location to2,DataType::Type type2)1601 void CodeGenerator::EmitParallelMoves(Location from1,
1602                                       Location to1,
1603                                       DataType::Type type1,
1604                                       Location from2,
1605                                       Location to2,
1606                                       DataType::Type type2) {
1607   HParallelMove parallel_move(GetGraph()->GetAllocator());
1608   parallel_move.AddMove(from1, to1, type1, nullptr);
1609   parallel_move.AddMove(from2, to2, type2, nullptr);
1610   GetMoveResolver()->EmitNativeCode(&parallel_move);
1611 }
1612 
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1613 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1614                                           HInstruction* instruction,
1615                                           SlowPathCode* slow_path) {
1616   // Ensure that the call kind indication given to the register allocator is
1617   // coherent with the runtime call generated.
1618   if (slow_path == nullptr) {
1619     DCHECK(instruction->GetLocations()->WillCall())
1620         << "instruction->DebugName()=" << instruction->DebugName();
1621   } else {
1622     DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1623         << "instruction->DebugName()=" << instruction->DebugName()
1624         << " slow_path->GetDescription()=" << slow_path->GetDescription();
1625   }
1626 
1627   // Check that the GC side effect is set when required.
1628   // TODO: Reverse EntrypointCanTriggerGC
1629   if (EntrypointCanTriggerGC(entrypoint)) {
1630     if (slow_path == nullptr) {
1631       DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1632           << "instruction->DebugName()=" << instruction->DebugName()
1633           << " instruction->GetSideEffects().ToString()="
1634           << instruction->GetSideEffects().ToString();
1635     } else {
1636       // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
1637       // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
1638       // if execution never returns to the compiled code from a GC point this restriction is
1639       // unnecessary - in particular for fatal slow paths which might trigger GC.
1640       DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
1641              instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1642              // When (non-Baker) read barriers are enabled, some instructions
1643              // use a slow path to emit a read barrier, which does not trigger
1644              // GC.
1645              (kEmitCompilerReadBarrier &&
1646               !kUseBakerReadBarrier &&
1647               (instruction->IsInstanceFieldGet() ||
1648                instruction->IsStaticFieldGet() ||
1649                instruction->IsArrayGet() ||
1650                instruction->IsLoadClass() ||
1651                instruction->IsLoadString() ||
1652                instruction->IsInstanceOf() ||
1653                instruction->IsCheckCast() ||
1654                (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1655           << "instruction->DebugName()=" << instruction->DebugName()
1656           << " instruction->GetSideEffects().ToString()="
1657           << instruction->GetSideEffects().ToString()
1658           << " slow_path->GetDescription()=" << slow_path->GetDescription();
1659     }
1660   } else {
1661     // The GC side effect is not required for the instruction. But the instruction might still have
1662     // it, for example if it calls other entrypoints requiring it.
1663   }
1664 
1665   // Check the coherency of leaf information.
1666   DCHECK(instruction->IsSuspendCheck()
1667          || ((slow_path != nullptr) && slow_path->IsFatal())
1668          || instruction->GetLocations()->CanCall()
1669          || !IsLeafMethod())
1670       << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1671 }
1672 
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1673 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1674                                                                 SlowPathCode* slow_path) {
1675   DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1676       << "instruction->DebugName()=" << instruction->DebugName()
1677       << " slow_path->GetDescription()=" << slow_path->GetDescription();
1678   // Only the Baker read barrier marking slow path used by certains
1679   // instructions is expected to invoke the runtime without recording
1680   // PC-related information.
1681   DCHECK(kUseBakerReadBarrier);
1682   DCHECK(instruction->IsInstanceFieldGet() ||
1683          instruction->IsStaticFieldGet() ||
1684          instruction->IsArrayGet() ||
1685          instruction->IsArraySet() ||
1686          instruction->IsLoadClass() ||
1687          instruction->IsLoadString() ||
1688          instruction->IsInstanceOf() ||
1689          instruction->IsCheckCast() ||
1690          (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
1691          (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
1692       << "instruction->DebugName()=" << instruction->DebugName()
1693       << " slow_path->GetDescription()=" << slow_path->GetDescription();
1694 }
1695 
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1696 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1697   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1698 
1699   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1700   for (uint32_t i : LowToHighBits(core_spills)) {
1701     // If the register holds an object, update the stack mask.
1702     if (locations->RegisterContainsObject(i)) {
1703       locations->SetStackBit(stack_offset / kVRegSize);
1704     }
1705     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1706     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1707     saved_core_stack_offsets_[i] = stack_offset;
1708     stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1709   }
1710 
1711   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1712   for (uint32_t i : LowToHighBits(fp_spills)) {
1713     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1714     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1715     saved_fpu_stack_offsets_[i] = stack_offset;
1716     stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1717   }
1718 }
1719 
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1720 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1721   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1722 
1723   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1724   for (uint32_t i : LowToHighBits(core_spills)) {
1725     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1726     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1727     stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1728   }
1729 
1730   const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1731   for (uint32_t i : LowToHighBits(fp_spills)) {
1732     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1733     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1734     stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1735   }
1736 }
1737 
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1738 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1739   // Check to see if we have known failures that will cause us to have to bail out
1740   // to the runtime, and just generate the runtime call directly.
1741   HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1742   HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1743 
1744   // The positions must be non-negative.
1745   if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1746       (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1747     // We will have to fail anyways.
1748     return;
1749   }
1750 
1751   // The length must be >= 0.
1752   HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1753   if (length != nullptr) {
1754     int32_t len = length->GetValue();
1755     if (len < 0) {
1756       // Just call as normal.
1757       return;
1758     }
1759   }
1760 
1761   SystemArrayCopyOptimizations optimizations(invoke);
1762 
1763   if (optimizations.GetDestinationIsSource()) {
1764     if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1765       // We only support backward copying if source and destination are the same.
1766       return;
1767     }
1768   }
1769 
1770   if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1771     // We currently don't intrinsify primitive copying.
1772     return;
1773   }
1774 
1775   ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
1776   LocationSummary* locations = new (allocator) LocationSummary(invoke,
1777                                                                LocationSummary::kCallOnSlowPath,
1778                                                                kIntrinsified);
1779   // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1780   locations->SetInAt(0, Location::RequiresRegister());
1781   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1782   locations->SetInAt(2, Location::RequiresRegister());
1783   locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1784   locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1785 
1786   locations->AddTemp(Location::RequiresRegister());
1787   locations->AddTemp(Location::RequiresRegister());
1788   locations->AddTemp(Location::RequiresRegister());
1789 }
1790 
EmitJitRoots(uint8_t * code,const uint8_t * roots_data,std::vector<Handle<mirror::Object>> * roots)1791 void CodeGenerator::EmitJitRoots(uint8_t* code,
1792                                  const uint8_t* roots_data,
1793                                  /*out*/std::vector<Handle<mirror::Object>>* roots) {
1794   code_generation_data_->EmitJitRoots(roots);
1795   EmitJitRootPatches(code, roots_data);
1796 }
1797 
GetArrayAllocationEntrypoint(HNewArray * new_array)1798 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
1799   switch (new_array->GetComponentSizeShift()) {
1800     case 0: return kQuickAllocArrayResolved8;
1801     case 1: return kQuickAllocArrayResolved16;
1802     case 2: return kQuickAllocArrayResolved32;
1803     case 3: return kQuickAllocArrayResolved64;
1804   }
1805   LOG(FATAL) << "Unreachable";
1806   UNREACHABLE();
1807 }
1808 
1809 }  // namespace art
1810