1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef C2BUFFER_H_
18 #define C2BUFFER_H_
19 
20 #include <C2.h>
21 #include <C2BufferBase.h>
22 #include <C2Param.h> // for C2Info
23 
24 #include <memory>
25 #include <vector>
26 
27 #ifdef __ANDROID__
28 #include <android-C2Buffer.h>
29 #else
30 
31 typedef void* C2Handle;
32 
33 #endif
34 
35 /// \defgroup buffer Buffers
36 /// @{
37 
38 /// \defgroup buffer_sync Synchronization
39 /// @{
40 
41 /**
42  * Synchronization is accomplished using event and fence objects.
43  *
44  * These are cross-process extensions of promise/future infrastructure.
45  * Events are analogous to std::promise<void>, whereas fences are to std::shared_future<void>.
46  *
47  * Fences and events are shareable/copyable.
48  *
49  * Fences are used in two scenarios, and all copied instances refer to the same event.
50  * \todo do events need to be copyable or should they be unique?
51  *
52  * acquire sync fence object: signaled when it is safe for the component or client to access
53  * (the contents of) an object.
54  *
55  * release sync fence object: \todo
56  *
57  * Fences can be backed by hardware. Hardware fences are guaranteed to signal NO MATTER WHAT within
58  * a short (platform specific) amount of time; this guarantee is usually less than 15 msecs.
59  */
60 
61 /**
62  * Fence object used by components and the framework.
63  *
64  * Implements the waiting for an event, analogous to a 'future'.
65  *
66  * To be implemented by vendors if using HW fences.
67  */
68 class C2Fence {
69 public:
70     /**
71      * Waits for a fence to be signaled with a timeout.
72      *
73      * \todo a mechanism to cancel a wait - for now the only way to do this is to abandon the
74      * event, but fences are shared so canceling a wait will cancel all waits.
75      *
76      * \param timeoutNs           the maximum time to wait in nsecs
77      *
78      * \retval C2_OK            the fence has been signaled
79      * \retval C2_TIMED_OUT     the fence has not been signaled within the timeout
80      * \retval C2_BAD_STATE     the fence has been abandoned without being signaled (it will never
81      *                          be signaled)
82      * \retval C2_REFUSED       no permission to wait for the fence (unexpected - system)
83      * \retval C2_CORRUPTED     some unknown error prevented waiting for the fence (unexpected)
84      */
85     c2_status_t wait(c2_nsecs_t timeoutNs);
86 
87     /**
88      * Used to check if this fence is valid (if there is a chance for it to be signaled.)
89      * A fence becomes invalid if the controling event is destroyed without it signaling the fence.
90      *
91      * \return whether this fence is valid
92      */
93     bool valid() const;
94 
95     /**
96      * Used to check if this fence has been signaled (is ready).
97      *
98      * \return whether this fence has been signaled
99      */
100     bool ready() const;
101 
102     /**
103      * Returns a file descriptor that can be used to wait for this fence in a select system call.
104      * \note The returned file descriptor, if valid, must be closed by the caller.
105      *
106      * This can be used in e.g. poll() system calls. This file becomes readable (POLLIN) when the
107      * fence is signaled, and bad (POLLERR) if the fence is abandoned.
108      *
109      * \return a file descriptor representing this fence (with ownership), or -1 if the fence
110      * has already been signaled (\todo or abandoned).
111      *
112      * \todo this must be compatible with fences used by gralloc
113      */
114     int fd() const;
115 
116     /**
117      * Returns whether this fence is a hardware-backed fence.
118      * \return whether this is a hardware fence
119      */
120     bool isHW() const;
121 
122     /**
123      * Null-fence. A fence that has fired.
124      */
C2Fence()125     constexpr C2Fence() : mImpl(nullptr) { }
126 
127 private:
128     class Impl;
129     std::shared_ptr<Impl> mImpl;
130     C2Fence(std::shared_ptr<Impl> impl);
131     friend struct _C2FenceFactory;
132 };
133 
134 /**
135  * Event object used by components and the framework.
136  *
137  * Implements the signaling of an event, analogous to a 'promise'.
138  *
139  * Hardware backed events do not go through this object, and must be exposed directly as fences
140  * by vendors.
141  */
142 class C2Event {
143 public:
144     /**
145      * Returns a fence for this event.
146      */
147     C2Fence fence() const;
148 
149     /**
150      * Signals (all) associated fence(s).
151      * This has no effect no effect if the event was already signaled or abandoned.
152      *
153      * \retval C2_OK            the fence(s) were successfully signaled
154      * \retval C2_BAD_STATE     the fence(s) have already been abandoned or merged (caller error)
155      * \retval C2_DUPLICATE     the fence(s) have already been signaled (caller error)
156      * \retval C2_REFUSED       no permission to signal the fence (unexpected - system)
157      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
158      */
159     c2_status_t fire();
160 
161     /**
162      * Trigger this event from the merging of the supplied fences. This means that it will be
163      * abandoned if any of these fences have been abandoned, and it will be fired if all of these
164      * fences have been signaled.
165      *
166      * \retval C2_OK            the merging was successfully done
167      * \retval C2_NO_MEMORY     not enough memory to perform the merging
168      * \retval C2_DUPLICATE     the fence have already been merged (caller error)
169      * \retval C2_BAD_STATE     the fence have already been signaled or abandoned (caller error)
170      * \retval C2_REFUSED       no permission to merge the fence (unexpected - system)
171      * \retval C2_CORRUPTED     some unknown error prevented merging the fence(s) (unexpected)
172      */
173     c2_status_t merge(std::vector<C2Fence> fences);
174 
175     /**
176      * Abandons the event and any associated fence(s).
177      * \note Call this to explicitly abandon an event before it is destructed to avoid a warning.
178      *
179      * This has no effect no effect if the event was already signaled or abandoned.
180      *
181      * \retval C2_OK            the fence(s) were successfully signaled
182      * \retval C2_BAD_STATE     the fence(s) have already been signaled or merged (caller error)
183      * \retval C2_DUPLICATE     the fence(s) have already been abandoned (caller error)
184      * \retval C2_REFUSED       no permission to abandon the fence (unexpected - system)
185      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
186      */
187     c2_status_t abandon();
188 
189 private:
190     class Impl;
191     std::shared_ptr<Impl> mImpl;
192 };
193 
194 /// \addtogroup buf_internal Internal
195 /// @{
196 
197 /**
198  * Interface for objects that encapsulate an updatable status value.
199  */
200 struct _C2InnateStatus {
status_C2InnateStatus201     inline c2_status_t status() const { return mStatus; }
202 
203 protected:
_C2InnateStatus_C2InnateStatus204     _C2InnateStatus(c2_status_t status) : mStatus(status) { }
205 
206     c2_status_t mStatus; // this status is updatable by the object
207 };
208 
209 /// @}
210 
211 /**
212  * This is a utility template for objects protected by an acquire fence, so that errors during
213  * acquiring the object are propagated to the object itself.
214  */
215 template<typename T>
216 class C2Acquirable : public C2Fence {
217 public:
218     /**
219      * Acquires the object protected by an acquire fence. Any errors during the mapping will be
220      * passed to the object.
221      *
222      * \return acquired object potentially invalidated if waiting for the fence failed.
223      */
get()224     T get() {
225         // TODO:
226         // wait();
227         return mT;
228     }
229 
230 protected:
C2Acquirable(c2_status_t error,C2Fence fence,T t)231     C2Acquirable(c2_status_t error, C2Fence fence, T t) : C2Fence(fence), mInitialError(error), mT(t) { }
232 
233 private:
234     c2_status_t mInitialError;
235     T mT; // TODO: move instead of copy
236 };
237 
238 /// @}
239 
240 /// \defgroup linear Linear Data Blocks
241 /// @{
242 
243 /**************************************************************************************************
244   LINEAR ASPECTS, BLOCKS AND VIEWS
245 **************************************************************************************************/
246 
247 /**
248  * Basic segment math support.
249  */
250 struct C2Segment {
251     uint32_t offset;
252     uint32_t size;
253 
C2SegmentC2Segment254     inline constexpr C2Segment(uint32_t offset_, uint32_t size_)
255         : offset(offset_),
256           size(size_) {
257     }
258 
isEmptyC2Segment259     inline constexpr bool isEmpty() const {
260         return size == 0;
261     }
262 
isValidC2Segment263     inline constexpr bool isValid() const {
264         return offset <= ~size;
265     }
266 
267     inline constexpr operator bool() const {
268         return isValid() && !isEmpty();
269     }
270 
271     inline constexpr bool operator!() const {
272         return !bool(*this);
273     }
274 
275     C2_ALLOW_OVERFLOW
containsC2Segment276     inline constexpr bool contains(const C2Segment &other) const {
277         if (!isValid() || !other.isValid()) {
278             return false;
279         } else {
280             return offset <= other.offset
281                     && offset + size >= other.offset + other.size;
282         }
283     }
284 
285     inline constexpr bool operator==(const C2Segment &other) const {
286         if (!isValid()) {
287             return !other.isValid();
288         } else {
289             return offset == other.offset && size == other.size;
290         }
291     }
292 
293     inline constexpr bool operator!=(const C2Segment &other) const {
294         return !operator==(other);
295     }
296 
297     inline constexpr bool operator>=(const C2Segment &other) const {
298         return contains(other);
299     }
300 
301     inline constexpr bool operator>(const C2Segment &other) const {
302         return contains(other) && !operator==(other);
303     }
304 
305     inline constexpr bool operator<=(const C2Segment &other) const {
306         return other.contains(*this);
307     }
308 
309     inline constexpr bool operator<(const C2Segment &other) const {
310         return other.contains(*this) && !operator==(other);
311     }
312 
313     C2_ALLOW_OVERFLOW
endC2Segment314     inline constexpr uint32_t end() const {
315         return offset + size;
316     }
317 
318     C2_ALLOW_OVERFLOW
intersectC2Segment319     inline constexpr C2Segment intersect(const C2Segment &other) const {
320         return C2Segment(c2_max(offset, other.offset),
321                          c2_min(end(), other.end()) - c2_max(offset, other.offset));
322     }
323 
324     /** clamps end to offset if it overflows */
normalizeC2Segment325     inline constexpr C2Segment normalize() const {
326         return C2Segment(offset, c2_max(offset, end()) - offset);
327     }
328 
329     /** clamps end to max if it overflows */
saturateC2Segment330     inline constexpr C2Segment saturate() const {
331         return C2Segment(offset, c2_min(size, ~offset));
332     }
333 
334 };
335 
336 /**
337  * Common aspect for all objects that have a linear capacity.
338  */
339 class _C2LinearCapacityAspect {
340 /// \name Linear capacity interface
341 /// @{
342 public:
capacity()343     inline constexpr uint32_t capacity() const { return mCapacity; }
344 
C2Segment()345     inline constexpr operator C2Segment() const {
346         return C2Segment(0, mCapacity);
347     }
348 
349 protected:
350 
351 #if UINTPTR_MAX == 0xffffffff
352     static_assert(sizeof(size_t) == sizeof(uint32_t), "size_t is too big");
353 #else
354     static_assert(sizeof(size_t) > sizeof(uint32_t), "size_t is too small");
355     // explicitly disable construction from size_t
356     inline explicit _C2LinearCapacityAspect(size_t capacity) = delete;
357 #endif
358 
_C2LinearCapacityAspect(uint32_t capacity)359     inline explicit constexpr _C2LinearCapacityAspect(uint32_t capacity)
360       : mCapacity(capacity) { }
361 
_C2LinearCapacityAspect(const _C2LinearCapacityAspect * parent)362     inline explicit constexpr _C2LinearCapacityAspect(const _C2LinearCapacityAspect *parent)
363         : mCapacity(parent == nullptr ? 0 : parent->capacity()) { }
364 
365 private:
366     uint32_t mCapacity;
367 /// @}
368 };
369 
370 /**
371  * Aspect for objects that have a linear range inside a linear capacity.
372  *
373  * This class is copiable.
374  */
375 class _C2LinearRangeAspect : public _C2LinearCapacityAspect {
376 /// \name Linear range interface
377 /// @{
378 public:
offset()379     inline constexpr uint32_t offset() const { return mOffset; }
endOffset()380     inline constexpr uint32_t endOffset() const { return mOffset + mSize; }
size()381     inline constexpr uint32_t size() const { return mSize; }
382 
C2Segment()383     inline constexpr operator C2Segment() const {
384         return C2Segment(mOffset, mSize);
385     }
386 
387 private:
388     // subrange of capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(uint32_t capacity_,size_t offset,size_t size)389     inline constexpr _C2LinearRangeAspect(uint32_t capacity_, size_t offset, size_t size)
390         : _C2LinearCapacityAspect(capacity_),
391           mOffset(c2_min(offset, capacity())),
392           mSize(c2_min(size, capacity() - mOffset)) {
393     }
394 
395 protected:
396     // copy constructor (no error check)
_C2LinearRangeAspect(const _C2LinearRangeAspect & other)397     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect &other)
398         : _C2LinearCapacityAspect(other.capacity()),
399           mOffset(other.offset()),
400           mSize(other.size()) {
401     }
402 
403     // parent capacity range [0, capacity]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent)404     inline constexpr explicit _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent)
405         : _C2LinearCapacityAspect(parent),
406           mOffset(0),
407           mSize(capacity()) {
408     }
409 
410     // subrange of parent capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent,size_t offset,size_t size)411     inline constexpr _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent, size_t offset, size_t size)
412         : _C2LinearCapacityAspect(parent),
413           mOffset(c2_min(offset, capacity())),
414           mSize(c2_min(size, capacity() - mOffset)) {
415     }
416 
417     // subsection of the parent's and [offset, offset + size] ranges
_C2LinearRangeAspect(const _C2LinearRangeAspect * parent,size_t offset,size_t size)418     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect *parent, size_t offset, size_t size)
419         : _C2LinearCapacityAspect(parent),
420           mOffset(c2_min(c2_max(offset, parent == nullptr ? 0 : parent->offset()), capacity())),
421           mSize(std::min(c2_min(size, parent == nullptr ? 0 : parent->size()), capacity() - mOffset)) {
422     }
423 
424 public:
childRange(size_t offset,size_t size)425     inline constexpr _C2LinearRangeAspect childRange(size_t offset, size_t size) const {
426         return _C2LinearRangeAspect(
427             mSize,
428             c2_min(c2_max(offset, mOffset), capacity()) - mOffset,
429             c2_min(c2_min(size, mSize), capacity() - c2_min(c2_max(offset, mOffset), capacity())));
430     }
431 
432     friend class _C2EditableLinearRangeAspect;
433     // invariants 0 <= mOffset <= mOffset + mSize <= capacity()
434     uint32_t mOffset;
435     uint32_t mSize;
436 /// @}
437 };
438 
439 /**
440  * Utility class for safe range calculations using size_t-s.
441  */
442 class C2LinearRange : public _C2LinearRangeAspect {
443 public:
C2LinearRange(const _C2LinearCapacityAspect & parent,size_t offset,size_t size)444     inline constexpr C2LinearRange(const _C2LinearCapacityAspect &parent, size_t offset, size_t size)
445         : _C2LinearRangeAspect(&parent, offset, size) { }
446 
C2LinearRange(const _C2LinearRangeAspect & parent,size_t offset,size_t size)447     inline constexpr C2LinearRange(const _C2LinearRangeAspect &parent, size_t offset, size_t size)
448         : _C2LinearRangeAspect(&parent, offset, size) { }
449 
intersect(size_t offset,size_t size)450     inline constexpr C2LinearRange intersect(size_t offset, size_t size) const {
451         return C2LinearRange(*this, offset, size);
452     }
453 };
454 
455 /**
456  * Utility class for simple and safe capacity and range construction.
457  */
458 class C2LinearCapacity : public _C2LinearCapacityAspect {
459 public:
C2LinearCapacity(size_t capacity)460     inline constexpr explicit C2LinearCapacity(size_t capacity)
461         : _C2LinearCapacityAspect(c2_min(capacity, std::numeric_limits<uint32_t>::max())) { }
462 
range(size_t offset,size_t size)463     inline constexpr C2LinearRange range(size_t offset, size_t size) const {
464         return C2LinearRange(*this, offset, size);
465     }
466 };
467 
468 /**
469  * Aspect for objects that have an editable linear range.
470  *
471  * This class is copiable.
472  */
473 class _C2EditableLinearRangeAspect : public _C2LinearRangeAspect {
474     using _C2LinearRangeAspect::_C2LinearRangeAspect;
475 
476 public:
477 /// \name Editable linear range interface
478 /// @{
479 
480     /**
481      * Sets the offset to |offset|, while trying to keep the end of the buffer unchanged (e.g.
482      * size will grow if offset is decreased, and may shrink if offset is increased.) Returns
483      * true if successful, which is equivalent to if 0 <= |offset| <= capacity().
484      *
485      * Note: setting offset and size will yield different result depending on the order of the
486      * operations. Always set offset first to ensure proper size.
487      */
setOffset(uint32_t offset)488     inline bool setOffset(uint32_t offset) {
489         if (offset > capacity()) {
490             return false;
491         }
492 
493         if (offset > mOffset + mSize) {
494             mSize = 0;
495         } else {
496             mSize = mOffset + mSize - offset;
497         }
498         mOffset = offset;
499         return true;
500     }
501 
502     /**
503      * Sets the size to |size|. Returns true if successful, which is equivalent to
504      * if 0 <= |size| <= capacity() - offset().
505      *
506      * Note: setting offset and size will yield different result depending on the order of the
507      * operations. Always set offset first to ensure proper size.
508      */
setSize(uint32_t size)509     inline bool setSize(uint32_t size) {
510         if (size > capacity() - mOffset) {
511             return false;
512         } else {
513             mSize = size;
514             return true;
515         }
516     }
517 
518     /**
519      * Sets the offset to |offset| with best effort. Same as setOffset() except that offset will
520      * be clamped to the buffer capacity.
521      *
522      * Note: setting offset and size (even using best effort) will yield different result depending
523      * on the order of the operations. Always set offset first to ensure proper size.
524      */
setOffset_be(uint32_t offset)525     inline void setOffset_be(uint32_t offset) {
526         (void)setOffset(c2_min(offset, capacity()));
527     }
528 
529     /**
530      * Sets the size to |size| with best effort. Same as setSize() except that the selected region
531      * will be clamped to the buffer capacity (e.g. size is clamped to [0, capacity() - offset()]).
532      *
533      * Note: setting offset and size (even using best effort) will yield different result depending
534      * on the order of the operations. Always set offset first to ensure proper size.
535      */
setSize_be(uint32_t size)536     inline void setSize_be(uint32_t size) {
537         mSize = c2_min(size, capacity() - mOffset);
538     }
539 /// @}
540 };
541 
542 /**************************************************************************************************
543   ALLOCATIONS
544 **************************************************************************************************/
545 
546 /// \ingroup allocator Allocation and memory placement
547 /// @{
548 
549 class C2LinearAllocation;
550 class C2GraphicAllocation;
551 
552 /**
553  *  Allocators are used by the framework to allocate memory (allocations) for buffers. They can
554  *  support either 1D or 2D allocations.
555  *
556  *  \note In theory they could support both, but in practice, we will use only one or the other.
557  *
558  *  Never constructed on stack.
559  *
560  *  Allocators are provided by vendors.
561  */
562 class C2Allocator {
563 public:
564     /**
565      * Allocator ID type.
566      */
567     typedef uint32_t id_t;
568     enum : id_t {
569         BAD_ID = 0xBADD, // invalid allocator ID
570     };
571 
572     /**
573      * Allocation types. This is a bitmask and is used in C2Allocator::Info
574      * to list the supported allocation types of an allocator.
575      */
576     enum type_t : uint32_t {
577         LINEAR  = 1 << 0, //
578         GRAPHIC = 1 << 1,
579     };
580 
581     /**
582      * Information about an allocator.
583      *
584      * Allocators don't have a query API so all queriable information is stored here.
585      */
586     struct Traits {
587         C2String name;              ///< allocator name
588         id_t id;                    ///< allocator ID
589         type_t supportedTypes;      ///< supported allocation types
590         C2MemoryUsage minimumUsage; ///< usage that is minimally required for allocations
591         C2MemoryUsage maximumUsage; ///< usage that is maximally allowed for allocations
592     };
593 
594     /**
595      * Returns the unique name of this allocator.
596      *
597      * This method MUST be "non-blocking" and return within 1ms.
598      *
599      * \return the name of this allocator.
600      * \retval an empty string if there was not enough memory to allocate the actual name.
601      */
602     virtual C2String getName() const = 0;
603 
604     /**
605      * Returns a unique ID for this allocator. This ID is used to get this allocator from the
606      * allocator store, and to identify this allocator across all processes.
607      *
608      * This method MUST be "non-blocking" and return within 1ms.
609      *
610      * \return a unique ID for this allocator.
611      */
612     virtual id_t getId() const = 0;
613 
614     /**
615      * Returns the allocator traits.
616      *
617      * This method MUST be "non-blocking" and return within 1ms.
618      *
619      * Allocators don't have a full-fledged query API, only this method.
620      *
621      * \return allocator information
622      */
623     virtual std::shared_ptr<const Traits> getTraits() const = 0;
624 
625     /**
626      * Allocates a 1D allocation of given |capacity| and |usage|. If successful, the allocation is
627      * stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
628      *
629      * \param capacity      the size of requested allocation (the allocation could be slightly
630      *                      larger, e.g. to account for any system-required alignment)
631      * \param usage         the memory usage info for the requested allocation. \note that the
632      *                      returned allocation may be later used/mapped with different usage.
633      *                      The allocator should layout the buffer to be optimized for this usage,
634      *                      but must support any usage. One exception: protected buffers can
635      *                      only be used in a protected scenario.
636      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
637      *                      will be stored here on failure
638      *
639      * \retval C2_OK        the allocation was successful
640      * \retval C2_NO_MEMORY not enough memory to complete the allocation
641      * \retval C2_TIMED_OUT the allocation timed out
642      * \retval C2_REFUSED   no permission to complete the allocation
643      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
644      * \retval C2_OMITTED   this allocator does not support 1D allocations
645      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
646      */
newLinearAllocation(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearAllocation> * allocation)647     virtual c2_status_t newLinearAllocation(
648             uint32_t capacity __unused, C2MemoryUsage usage __unused,
649             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
650         *allocation = nullptr;
651         return C2_OMITTED;
652     }
653 
654     /**
655      * (Re)creates a 1D allocation from a native |handle|. If successful, the allocation is stored
656      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
657      *
658      * \param handle      the handle for the existing allocation. On success, the allocation will
659      *                    take ownership of |handle|.
660      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
661      *                    will be stored here on failure
662      *
663      * \retval C2_OK        the allocation was recreated successfully
664      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
665      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
666      * \retval C2_REFUSED   no permission to recreate the allocation
667      * \retval C2_BAD_VALUE invalid handle (caller error)
668      * \retval C2_OMITTED   this allocator does not support 1D allocations
669      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
670      */
priorLinearAllocation(const C2Handle * handle __unused,std::shared_ptr<C2LinearAllocation> * allocation)671     virtual c2_status_t priorLinearAllocation(
672             const C2Handle *handle __unused,
673             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
674         *allocation = nullptr;
675         return C2_OMITTED;
676     }
677 
678     /**
679      * Allocates a 2D allocation of given |width|, |height|, |format| and |usage|. If successful,
680      * the allocation is stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
681      *
682      * \param width         the width of requested allocation (the allocation could be slightly
683      *                      larger, e.g. to account for any system-required alignment)
684      * \param height        the height of requested allocation (the allocation could be slightly
685      *                      larger, e.g. to account for any system-required alignment)
686      * \param format        the pixel format of requested allocation. This could be a vendor
687      *                      specific format.
688      * \param usage         the memory usage info for the requested allocation. \note that the
689      *                      returned allocation may be later used/mapped with different usage.
690      *                      The allocator should layout the buffer to be optimized for this usage,
691      *                      but must support any usage. One exception: protected buffers can
692      *                      only be used in a protected scenario.
693      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
694      *                      will be stored here on failure
695      *
696      * \retval C2_OK        the allocation was successful
697      * \retval C2_NO_MEMORY not enough memory to complete the allocation
698      * \retval C2_TIMED_OUT the allocation timed out
699      * \retval C2_REFUSED   no permission to complete the allocation
700      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller error)
701      * \retval C2_OMITTED   this allocator does not support 2D allocations
702      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
703      */
newGraphicAllocation(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicAllocation> * allocation)704     virtual c2_status_t newGraphicAllocation(
705             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
706             C2MemoryUsage usage __unused,
707             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
708         *allocation = nullptr;
709         return C2_OMITTED;
710     }
711 
712     /**
713      * (Re)creates a 2D allocation from a native handle.  If successful, the allocation is stored
714      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
715      *
716      * \param handle      the handle for the existing allocation. On success, the allocation will
717      *                    take ownership of |handle|.
718      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
719      *                    will be stored here on failure
720      *
721      * \retval C2_OK        the allocation was recreated successfully
722      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
723      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
724      * \retval C2_REFUSED   no permission to recreate the allocation
725      * \retval C2_BAD_VALUE invalid handle (caller error)
726      * \retval C2_OMITTED   this allocator does not support 2D allocations
727      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during recreation (unexpected)
728      */
priorGraphicAllocation(const C2Handle * handle __unused,std::shared_ptr<C2GraphicAllocation> * allocation)729     virtual c2_status_t priorGraphicAllocation(
730             const C2Handle *handle __unused,
731             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
732         *allocation = nullptr;
733         return C2_OMITTED;
734     }
735 
736     virtual ~C2Allocator() = default;
737 protected:
738     C2Allocator() = default;
739 };
740 
741 /**
742  * \ingroup linear allocator
743  * 1D allocation interface.
744  */
745 class C2LinearAllocation : public _C2LinearCapacityAspect {
746 public:
747     /**
748      * Maps a portion of an allocation starting from |offset| with |size| into local process memory.
749      * Stores the starting address into |addr|, or NULL if the operation was unsuccessful.
750      * |fence| will contain an acquire sync fence object. If it is already
751      * safe to access the buffer contents, then it will contain an empty (already fired) fence.
752      *
753      * \param offset        starting position of the portion to be mapped (this does not have to
754      *                      be page aligned)
755      * \param size          size of the portion to be mapped (this does not have to be page
756      *                      aligned)
757      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
758      *                      kSoftwareWrite.
759      * \param fence         a pointer to a fence object if an async mapping is requested. If
760      *                      not-null, and acquire fence will be stored here on success, or empty
761      *                      fence on failure. If null, the mapping will be synchronous.
762      * \param addr          a pointer to where the starting address of the mapped portion will be
763      *                      stored. On failure, nullptr will be stored here.
764      *
765      * \todo Only one portion can be mapped at the same time - this is true for gralloc, but there
766      *       is no need for this for 1D buffers.
767      * \todo Do we need to support sync operation as we could just wait for the fence?
768      *
769      * \retval C2_OK        the operation was successful
770      * \retval C2_REFUSED   no permission to map the portion
771      * \retval C2_TIMED_OUT the operation timed out
772      * \retval C2_DUPLICATE if the allocation is already mapped.
773      * \retval C2_NO_MEMORY not enough memory to complete the operation
774      * \retval C2_BAD_VALUE the parameters (offset/size) are invalid or outside the allocation, or
775      *                      the usage flags are invalid (caller error)
776      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
777      */
778     virtual c2_status_t map(
779             size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence /* nullable */,
780             void **addr /* nonnull */) = 0;
781 
782     /**
783      * Unmaps a portion of an allocation at |addr| with |size|. These must be parameters previously
784      * passed to and returned by |map|; otherwise, this operation is a no-op.
785      *
786      * \param addr          starting address of the mapped region
787      * \param size          size of the mapped region
788      * \param fence         a pointer to a fence object if an async unmapping is requested. If
789      *                      not-null, a release fence will be stored here on success, or empty fence
790      *                      on failure. This fence signals when the original allocation contains
791      *                      all changes that happened to the mapped region. If null, the unmapping
792      *                      will be synchronous.
793      *
794      * \retval C2_OK        the operation was successful
795      * \retval C2_TIMED_OUT the operation timed out
796      * \retval C2_NOT_FOUND if the allocation was not mapped previously.
797      * \retval C2_BAD_VALUE the parameters (addr/size) do not correspond to previously mapped
798      *                      regions (caller error)
799      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
800      * \retval C2_REFUSED   no permission to unmap the portion (unexpected - system)
801      */
802     virtual c2_status_t unmap(void *addr, size_t size, C2Fence *fence /* nullable */) = 0;
803 
804     /**
805      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
806      */
807     virtual C2Allocator::id_t getAllocatorId() const = 0;
808 
809     /**
810      * Returns a pointer to the allocation handle.
811      */
812     virtual const C2Handle *handle() const = 0;
813 
814     /**
815      * Returns true if this is the same allocation as |other|.
816      */
817     virtual bool equals(const std::shared_ptr<C2LinearAllocation> &other) const = 0;
818 
819 protected:
820     // \todo should we limit allocation directly?
C2LinearAllocation(size_t capacity)821     C2LinearAllocation(size_t capacity) : _C2LinearCapacityAspect(c2_min(capacity, UINT32_MAX)) {}
822     virtual ~C2LinearAllocation() = default;
823 };
824 
825 class C2CircularBlock;
826 class C2LinearBlock;
827 class C2GraphicBlock;
828 
829 /**
830  *  Block pools are used by components to obtain output buffers in an efficient way. They can
831  *  support either linear (1D), circular (1D) or graphic (2D) blocks.
832  *
833  *  Block pools decouple the recycling of memory/allocations from the components. They are meant to
834  *  be an opaque service (there are no public APIs other than obtaining blocks) provided by the
835  *  platform. Block pools are also meant to decouple allocations from memory used by buffers. This
836  *  is accomplished by allowing pools to allot multiple memory 'blocks' on a single allocation. As
837  *  their name suggest, block pools maintain a pool of memory blocks. When a component asks for
838  *  a memory block, pools will try to return a free memory block already in the pool. If no such
839  *  block exists, they will allocate memory using the backing allocator and allot a block on that
840  *  allocation. When blocks are no longer used in the system, they are recycled back to the block
841  *  pool and are available as free blocks.
842  *
843  *  Never constructed on stack.
844  */
845 class C2BlockPool {
846 public:
847     /**
848      * Block pool ID type.
849      */
850     typedef uint64_t local_id_t;
851 
852     enum : local_id_t {
853         BASIC_LINEAR = 0,  ///< ID of basic (unoptimized) block pool for fetching 1D blocks
854         BASIC_GRAPHIC = 1, ///< ID of basic (unoptimized) block pool for fetching 2D blocks
855         PLATFORM_START = 0x10,
856     };
857 
858     /**
859      * Returns the ID for this block pool. This ID is used to get this block pool from the platform.
860      * It is only valid in the current process.
861      *
862      * This method MUST be "non-blocking" and return within 1ms.
863      *
864      * \return a local ID for this block pool.
865      */
866     virtual local_id_t getLocalId() const = 0;
867 
868     /**
869      * Returns the ID of the backing allocator of this block pool.
870      *
871      * This method MUST be "non-blocking" and return within 1ms.
872      *
873      * \return the ID of the backing allocator of this block pool.
874      */
875     virtual C2Allocator::id_t getAllocatorId() const = 0;
876 
877     /**
878      * Obtains a linear writeable block of given |capacity| and |usage|. If successful, the
879      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
880      *
881      * \param capacity the size of requested block.
882      * \param usage    the memory usage info for the requested block. Returned blocks will be
883      *                 optimized for this usage, but may be used with any usage. One exception:
884      *                 protected blocks/buffers can only be used in a protected scenario.
885      * \param block    pointer to where the obtained block shall be stored on success. nullptr will
886      *                 be stored here on failure
887      *
888      * \retval C2_OK        the operation was successful
889      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
890      * \retval C2_TIMED_OUT the operation timed out
891      * \retval C2_REFUSED   no permission to complete any required allocation
892      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
893      * \retval C2_OMITTED   this pool does not support linear blocks
894      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
895      */
fetchLinearBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearBlock> * block)896     virtual c2_status_t fetchLinearBlock(
897             uint32_t capacity __unused, C2MemoryUsage usage __unused,
898             std::shared_ptr<C2LinearBlock> *block /* nonnull */) {
899         *block = nullptr;
900         return C2_OMITTED;
901     }
902 
903     /**
904      * Obtains a circular writeable block of given |capacity| and |usage|. If successful, the
905      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
906      *
907      * \param capacity the size of requested circular block. (note: the size of the obtained
908      *                 block could be slightly larger, e.g. to accommodate any system-required
909      *                 alignment)
910      * \param usage    the memory usage info for the requested block. Returned blocks will be
911      *                 optimized for this usage, but may be used with any usage. One exception:
912      *                 protected blocks/buffers can only be used in a protected scenario.
913      * \param block    pointer to where the obtained block shall be stored on success. nullptr
914      *                 will be stored here on failure
915      *
916      * \retval C2_OK        the operation was successful
917      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
918      * \retval C2_TIMED_OUT the operation timed out
919      * \retval C2_REFUSED   no permission to complete any required allocation
920      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
921      * \retval C2_OMITTED   this pool does not support circular blocks
922      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
923      */
fetchCircularBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2CircularBlock> * block)924     virtual c2_status_t fetchCircularBlock(
925             uint32_t capacity __unused, C2MemoryUsage usage __unused,
926             std::shared_ptr<C2CircularBlock> *block /* nonnull */) {
927         *block = nullptr;
928         return C2_OMITTED;
929     }
930 
931     /**
932      * Obtains a 2D graphic block of given |width|, |height|, |format| and |usage|. If successful,
933      * the block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
934      *
935      * \param width  the width of requested block (the obtained block could be slightly larger, e.g.
936      *               to accommodate any system-required alignment)
937      * \param height the height of requested block (the obtained block could be slightly larger,
938      *               e.g. to accommodate any system-required alignment)
939      * \param format the pixel format of requested block. This could be a vendor specific format.
940      * \param usage  the memory usage info for the requested block. Returned blocks will be
941      *               optimized for this usage, but may be used with any usage. One exception:
942      *               protected blocks/buffers can only be used in a protected scenario.
943      * \param block  pointer to where the obtained block shall be stored on success. nullptr
944      *               will be stored here on failure
945      *
946      * \retval C2_OK        the operation was successful
947      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
948      * \retval C2_TIMED_OUT the operation timed out
949      * \retval C2_REFUSED   no permission to complete any required allocation
950      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller
951      *                      error)
952      * \retval C2_OMITTED   this pool does not support 2D blocks
953      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
954      */
fetchGraphicBlock(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicBlock> * block)955     virtual c2_status_t fetchGraphicBlock(
956             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
957             C2MemoryUsage usage __unused,
958             std::shared_ptr<C2GraphicBlock> *block /* nonnull */) {
959         *block = nullptr;
960         return C2_OMITTED;
961     }
962 
963     virtual ~C2BlockPool() = default;
964 protected:
965     C2BlockPool() = default;
966 };
967 
968 /// @}
969 
970 // ================================================================================================
971 //  BLOCKS
972 // ================================================================================================
973 
974 /**
975  * Blocks are sections of allocations. They can be either 1D or 2D.
976  */
977 
978 class C2LinearAllocation;
979 
980 /**
981  * A 1D block.
982  *
983  * \note capacity() is not meaningful for users of blocks; instead size() is the capacity of the
984  * usable portion. Use and offset() and size() if accessing the block directly through its handle
985  * to represent the allotted range of the underlying allocation to this block.
986  */
987 class C2Block1D : public _C2LinearRangeAspect {
988 public:
989     /**
990      * Returns the underlying handle for this allocation.
991      *
992      * \note that the block and its block pool has shared ownership of the handle
993      *       and if all references to the block are released, the underlying block
994      *       allocation may get reused even if a client keeps a clone of this handle.
995      */
996     const C2Handle *handle() const;
997 
998     /**
999      * Returns the allocator's ID that created the underlying allocation for this block. This
1000      * provides the context for understanding the handle.
1001      */
1002     C2Allocator::id_t getAllocatorId() const;
1003 
1004 protected:
1005     class Impl;
1006     /** construct a block. */
1007     C2Block1D(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1008 
1009     friend struct _C2BlockFactory;
1010     std::shared_ptr<Impl> mImpl;
1011 };
1012 
1013 /**
1014  * Read view provides read-only access for a linear memory segment.
1015  *
1016  * This class is copiable.
1017  */
1018 class C2ReadView : public _C2LinearCapacityAspect {
1019 public:
1020     /**
1021      * \return pointer to the start of the block or nullptr on error.
1022      *         This pointer is only valid during the lifetime of this view or until it is released.
1023      */
1024     const uint8_t *data() const;
1025 
1026     /**
1027      * Returns a portion of this view.
1028      *
1029      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1030      *              view.
1031      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1032      *
1033      * \return a read view containing a portion of this view
1034      */
1035     C2ReadView subView(size_t offset, size_t size) const;
1036 
1037     /**
1038      * \return error during the creation/mapping of this view.
1039      */
1040     c2_status_t error() const;
1041 
1042     /**
1043      * Releases this view. This sets error to C2_NO_INIT.
1044      */
1045     //void release();
1046 
1047 protected:
1048     class Impl;
1049     C2ReadView(std::shared_ptr<Impl> impl, uint32_t offset, uint32_t size);
1050     explicit C2ReadView(c2_status_t error);
1051 
1052 private:
1053     friend struct _C2BlockFactory;
1054     std::shared_ptr<Impl> mImpl;
1055     uint32_t mOffset; /**< offset into the linear block backing this read view */
1056 };
1057 
1058 /**
1059  * Write view provides read/write access for a linear memory segment.
1060  *
1061  * This class is copiable. \todo movable only?
1062  */
1063 class C2WriteView : public _C2EditableLinearRangeAspect {
1064 public:
1065     /**
1066      * Start of the block.
1067      *
1068      * \return pointer to the start of the block or nullptr on error.
1069      *         This pointer is only valid during the lifetime of this view or until it is released.
1070      */
1071     uint8_t *base();
1072 
1073     /**
1074      * \return pointer to the block at the current offset or nullptr on error.
1075      *         This pointer is only valid during the lifetime of this view or until it is released.
1076      */
1077     uint8_t *data();
1078 
1079     /**
1080      * \return error during the creation/mapping of this view.
1081      */
1082     c2_status_t error() const;
1083 
1084     /**
1085      * Releases this view. This sets error to C2_NO_INIT.
1086      */
1087     //void release();
1088 
1089 protected:
1090     class Impl;
1091     C2WriteView(std::shared_ptr<Impl> impl);
1092     explicit C2WriteView(c2_status_t error);
1093 
1094 private:
1095     friend struct _C2BlockFactory;
1096     std::shared_ptr<Impl> mImpl;
1097 };
1098 
1099 /**
1100  * A constant (read-only) linear block (portion of an allocation) with an acquire fence.
1101  * Blocks are unmapped when created, and can be mapped into a read view on demand.
1102  *
1103  * This class is copiable and contains a reference to the allocation that it is based on.
1104  */
1105 class C2ConstLinearBlock : public C2Block1D {
1106 public:
1107     /**
1108      * Maps this block into memory and returns a read view for it.
1109      *
1110      * \return a read view for this block.
1111      */
1112     C2Acquirable<C2ReadView> map() const;
1113 
1114     /**
1115      * Returns a portion of this block.
1116      *
1117      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1118      *              block.
1119      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1120      *
1121      * \return a constant linear block containing a portion of this block
1122      */
1123     C2ConstLinearBlock subBlock(size_t offset, size_t size) const;
1124 
1125     /**
1126      * Returns the acquire fence for this block.
1127      *
1128      * \return a fence that must be waited on before reading the block.
1129      */
fence()1130     C2Fence fence() const { return mFence; }
1131 
1132 protected:
1133     C2ConstLinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range, C2Fence mFence);
1134 
1135 private:
1136     friend struct _C2BlockFactory;
1137     C2Fence mFence;
1138 };
1139 
1140 /**
1141  * Linear block is a writeable 1D block. Once written, it can be shared in whole or in parts with
1142  * consumers/readers as read-only const linear block(s).
1143  */
1144 class C2LinearBlock : public C2Block1D {
1145 public:
1146     /**
1147      * Maps this block into memory and returns a write view for it.
1148      *
1149      * \return a write view for this block.
1150      */
1151     C2Acquirable<C2WriteView> map();
1152 
1153     /**
1154      * Creates a read-only const linear block for a portion of this block; optionally protected
1155      * by an acquire fence. There are two ways to use this:
1156      *
1157      * 1) share ready block after writing data into the block. In this case no fence shall be
1158      *    supplied, and the block shall not be modified after calling this method.
1159      * 2) share block metadata before actually (finishing) writing the data into the block. In
1160      *    this case a fence must be supplied that will be triggered when the data is written.
1161      *    The block shall be modified only until firing the event for the fence.
1162      */
1163     C2ConstLinearBlock share(size_t offset, size_t size, C2Fence fence);
1164 
1165 protected:
1166     C2LinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1167 
1168     friend struct _C2BlockFactory;
1169 };
1170 
1171 /// @}
1172 
1173 /**************************************************************************************************
1174   CIRCULAR BLOCKS AND VIEWS
1175 **************************************************************************************************/
1176 
1177 /// \defgroup circular Circular buffer support
1178 /// @{
1179 
1180 /**
1181  * Circular blocks can be used to share data between a writer and a reader (and/or other consumers)-
1182  * in a memory-efficient way by reusing a section of memory. Circular blocks are a bit more complex
1183  * than single reader/single writer schemes to facilitate block-based consuming of data.
1184  *
1185  * They can operate in two modes:
1186  *
1187  * 1) one writer that creates blocks to be consumed (this model can be used by components)
1188  *
1189  * 2) one writer that writes continuously, and one reader that can creates blocks to be consumed
1190  *    by further recipients (this model is used by the framework, and cannot be used by components.)
1191  *
1192  * Circular blocks have four segments with running pointers:
1193  *  - reserved: data reserved and available for the writer
1194  *  - committed: data committed by the writer and available to the reader (if present)
1195  *  - used: data used by consumers (if present)
1196  *  - available: unused data available to be reserved
1197  */
1198 class C2CircularBlock : public C2Block1D {
1199     // TODO: add methods
1200 
1201 private:
1202     size_t mReserved __unused;   // end of reserved section
1203     size_t mCommitted __unused;  // end of committed section
1204     size_t mUsed __unused;       // end of used section
1205     size_t mFree __unused;       // end of free section
1206 };
1207 
1208 class _C2CircularBlockSegment : public _C2LinearCapacityAspect {
1209 public:
1210     /**
1211      * Returns the available size for this segment.
1212      *
1213      * \return currently available size for this segment
1214      */
1215     size_t available() const;
1216 
1217     /**
1218      * Reserve some space for this segment from its current start.
1219      *
1220      * \param size    desired space in bytes
1221      * \param fence   a pointer to an acquire fence. If non-null, the reservation is asynchronous and
1222      *              a fence will be stored here that will be signaled when the reservation is
1223      *              complete. If null, the reservation is synchronous.
1224      *
1225      * \retval C2_OK            the space was successfully reserved
1226      * \retval C2_NO_MEMORY     the space requested cannot be reserved
1227      * \retval C2_TIMED_OUT     the reservation timed out \todo when?
1228      * \retval C2_CORRUPTED     some unknown error prevented reserving space. (unexpected)
1229      */
1230     c2_status_t reserve(size_t size, C2Fence *fence /* nullable */);
1231 
1232     /**
1233      * Abandons a portion of this segment. This will move to the beginning of this segment.
1234      *
1235      * \note This methods is only allowed if this segment is producing blocks.
1236      *
1237      * \param size    number of bytes to abandon
1238      *
1239      * \retval C2_OK            the data was successfully abandoned
1240      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1241      * \retval C2_CORRUPTED     some unknown error prevented abandoning the data (unexpected)
1242      */
1243     c2_status_t abandon(size_t size);
1244 
1245     /**
1246      * Share a portion as block(s) with consumers (these are moved to the used section).
1247      *
1248      * \note This methods is only allowed if this segment is producing blocks.
1249      * \note Share does not move the beginning of the segment. (\todo add abandon/offset?)
1250      *
1251      * \param size    number of bytes to share
1252      * \param fence   fence to be used for the section
1253      * \param blocks  vector where the blocks of the section are appended to
1254      *
1255      * \retval C2_OK            the portion was successfully shared
1256      * \retval C2_NO_MEMORY     not enough memory to share the portion
1257      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1258      * \retval C2_CORRUPTED     some unknown error prevented sharing the data (unexpected)
1259      */
1260     c2_status_t share(size_t size, C2Fence fence, std::vector<C2ConstLinearBlock> &blocks);
1261 
1262     /**
1263      * Returns the beginning offset of this segment from the start of this circular block.
1264      *
1265      * @return beginning offset
1266      */
1267     size_t begin();
1268 
1269     /**
1270      * Returns the end offset of this segment from the start of this circular block.
1271      *
1272      * @return end offset
1273      */
1274     size_t end();
1275 };
1276 
1277 /**
1278  * A circular write-view is a dynamic mapped view for a segment of a circular block. Care must be
1279  * taken when using this view so that only the section owned by the segment is modified.
1280  */
1281 class C2CircularWriteView : public _C2LinearCapacityAspect {
1282 public:
1283     /**
1284      * Start of the circular block.
1285      * \note the segment does not own this pointer.
1286      *
1287      * \return pointer to the start of the circular block or nullptr on error.
1288      */
1289     uint8_t *base();
1290 
1291     /**
1292      * \return error during the creation/mapping of this view.
1293      */
1294     c2_status_t error() const;
1295 };
1296 
1297 /**
1298  * The writer of a circular buffer.
1299  *
1300  * Can commit data to a reader (not supported for components) OR share data blocks directly with a
1301  * consumer.
1302  *
1303  * If a component supports outputting data into circular buffers, it must allocate a circular
1304  * block and use a circular writer.
1305  */
1306 class C2CircularWriter : public _C2CircularBlockSegment {
1307 public:
1308     /**
1309      * Commits a portion of this segment to the next segment. This moves the beginning of the
1310      * segment.
1311      *
1312      * \param size    number of bytes to commit to the next segment
1313      * \param fence   fence used for the commit (the fence must signal before the data is committed)
1314      */
1315     c2_status_t commit(size_t size, C2Fence fence);
1316 
1317     /**
1318      * Maps this block into memory and returns a write view for it.
1319      *
1320      * \return a write view for this block.
1321      */
1322     C2Acquirable<C2CircularWriteView> map();
1323 };
1324 
1325 /// @}
1326 
1327 /// \defgroup graphic Graphic Data Blocks
1328 /// @{
1329 
1330 /**
1331  * C2Rect: rectangle type with non-negative coordinates.
1332  *
1333  * \note This struct has public fields without getters/setters. All methods are inline.
1334  */
1335 struct C2Rect {
1336 // public:
1337     uint32_t width;
1338     uint32_t height;
1339     uint32_t left;
1340     uint32_t top;
1341 
C2RectC2Rect1342     constexpr inline C2Rect()
1343         : C2Rect(0, 0, 0, 0) { }
1344 
C2RectC2Rect1345     constexpr inline C2Rect(uint32_t width_, uint32_t height_)
1346         : C2Rect(width_, height_, 0, 0) { }
1347 
atC2Rect1348     constexpr C2Rect inline at(uint32_t left_, uint32_t top_) const {
1349         return C2Rect(width, height, left_, top_);
1350     }
1351 
1352     // utility methods
1353 
isEmptyC2Rect1354     inline constexpr bool isEmpty() const {
1355         return width == 0 || height == 0;
1356     }
1357 
isValidC2Rect1358     inline constexpr bool isValid() const {
1359         return left <= ~width && top <= ~height;
1360     }
1361 
1362     inline constexpr operator bool() const {
1363         return isValid() && !isEmpty();
1364     }
1365 
1366     inline constexpr bool operator!() const {
1367         return !bool(*this);
1368     }
1369 
1370     C2_ALLOW_OVERFLOW
containsC2Rect1371     inline constexpr bool contains(const C2Rect &other) const {
1372         if (!isValid() || !other.isValid()) {
1373             return false;
1374         } else {
1375             return left <= other.left && top <= other.top
1376                     && left + width >= other.left + other.width
1377                     && top + height >= other.top + other.height;
1378         }
1379     }
1380 
1381     inline constexpr bool operator==(const C2Rect &other) const {
1382         if (!isValid()) {
1383             return !other.isValid();
1384         } else {
1385             return left == other.left && top == other.top
1386                     && width == other.width && height == other.height;
1387         }
1388     }
1389 
1390     inline constexpr bool operator!=(const C2Rect &other) const {
1391         return !operator==(other);
1392     }
1393 
1394     inline constexpr bool operator>=(const C2Rect &other) const {
1395         return contains(other);
1396     }
1397 
1398     inline constexpr bool operator>(const C2Rect &other) const {
1399         return contains(other) && !operator==(other);
1400     }
1401 
1402     inline constexpr bool operator<=(const C2Rect &other) const {
1403         return other.contains(*this);
1404     }
1405 
1406     inline constexpr bool operator<(const C2Rect &other) const {
1407         return other.contains(*this) && !operator==(other);
1408     }
1409 
1410     C2_ALLOW_OVERFLOW
rightC2Rect1411     inline constexpr uint32_t right() const {
1412         return left + width;
1413     }
1414 
1415     C2_ALLOW_OVERFLOW
bottomC2Rect1416     inline constexpr uint32_t bottom() const {
1417         return top + height;
1418     }
1419 
1420     C2_ALLOW_OVERFLOW
intersectC2Rect1421     inline constexpr C2Rect intersect(const C2Rect &other) const {
1422         return C2Rect(c2_min(right(), other.right()) - c2_max(left, other.left),
1423                       c2_min(bottom(), other.bottom()) - c2_max(top, other.top),
1424                       c2_max(left, other.left),
1425                       c2_max(top, other.top));
1426     }
1427 
1428     /** clamps right and bottom to top, left if they overflow */
normalizeC2Rect1429     inline constexpr C2Rect normalize() const {
1430         return C2Rect(c2_max(left, right()) - left, c2_max(top, bottom()) - top, left, top);
1431     }
1432 
1433 private:
1434     /// note: potentially unusual argument order
C2RectC2Rect1435     constexpr inline C2Rect(uint32_t width_, uint32_t height_, uint32_t left_, uint32_t top_)
1436         : width(width_),
1437           height(height_),
1438           left(left_),
1439           top(top_) { }
1440 };
1441 
1442 /**
1443  * Interface for objects that have a width and height (planar capacity).
1444  */
1445 class _C2PlanarCapacityAspect {
1446 /// \name Planar capacity interface
1447 /// @{
1448 public:
width()1449     inline constexpr uint32_t width() const { return _mWidth; }
height()1450     inline constexpr uint32_t height() const { return _mHeight; }
1451 
C2Rect()1452     inline constexpr operator C2Rect() const {
1453         return C2Rect(_mWidth, _mHeight);
1454     }
1455 
1456 protected:
_C2PlanarCapacityAspect(uint32_t width,uint32_t height)1457     inline constexpr _C2PlanarCapacityAspect(uint32_t width, uint32_t height)
1458       : _mWidth(width), _mHeight(height) { }
1459 
_C2PlanarCapacityAspect(const _C2PlanarCapacityAspect * parent)1460     inline explicit constexpr _C2PlanarCapacityAspect(const _C2PlanarCapacityAspect *parent)
1461         : _mWidth(parent == nullptr ? 0 : parent->width()),
1462           _mHeight(parent == nullptr ? 0 : parent->height()) { }
1463 
1464 private:
1465     uint32_t _mWidth;
1466     uint32_t _mHeight;
1467 /// @}
1468 };
1469 
1470 /**
1471  * C2PlaneInfo: information on the layout of a singe flexible plane.
1472  *
1473  * Public fields without getters/setters.
1474  */
1475 struct C2PlaneInfo {
1476 //public:
1477     enum channel_t : uint32_t {
1478         CHANNEL_Y,  ///< luma
1479         CHANNEL_R,  ///< red
1480         CHANNEL_G,  ///< green
1481         CHANNEL_B,  ///< blue
1482         CHANNEL_A,  ///< alpha
1483         CHANNEL_CR, ///< Cr
1484         CHANNEL_CB, ///< Cb
1485     } channel;
1486 
1487     int32_t colInc;       ///< column increment in bytes. may be negative
1488     int32_t rowInc;       ///< row increment in bytes. may be negative
1489 
1490     uint32_t colSampling; ///< subsampling compared to width (must be a power of 2)
1491     uint32_t rowSampling; ///< subsampling compared to height (must be a power of 2)
1492 
1493     uint32_t allocatedDepth; ///< size of each sample (must be a multiple of 8)
1494     uint32_t bitDepth;       ///< significant bits per sample
1495     /**
1496      * the right shift of the significant bits in the sample. E.g. if a 10-bit significant
1497      * value is laid out in a 16-bit allocation aligned to LSB (values 0-1023), rightShift
1498      * would be 0 as the 16-bit value read from the sample does not need to be right shifted
1499      * and can be used as is (after applying a 10-bit mask of 0x3FF).
1500      *
1501      * +--------+--------+
1502      * |      VV|VVVVVVVV|
1503      * +--------+--------+
1504      *  15     8 7      0
1505      *
1506      * If the value is laid out aligned to MSB, rightShift would be 6, as the value read
1507      * from the allocated sample must be right-shifted by 6 to get the actual sample value.
1508      *
1509      * +--------+--------+
1510      * |VVVVVVVV|VV      |
1511      * +--------+--------+
1512      *  15     8 7      0
1513      */
1514     uint32_t rightShift;
1515 
1516     enum endianness_t : uint32_t {
1517         NATIVE,
1518         LITTLE_END, // LITTLE_ENDIAN is reserved macro
1519         BIG_END,    // BIG_ENDIAN is a reserved macro
1520     } endianness; ///< endianness of the samples
1521 
1522     /**
1523      * The following two fields define the relation between multiple planes. If multiple planes are
1524      * interleaved, they share a root plane (whichever plane's start address is the lowest), and
1525      * |offset| is the offset of this plane inside the root plane (in bytes). |rootIx| is the index
1526      * of the root plane. If a plane is independent, rootIx is its index and offset is 0.
1527      */
1528     uint32_t rootIx; ///< index of the root plane
1529     uint32_t offset; ///< offset of this plane inside of the root plane
1530 
minOffsetC2PlaneInfo1531     inline constexpr ssize_t minOffset(uint32_t width, uint32_t height) const {
1532         ssize_t offs = 0;
1533         if (width > 0 && colInc < 0) {
1534             offs += colInc * (ssize_t)(width - 1);
1535         }
1536         if (height > 0 && rowInc < 0) {
1537             offs += rowInc * (ssize_t)(height - 1);
1538         }
1539         return offs;
1540     }
1541 
maxOffsetC2PlaneInfo1542     inline constexpr ssize_t maxOffset(uint32_t width, uint32_t height) const {
1543         ssize_t offs = (allocatedDepth + 7) >> 3;
1544         if (width > 0 && colInc > 0) {
1545             offs += colInc * (ssize_t)(width - 1);
1546         }
1547         if (height > 0 && rowInc > 0) {
1548             offs += rowInc * (ssize_t)(height - 1);
1549         }
1550         return offs;
1551     }
1552 } C2_PACK;
1553 
1554 struct C2PlanarLayout {
1555 //public:
1556     enum type_t : uint32_t {
1557         TYPE_UNKNOWN = 0,
1558         TYPE_YUV = 0x100,   ///< YUV image with 3 planes
1559         TYPE_YUVA,          ///< YUVA image with 4 planes
1560         TYPE_RGB,           ///< RGB image with 3 planes
1561         TYPE_RGBA,          ///< RBGA image with 4 planes
1562     };
1563 
1564     type_t type;                    // image type
1565     uint32_t numPlanes;             // number of component planes
1566     uint32_t rootPlanes;            // number of layout planes (root planes)
1567 
1568     enum plane_index_t : uint32_t {
1569         PLANE_Y = 0,
1570         PLANE_U = 1,
1571         PLANE_V = 2,
1572         PLANE_R = 0,
1573         PLANE_G = 1,
1574         PLANE_B = 2,
1575         PLANE_A = 3,
1576         MAX_NUM_PLANES = 4,
1577     };
1578 
1579     C2PlaneInfo planes[MAX_NUM_PLANES];
1580 };
1581 
1582 /**
1583  * Aspect for objects that have a planar section (crop rectangle).
1584  *
1585  * This class is copiable.
1586  */
1587 class _C2PlanarSectionAspect : public _C2PlanarCapacityAspect {
1588 /// \name Planar section interface
1589 /// @{
1590 private:
_C2PlanarSectionAspect(uint32_t width,uint32_t height,const C2Rect & crop)1591     inline constexpr _C2PlanarSectionAspect(uint32_t width, uint32_t height, const C2Rect &crop)
1592         : _C2PlanarCapacityAspect(width, height),
1593           mCrop(C2Rect(std::min(width - std::min(crop.left, width), crop.width),
1594                        std::min(height - std::min(crop.top, height), crop.height)).at(
1595                                std::min(crop.left, width),
1596                                std::min(crop.height, height))) {
1597     }
1598 
1599 public:
1600     // crop can be an empty rect, does not have to line up with subsampling
1601     // NOTE: we do not support floating-point crop
crop()1602     inline constexpr C2Rect crop() const { return mCrop; }
1603 
1604     /**
1605      * Returns a child planar section for |crop|, where the capacity represents this section.
1606      */
childSection(const C2Rect & crop)1607     inline constexpr _C2PlanarSectionAspect childSection(const C2Rect &crop) const {
1608         return _C2PlanarSectionAspect(
1609                 mCrop.width, mCrop.height,
1610                 // crop and translate |crop| rect
1611                 C2Rect(c2_min(mCrop.right() - c2_clamp(mCrop.left, crop.left, mCrop.right()),
1612                               crop.width),
1613                        c2_min(mCrop.bottom() - c2_clamp(mCrop.top, crop.top, mCrop.bottom()),
1614                               crop.height))
1615                 .at(c2_clamp(mCrop.left, crop.left, mCrop.right()) - mCrop.left,
1616                     c2_clamp(mCrop.top, crop.top, mCrop.bottom()) - mCrop.top));
1617     }
1618 
1619 protected:
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent)1620     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent)
1621         : _C2PlanarCapacityAspect(parent), mCrop(width(), height()) {}
1622 
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent,const C2Rect & crop)1623     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent, const C2Rect &crop)
1624         : _C2PlanarCapacityAspect(parent),
1625           mCrop(parent == nullptr ? C2Rect() : ((C2Rect)*parent).intersect(crop).normalize()) { }
1626 
_C2PlanarSectionAspect(const _C2PlanarSectionAspect * parent,const C2Rect & crop)1627     inline constexpr _C2PlanarSectionAspect(const _C2PlanarSectionAspect *parent, const C2Rect &crop)
1628         : _C2PlanarCapacityAspect(parent),
1629           mCrop(parent == nullptr ? C2Rect() : parent->crop().intersect(crop).normalize()) { }
1630 
1631 private:
1632     friend class _C2EditablePlanarSectionAspect;
1633     C2Rect mCrop;
1634 /// @}
1635 };
1636 
1637 /**
1638  * Aspect for objects that have an editable planar section (crop rectangle).
1639  *
1640  * This class is copiable.
1641  */
1642 class _C2EditablePlanarSectionAspect : public _C2PlanarSectionAspect {
1643 /// \name Planar section interface
1644 /// @{
1645     using _C2PlanarSectionAspect::_C2PlanarSectionAspect;
1646 
1647 public:
1648     // crop can be an empty rect, does not have to line up with subsampling
1649     // NOTE: we do not support floating-point crop
crop()1650     inline constexpr C2Rect crop() const { return mCrop; }
1651 
1652     /**
1653      *  Sets crop to crop intersected with [(0,0) .. (width, height)]
1654      */
setCrop_be(const C2Rect & crop)1655     inline void setCrop_be(const C2Rect &crop) {
1656         mCrop.left = std::min(width(), crop.left);
1657         mCrop.top = std::min(height(), crop.top);
1658         // It's guaranteed that mCrop.left <= width() && mCrop.top <= height()
1659         mCrop.width = std::min(width() - mCrop.left, crop.width);
1660         mCrop.height = std::min(height() - mCrop.top, crop.height);
1661     }
1662 
1663     /**
1664      * If crop is within the dimensions of this object, it sets crop to it.
1665      *
1666      * \return true iff crop is within the dimensions of this object
1667      */
setCrop(const C2Rect & crop)1668     inline bool setCrop(const C2Rect &crop) {
1669         if (width() < crop.width || height() < crop.height
1670                 || width() - crop.width < crop.left || height() - crop.height < crop.top) {
1671             return false;
1672         }
1673         mCrop = crop;
1674         return true;
1675     }
1676 /// @}
1677 };
1678 
1679 /**
1680  * Utility class for safe range calculations using size_t-s.
1681  */
1682 class C2PlanarSection : public _C2PlanarSectionAspect {
1683 public:
C2PlanarSection(const _C2PlanarCapacityAspect & parent,const C2Rect & crop)1684     inline constexpr C2PlanarSection(const _C2PlanarCapacityAspect &parent, const C2Rect &crop)
1685         : _C2PlanarSectionAspect(&parent, crop) { }
1686 
C2PlanarSection(const _C2PlanarSectionAspect & parent,const C2Rect & crop)1687     inline constexpr C2PlanarSection(const _C2PlanarSectionAspect &parent, const C2Rect &crop)
1688         : _C2PlanarSectionAspect(&parent, crop) { }
1689 
intersect(const C2Rect & crop)1690     inline constexpr C2PlanarSection intersect(const C2Rect &crop) const {
1691         return C2PlanarSection(*this, crop);
1692     }
1693 };
1694 
1695 /**
1696  * Utility class for simple and safe planar capacity and section construction.
1697  */
1698 class C2PlanarCapacity : public _C2PlanarCapacityAspect {
1699 public:
C2PlanarCapacity(size_t width,size_t height)1700     inline constexpr explicit C2PlanarCapacity(size_t width, size_t height)
1701         : _C2PlanarCapacityAspect(c2_min(width, std::numeric_limits<uint32_t>::max()),
1702                                   c2_min(height, std::numeric_limits<uint32_t>::max())) { }
1703 
section(const C2Rect & crop)1704     inline constexpr C2PlanarSection section(const C2Rect &crop) const {
1705         return C2PlanarSection(*this, crop);
1706     }
1707 };
1708 
1709 
1710 /**
1711  * \ingroup graphic allocator
1712  * 2D allocation interface.
1713  */
1714 class C2GraphicAllocation : public _C2PlanarCapacityAspect {
1715 public:
1716     /**
1717      * Maps a rectangular section (as defined by |rect|) of a 2D allocation into local process
1718      * memory for flexible access. On success, it fills out |layout| with the plane specifications
1719      * and fills the |addr| array with pointers to the first byte of the top-left pixel of each
1720      * plane used. Otherwise, it leaves |layout| and |addr| untouched. |fence| will contain
1721      * an acquire sync fence object. If it is already safe to access the
1722      * buffer contents, then it will be an empty (already fired) fence.
1723      *
1724      * Safe regions for the pointer addresses returned can be gotten via C2LayoutInfo.minOffset()/
1725      * maxOffset().
1726      *
1727      * \param rect          section to be mapped (this does not have to be aligned)
1728      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
1729      *                      kSoftwareWrite.
1730      * \param fence         a pointer to a fence object if an async mapping is requested. If
1731      *                      not-null, and acquire fence will be stored here on success, or empty
1732      *                      fence on failure. If null, the mapping will be synchronous.
1733      * \param layout        a pointer to where the mapped planes' descriptors will be
1734      *                      stored. On failure, nullptr will be stored here.
1735      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1736      *                      elements. Only layout.numPlanes elements will be modified on success.
1737      *
1738      * \retval C2_OK        the operation was successful
1739      * \retval C2_REFUSED   no permission to map the section
1740      * \retval C2_DUPLICATE there is already a mapped region and this allocation cannot support
1741      *                      multi-mapping (caller error)
1742      * \retval C2_TIMED_OUT the operation timed out
1743      * \retval C2_NO_MEMORY not enough memory to complete the operation
1744      * \retval C2_BAD_VALUE the parameters (rect) are invalid or outside the allocation, or the
1745      *                      usage flags are invalid (caller error)
1746      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1747 
1748      */
1749     virtual c2_status_t map(
1750             C2Rect rect, C2MemoryUsage usage, C2Fence *fence,
1751             C2PlanarLayout *layout /* nonnull */, uint8_t **addr /* nonnull */) = 0;
1752 
1753     /**
1754      * Unmaps a section of an allocation at |addr| with |rect|. These must be parameters previously
1755      * passed to and returned by |map|; otherwise, this operation is a no-op.
1756      *
1757      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1758      *                      elements containing the starting addresses of the mapped layers
1759      * \param rect          boundaries of the mapped section
1760      * \param fence         a pointer to a fence object if an async unmapping is requested. If
1761      *                      not-null, a release fence will be stored here on success, or empty fence
1762      *                      on failure. This fence signals when the original allocation contains
1763      *                      all changes that happened to the mapped section. If null, the unmapping
1764      *                      will be synchronous.
1765      *
1766      * \retval C2_OK        the operation was successful
1767      * \retval C2_TIMED_OUT the operation timed out
1768      * \retval C2_NOT_FOUND there is no such mapped region (caller error)
1769      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1770      * \retval C2_REFUSED   no permission to unmap the section (unexpected - system)
1771      */
1772     virtual c2_status_t unmap(
1773             uint8_t **addr /* nonnull */, C2Rect rect, C2Fence *fence /* nullable */) = 0;
1774 
1775     /**
1776      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
1777      */
1778     virtual C2Allocator::id_t getAllocatorId() const = 0;
1779 
1780     /**
1781      * Returns a pointer to the allocation handle.
1782      */
1783     virtual const C2Handle *handle() const = 0;
1784 
1785     /**
1786      * Returns true if this is the same allocation as |other|.
1787      */
1788     virtual bool equals(const std::shared_ptr<const C2GraphicAllocation> &other) const = 0;
1789 
1790 protected:
1791     using _C2PlanarCapacityAspect::_C2PlanarCapacityAspect;
1792     virtual ~C2GraphicAllocation() = default;
1793 };
1794 
1795 class C2GraphicAllocation;
1796 
1797 /**
1798  * A 2D block.
1799  *
1800  * \note width()/height() is not meaningful for users of blocks; instead, crop().width() and
1801  * crop().height() is the capacity of the usable portion. Use and crop() if accessing the block
1802  * directly through its handle to represent the allotted region of the underlying allocation to this
1803  * block.
1804  */
1805 class C2Block2D : public _C2PlanarSectionAspect {
1806 public:
1807     /**
1808      * Returns the underlying handle for this allocation.
1809      *
1810      * \note that the block and its block pool has shared ownership of the handle
1811      *       and if all references to the block are released, the underlying block
1812      *       allocation may get reused even if a client keeps a clone of this handle.
1813      */
1814     const C2Handle *handle() const;
1815 
1816     /**
1817      * Returns the allocator's ID that created the underlying allocation for this block. This
1818      * provides the context for understanding the handle.
1819      */
1820     C2Allocator::id_t getAllocatorId() const;
1821 
1822 protected:
1823     class Impl;
1824     C2Block2D(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1825 
1826     friend struct _C2BlockFactory;
1827     std::shared_ptr<Impl> mImpl;
1828 };
1829 
1830 /**
1831  * Graphic view provides read or read-write access for a graphic block.
1832  *
1833  * This class is copiable.
1834  *
1835  * \note Due to the subsampling of graphic buffers, a read view must still contain a crop rectangle
1836  * to ensure subsampling is followed. This results in nearly identical interface between read and
1837  * write views, so C2GraphicView can encompass both of them.
1838  */
1839 class C2GraphicView : public _C2EditablePlanarSectionAspect {
1840 public:
1841     /**
1842      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1843      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1844      * plane. Access outside of the crop rect results in an undefined behavior.
1845      */
1846     const uint8_t *const *data() const;
1847 
1848     /**
1849      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1850      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1851      * plane. Access outside of the crop rect results in an undefined behavior.
1852      */
1853     uint8_t *const *data();
1854 
1855     /**
1856      * \return layout of the graphic block to interpret the returned data.
1857      */
1858     const C2PlanarLayout layout() const;
1859 
1860     /**
1861      * Returns a section of this view.
1862      *
1863      * \param rect    the dimension of the section. \note This is clamped to the crop of this view.
1864      *
1865      * \return a read view containing the requested section of this view
1866      */
1867     const C2GraphicView subView(const C2Rect &rect) const;
1868     C2GraphicView subView(const C2Rect &rect);
1869 
1870     /**
1871      * \return error during the creation/mapping of this view.
1872      */
1873     c2_status_t error() const;
1874 
1875 protected:
1876     class Impl;
1877     C2GraphicView(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1878     explicit C2GraphicView(c2_status_t error);
1879 
1880 private:
1881     friend struct _C2BlockFactory;
1882     std::shared_ptr<Impl> mImpl;
1883 };
1884 
1885 /**
1886  * A constant (read-only) graphic block (portion of an allocation) with an acquire fence.
1887  * Blocks are unmapped when created, and can be mapped into a read view on demand.
1888  *
1889  * This class is copiable and contains a reference to the allocation that it is based on.
1890  */
1891 class C2ConstGraphicBlock : public C2Block2D {
1892 public:
1893     /**
1894      * Maps this block into memory and returns a read view for it.
1895      *
1896      * \return a read view for this block.
1897      */
1898     C2Acquirable<const C2GraphicView> map() const;
1899 
1900     /**
1901      * Returns a section of this block.
1902      *
1903      * \param rect    the coordinates of the section. \note This is clamped to the crop rectangle of
1904      *              this block.
1905      *
1906      * \return a constant graphic block containing a portion of this block
1907      */
1908     C2ConstGraphicBlock subBlock(const C2Rect &rect) const;
1909 
1910     /**
1911      * Returns the acquire fence for this block.
1912      *
1913      * \return a fence that must be waited on before reading the block.
1914      */
fence()1915     C2Fence fence() const { return mFence; }
1916 
1917 protected:
1918     C2ConstGraphicBlock(
1919             std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section, C2Fence fence);
1920 
1921 private:
1922     friend struct _C2BlockFactory;
1923     C2Fence mFence;
1924 };
1925 
1926 /**
1927  * Graphic block is a writeable 2D block. Once written, it can be shared in whole or in part with
1928  * consumers/readers as read-only const graphic block.
1929  */
1930 class C2GraphicBlock : public C2Block2D {
1931 public:
1932     /**
1933      * Maps this block into memory and returns a write view for it.
1934      *
1935      * \return a write view for this block.
1936      */
1937     C2Acquirable<C2GraphicView> map();
1938 
1939     /**
1940      * Creates a read-only const linear block for a portion of this block; optionally protected
1941      * by an acquire fence. There are two ways to use this:
1942      *
1943      * 1) share ready block after writing data into the block. In this case no fence shall be
1944      *    supplied, and the block shall not be modified after calling this method.
1945      * 2) share block metadata before actually (finishing) writing the data into the block. In
1946      *    this case a fence must be supplied that will be triggered when the data is written.
1947      *    The block shall be modified only until firing the event for the fence.
1948      */
1949     C2ConstGraphicBlock share(const C2Rect &crop, C2Fence fence);
1950 
1951 protected:
1952     C2GraphicBlock(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1953 
1954     friend struct _C2BlockFactory;
1955 };
1956 
1957 /// @}
1958 
1959 /// \defgroup buffer_onj Buffer objects
1960 /// @{
1961 
1962 // ================================================================================================
1963 //  BUFFERS
1964 // ================================================================================================
1965 
1966 /// \todo: Do we still need this?
1967 ///
1968 // There are 2 kinds of buffers: linear or graphic. Linear buffers can contain a single block, or
1969 // a list of blocks (LINEAR_CHUNKS). Support for list of blocks is optional, and can allow consuming
1970 // data from circular buffers or scattered data sources without extra memcpy. Currently, list of
1971 // graphic blocks is not supported.
1972 
1973 class C2LinearBuffer;   // read-write buffer
1974 class C2GraphicBuffer;  // read-write buffer
1975 class C2LinearChunksBuffer;
1976 
1977 /**
1978  * C2BufferData: the main, non-meta data of a buffer. A buffer can contain either linear blocks
1979  * or graphic blocks, and can contain either a single block or multiple blocks. This is determined
1980  * by its type.
1981  */
1982 class C2BufferData {
1983 public:
1984     /**
1985      *  The type of buffer data.
1986      */
1987     enum type_t : uint32_t {
1988         INVALID,            ///< invalid buffer type. Do not use.
1989         LINEAR,             ///< the buffer contains a single linear block
1990         LINEAR_CHUNKS,      ///< the buffer contains one or more linear blocks
1991         GRAPHIC,            ///< the buffer contains a single graphic block
1992         GRAPHIC_CHUNKS,     ///< the buffer contains one of more graphic blocks
1993     };
1994     typedef type_t Type; // deprecated
1995 
1996     /**
1997      * Gets the type of this buffer (data).
1998      * \return the type of this buffer data.
1999      */
2000     type_t type() const;
2001 
2002     /**
2003      * Gets the linear blocks of this buffer.
2004      * \return a constant list of const linear blocks of this buffer.
2005      * \retval empty list if this buffer does not contain linear block(s).
2006      */
2007     const std::vector<C2ConstLinearBlock> linearBlocks() const;
2008 
2009     /**
2010      * Gets the graphic blocks of this buffer.
2011      * \return a constant list of const graphic blocks of this buffer.
2012      * \retval empty list if this buffer does not contain graphic block(s).
2013      */
2014     const std::vector<C2ConstGraphicBlock> graphicBlocks() const;
2015 
2016 private:
2017     class Impl;
2018     std::shared_ptr<Impl> mImpl;
2019 
2020 protected:
2021     // no public constructor
2022     explicit C2BufferData(const std::vector<C2ConstLinearBlock> &blocks);
2023     explicit C2BufferData(const std::vector<C2ConstGraphicBlock> &blocks);
2024 };
2025 
2026 /**
2027  * C2Buffer: buffer base class. These are always used as shared_ptrs. Though the underlying buffer
2028  * objects (native buffers, ion buffers, or dmabufs) are reference-counted by the system,
2029  * C2Buffers hold only a single reference.
2030  *
2031  * These objects cannot be used on the stack.
2032  */
2033 class C2Buffer {
2034 public:
2035     /**
2036      * Gets the buffer's data.
2037      *
2038      * \return the buffer's data.
2039      */
2040     const C2BufferData data() const;
2041 
2042     /**
2043      * These will still work if used in onDeathNotify.
2044      */
2045 #if 0
2046     inline std::shared_ptr<C2LinearBuffer> asLinearBuffer() const {
2047         return mType == LINEAR ? std::shared_ptr::reinterpret_cast<C2LinearBuffer>(this) : nullptr;
2048     }
2049 
2050     inline std::shared_ptr<C2GraphicBuffer> asGraphicBuffer() const {
2051         return mType == GRAPHIC ? std::shared_ptr::reinterpret_cast<C2GraphicBuffer>(this) : nullptr;
2052     }
2053 
2054     inline std::shared_ptr<C2CircularBuffer> asCircularBuffer() const {
2055         return mType == CIRCULAR ? std::shared_ptr::reinterpret_cast<C2CircularBuffer>(this) : nullptr;
2056     }
2057 #endif
2058 
2059     ///@name Pre-destroy notification handling
2060     ///@{
2061 
2062     /**
2063      * Register for notification just prior to the destruction of this object.
2064      */
2065     typedef void (*OnDestroyNotify) (const C2Buffer *buf, void *arg);
2066 
2067     /**
2068      * Registers for a pre-destroy notification. This is called just prior to the destruction of
2069      * this buffer (when this buffer is no longer valid.)
2070      *
2071      * \param onDestroyNotify   the notification callback
2072      * \param arg               an arbitrary parameter passed to the callback
2073      *
2074      * \retval C2_OK        the registration was successful.
2075      * \retval C2_DUPLICATE a notification was already registered for this callback and argument
2076      * \retval C2_NO_MEMORY not enough memory to register for this callback
2077      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2078      */
2079     c2_status_t registerOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2080 
2081     /**
2082      * Unregisters a previously registered pre-destroy notification.
2083      *
2084      * \param onDestroyNotify   the notification callback
2085      * \param arg               an arbitrary parameter passed to the callback
2086      *
2087      * \retval C2_OK        the unregistration was successful.
2088      * \retval C2_NOT_FOUND the notification was not found
2089      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2090      */
2091     c2_status_t unregisterOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2092 
2093     ///@}
2094 
2095     virtual ~C2Buffer() = default;
2096 
2097     ///@name Buffer-specific arbitrary metadata handling
2098     ///@{
2099 
2100     /**
2101      * Gets the list of metadata associated with this buffer.
2102      *
2103      * \return a constant list of info objects associated with this buffer.
2104      */
2105     const std::vector<std::shared_ptr<const C2Info>> info() const;
2106 
2107     /**
2108      * Attaches (or updates) an (existing) metadata for this buffer.
2109      * If the metadata is stream specific, the stream information will be reset.
2110      *
2111      * \param info Metadata to update
2112      *
2113      * \retval C2_OK        the metadata was successfully attached/updated.
2114      * \retval C2_NO_MEMORY not enough memory to attach the metadata (this return value is not
2115      *                      used if the same kind of metadata is already attached to the buffer).
2116      */
2117     c2_status_t setInfo(const std::shared_ptr<C2Info> &info);
2118 
2119     /**
2120      * Checks if there is a certain type of metadata attached to this buffer.
2121      *
2122      * \param index the parameter type of the metadata
2123      *
2124      * \return true iff there is a metadata with the parameter type attached to this buffer.
2125      */
2126     bool hasInfo(C2Param::Type index) const;
2127 
2128     /**
2129      * Checks if there is a certain type of metadata attached to this buffer, and returns a
2130      * shared pointer to it if there is. Returns an empty shared pointer object (nullptr) if there
2131      * is not.
2132      *
2133      * \param index the parameter type of the metadata
2134      *
2135      * \return shared pointer to the metadata.
2136      */
2137     std::shared_ptr<const C2Info> getInfo(C2Param::Type index) const;
2138 
2139     /**
2140      * Removes a metadata from the buffer.
2141      */
2142     std::shared_ptr<C2Info> removeInfo(C2Param::Type index);
2143     ///@}
2144 
2145     /**
2146      * Creates a buffer containing a single linear block.
2147      *
2148      * \param block the content of the buffer.
2149      *
2150      * \return shared pointer to the created buffer.
2151      */
2152     static std::shared_ptr<C2Buffer> CreateLinearBuffer(const C2ConstLinearBlock &block);
2153 
2154     /**
2155      * Creates a buffer containing a single graphic block.
2156      *
2157      * \param block the content of the buffer.
2158      *
2159      * \return shared pointer to the created buffer.
2160      */
2161     static std::shared_ptr<C2Buffer> CreateGraphicBuffer(const C2ConstGraphicBlock &block);
2162 
2163 
2164 
2165 protected:
2166     // no public constructor
2167     explicit C2Buffer(const std::vector<C2ConstLinearBlock> &blocks);
2168     explicit C2Buffer(const std::vector<C2ConstGraphicBlock> &blocks);
2169 
2170 private:
2171     class Impl;
2172     std::shared_ptr<Impl> mImpl;
2173 //    Type _mType;
2174 };
2175 
2176 /**
2177  * An extension of C2Info objects that can contain arbitrary buffer data.
2178  *
2179  * \note This object is not describable and contains opaque data.
2180  */
2181 class C2InfoBuffer {
2182 public:
2183     /**
2184      * Gets the index of this info object.
2185      *
2186      * \return the parameter index.
2187      */
2188     const C2Param::Index index() const;
2189 
2190     /**
2191      * Gets the buffer's data.
2192      *
2193      * \return the buffer's data.
2194      */
2195     const C2BufferData data() const;
2196 };
2197 
2198 /// @}
2199 
2200 /// \cond INTERNAL
2201 
2202 /// \todo These are no longer used
2203 
2204 /// \addtogroup linear
2205 /// @{
2206 
2207 /** \deprecated */
2208 class C2LinearBuffer
2209     : public C2Buffer, public _C2LinearRangeAspect,
2210       public std::enable_shared_from_this<C2LinearBuffer> {
2211 public:
2212     /** \todo what is this? */
2213     const C2Handle *handle() const;
2214 
2215 protected:
2216     inline C2LinearBuffer(const C2ConstLinearBlock &block);
2217 
2218 private:
2219     class Impl;
2220     Impl *mImpl;
2221 };
2222 
2223 class C2ReadCursor;
2224 
2225 class C2WriteCursor {
2226 public:
2227     uint32_t remaining() const; // remaining data to be read
2228     void commit(); // commits the current position. discard data before current position
2229     void reset() const;  // resets position to the last committed position
2230     // slices off at most |size| bytes, and moves cursor ahead by the number of bytes
2231     // sliced off.
2232     C2ReadCursor slice(uint32_t size) const;
2233     // slices off at most |size| bytes, and moves cursor ahead by the number of bytes
2234     // sliced off.
2235     C2WriteCursor reserve(uint32_t size);
2236     // bool read(T&);
2237     // bool write(T&);
2238     C2Fence waitForSpace(uint32_t size);
2239 };
2240 
2241 /// @}
2242 
2243 /// \addtogroup graphic
2244 /// @{
2245 
2246 struct C2ColorSpace {
2247 //public:
2248     enum Standard {
2249         BT601,
2250         BT709,
2251         BT2020,
2252         // TODO
2253     };
2254 
2255     enum Range {
2256         LIMITED,
2257         FULL,
2258         // TODO
2259     };
2260 
2261     enum TransferFunction {
2262         BT709Transfer,
2263         BT2020Transfer,
2264         HybridLogGamma2,
2265         HybridLogGamma4,
2266         // TODO
2267     };
2268 };
2269 
2270 /** \deprecated */
2271 class C2GraphicBuffer : public C2Buffer {
2272 public:
2273     // constant attributes
width()2274     inline uint32_t width() const  { return mWidth; }
height()2275     inline uint32_t height() const { return mHeight; }
format()2276     inline uint32_t format() const { return mFormat; }
usage()2277     inline const C2MemoryUsage usage() const { return mUsage; }
2278 
2279     // modifiable attributes
2280 
2281 
2282     virtual const C2ColorSpace colorSpace() const = 0;
2283     // best effort
2284     virtual void setColorSpace_be(const C2ColorSpace &colorSpace) = 0;
2285     virtual bool setColorSpace(const C2ColorSpace &colorSpace) = 0;
2286 
2287     const C2Handle *handle() const;
2288 
2289 protected:
2290     uint32_t mWidth;
2291     uint32_t mHeight;
2292     uint32_t mFormat;
2293     C2MemoryUsage mUsage;
2294 
2295     class Impl;
2296     Impl *mImpl;
2297 };
2298 
2299 /// @}
2300 
2301 /// \endcond
2302 
2303 /// @}
2304 
2305 #endif  // C2BUFFER_H_
2306