1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 // 18 // Definitions of resource data structures. 19 // 20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H 21 #define _LIBS_UTILS_RESOURCE_TYPES_H 22 23 #include <androidfw/Asset.h> 24 #include <androidfw/LocaleData.h> 25 #include <utils/Errors.h> 26 #include <utils/String16.h> 27 #include <utils/Vector.h> 28 #include <utils/KeyedVector.h> 29 30 #include <utils/threads.h> 31 32 #include <stdint.h> 33 #include <sys/types.h> 34 35 #include <android/configuration.h> 36 37 #include <memory> 38 39 namespace android { 40 41 constexpr const static uint32_t kIdmapMagic = 0x504D4449u; 42 constexpr const static uint32_t kIdmapCurrentVersion = 0x00000001u; 43 44 /** 45 * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of 46 * casting on raw data and expect char16_t to be exactly 16 bits. 47 */ 48 #if __cplusplus >= 201103L 49 struct __assertChar16Size { 50 static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits"); 51 static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned"); 52 }; 53 #endif 54 55 /** ******************************************************************** 56 * PNG Extensions 57 * 58 * New private chunks that may be placed in PNG images. 59 * 60 *********************************************************************** */ 61 62 /** 63 * This chunk specifies how to split an image into segments for 64 * scaling. 65 * 66 * There are J horizontal and K vertical segments. These segments divide 67 * the image into J*K regions as follows (where J=4 and K=3): 68 * 69 * F0 S0 F1 S1 70 * +-----+----+------+-------+ 71 * S2| 0 | 1 | 2 | 3 | 72 * +-----+----+------+-------+ 73 * | | | | | 74 * | | | | | 75 * F2| 4 | 5 | 6 | 7 | 76 * | | | | | 77 * | | | | | 78 * +-----+----+------+-------+ 79 * S3| 8 | 9 | 10 | 11 | 80 * +-----+----+------+-------+ 81 * 82 * Each horizontal and vertical segment is considered to by either 83 * stretchable (marked by the Sx labels) or fixed (marked by the Fy 84 * labels), in the horizontal or vertical axis, respectively. In the 85 * above example, the first is horizontal segment (F0) is fixed, the 86 * next is stretchable and then they continue to alternate. Note that 87 * the segment list for each axis can begin or end with a stretchable 88 * or fixed segment. 89 * 90 * The relative sizes of the stretchy segments indicates the relative 91 * amount of stretchiness of the regions bordered by the segments. For 92 * example, regions 3, 7 and 11 above will take up more horizontal space 93 * than regions 1, 5 and 9 since the horizontal segment associated with 94 * the first set of regions is larger than the other set of regions. The 95 * ratios of the amount of horizontal (or vertical) space taken by any 96 * two stretchable slices is exactly the ratio of their corresponding 97 * segment lengths. 98 * 99 * xDivs and yDivs are arrays of horizontal and vertical pixel 100 * indices. The first pair of Divs (in either array) indicate the 101 * starting and ending points of the first stretchable segment in that 102 * axis. The next pair specifies the next stretchable segment, etc. So 103 * in the above example xDiv[0] and xDiv[1] specify the horizontal 104 * coordinates for the regions labeled 1, 5 and 9. xDiv[2] and 105 * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that 106 * the leftmost slices always start at x=0 and the rightmost slices 107 * always end at the end of the image. So, for example, the regions 0, 108 * 4 and 8 (which are fixed along the X axis) start at x value 0 and 109 * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at 110 * xDiv[2]. 111 * 112 * The colors array contains hints for each of the regions. They are 113 * ordered according left-to-right and top-to-bottom as indicated above. 114 * For each segment that is a solid color the array entry will contain 115 * that color value; otherwise it will contain NO_COLOR. Segments that 116 * are completely transparent will always have the value TRANSPARENT_COLOR. 117 * 118 * The PNG chunk type is "npTc". 119 */ 120 struct alignas(uintptr_t) Res_png_9patch 121 { Res_png_9patchRes_png_9patch122 Res_png_9patch() : wasDeserialized(false), xDivsOffset(0), 123 yDivsOffset(0), colorsOffset(0) { } 124 125 int8_t wasDeserialized; 126 uint8_t numXDivs; 127 uint8_t numYDivs; 128 uint8_t numColors; 129 130 // The offset (from the start of this structure) to the xDivs & yDivs 131 // array for this 9patch. To get a pointer to this array, call 132 // getXDivs or getYDivs. Note that the serialized form for 9patches places 133 // the xDivs, yDivs and colors arrays immediately after the location 134 // of the Res_png_9patch struct. 135 uint32_t xDivsOffset; 136 uint32_t yDivsOffset; 137 138 int32_t paddingLeft, paddingRight; 139 int32_t paddingTop, paddingBottom; 140 141 enum { 142 // The 9 patch segment is not a solid color. 143 NO_COLOR = 0x00000001, 144 145 // The 9 patch segment is completely transparent. 146 TRANSPARENT_COLOR = 0x00000000 147 }; 148 149 // The offset (from the start of this structure) to the colors array 150 // for this 9patch. 151 uint32_t colorsOffset; 152 153 // Convert data from device representation to PNG file representation. 154 void deviceToFile(); 155 // Convert data from PNG file representation to device representation. 156 void fileToDevice(); 157 158 // Serialize/Marshall the patch data into a newly malloc-ed block. 159 static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 160 const int32_t* yDivs, const uint32_t* colors); 161 // Serialize/Marshall the patch data into |outData|. 162 static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs, 163 const int32_t* yDivs, const uint32_t* colors, void* outData); 164 // Deserialize/Unmarshall the patch data 165 static Res_png_9patch* deserialize(void* data); 166 // Compute the size of the serialized data structure 167 size_t serializedSize() const; 168 169 // These tell where the next section of a patch starts. 170 // For example, the first patch includes the pixels from 171 // 0 to xDivs[0]-1 and the second patch includes the pixels 172 // from xDivs[0] to xDivs[1]-1. getXDivsRes_png_9patch173 inline int32_t* getXDivs() const { 174 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset); 175 } getYDivsRes_png_9patch176 inline int32_t* getYDivs() const { 177 return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset); 178 } getColorsRes_png_9patch179 inline uint32_t* getColors() const { 180 return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset); 181 } 182 183 } __attribute__((packed)); 184 185 /** ******************************************************************** 186 * Base Types 187 * 188 * These are standard types that are shared between multiple specific 189 * resource types. 190 * 191 *********************************************************************** */ 192 193 /** 194 * Header that appears at the front of every data chunk in a resource. 195 */ 196 struct ResChunk_header 197 { 198 // Type identifier for this chunk. The meaning of this value depends 199 // on the containing chunk. 200 uint16_t type; 201 202 // Size of the chunk header (in bytes). Adding this value to 203 // the address of the chunk allows you to find its associated data 204 // (if any). 205 uint16_t headerSize; 206 207 // Total size of this chunk (in bytes). This is the chunkSize plus 208 // the size of any data associated with the chunk. Adding this value 209 // to the chunk allows you to completely skip its contents (including 210 // any child chunks). If this value is the same as chunkSize, there is 211 // no data associated with the chunk. 212 uint32_t size; 213 }; 214 215 enum { 216 RES_NULL_TYPE = 0x0000, 217 RES_STRING_POOL_TYPE = 0x0001, 218 RES_TABLE_TYPE = 0x0002, 219 RES_XML_TYPE = 0x0003, 220 221 // Chunk types in RES_XML_TYPE 222 RES_XML_FIRST_CHUNK_TYPE = 0x0100, 223 RES_XML_START_NAMESPACE_TYPE= 0x0100, 224 RES_XML_END_NAMESPACE_TYPE = 0x0101, 225 RES_XML_START_ELEMENT_TYPE = 0x0102, 226 RES_XML_END_ELEMENT_TYPE = 0x0103, 227 RES_XML_CDATA_TYPE = 0x0104, 228 RES_XML_LAST_CHUNK_TYPE = 0x017f, 229 // This contains a uint32_t array mapping strings in the string 230 // pool back to resource identifiers. It is optional. 231 RES_XML_RESOURCE_MAP_TYPE = 0x0180, 232 233 // Chunk types in RES_TABLE_TYPE 234 RES_TABLE_PACKAGE_TYPE = 0x0200, 235 RES_TABLE_TYPE_TYPE = 0x0201, 236 RES_TABLE_TYPE_SPEC_TYPE = 0x0202, 237 RES_TABLE_LIBRARY_TYPE = 0x0203, 238 RES_TABLE_OVERLAYABLE_TYPE = 0x0204, 239 RES_TABLE_OVERLAYABLE_POLICY_TYPE = 0x0205, 240 }; 241 242 /** 243 * Macros for building/splitting resource identifiers. 244 */ 245 #define Res_VALIDID(resid) (resid != 0) 246 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0) 247 #define Res_MAKEID(package, type, entry) \ 248 (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF)) 249 #define Res_GETPACKAGE(id) ((id>>24)-1) 250 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1) 251 #define Res_GETENTRY(id) (id&0xFFFF) 252 253 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0) 254 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF)) 255 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF)) 256 257 static const size_t Res_MAXPACKAGE = 255; 258 static const size_t Res_MAXTYPE = 255; 259 260 /** 261 * Representation of a value in a resource, supplying type 262 * information. 263 */ 264 struct Res_value 265 { 266 // Number of bytes in this structure. 267 uint16_t size; 268 269 // Always set to 0. 270 uint8_t res0; 271 272 // Type of the data value. 273 enum : uint8_t { 274 // The 'data' is either 0 or 1, specifying this resource is either 275 // undefined or empty, respectively. 276 TYPE_NULL = 0x00, 277 // The 'data' holds a ResTable_ref, a reference to another resource 278 // table entry. 279 TYPE_REFERENCE = 0x01, 280 // The 'data' holds an attribute resource identifier. 281 TYPE_ATTRIBUTE = 0x02, 282 // The 'data' holds an index into the containing resource table's 283 // global value string pool. 284 TYPE_STRING = 0x03, 285 // The 'data' holds a single-precision floating point number. 286 TYPE_FLOAT = 0x04, 287 // The 'data' holds a complex number encoding a dimension value, 288 // such as "100in". 289 TYPE_DIMENSION = 0x05, 290 // The 'data' holds a complex number encoding a fraction of a 291 // container. 292 TYPE_FRACTION = 0x06, 293 // The 'data' holds a dynamic ResTable_ref, which needs to be 294 // resolved before it can be used like a TYPE_REFERENCE. 295 TYPE_DYNAMIC_REFERENCE = 0x07, 296 // The 'data' holds an attribute resource identifier, which needs to be resolved 297 // before it can be used like a TYPE_ATTRIBUTE. 298 TYPE_DYNAMIC_ATTRIBUTE = 0x08, 299 300 // Beginning of integer flavors... 301 TYPE_FIRST_INT = 0x10, 302 303 // The 'data' is a raw integer value of the form n..n. 304 TYPE_INT_DEC = 0x10, 305 // The 'data' is a raw integer value of the form 0xn..n. 306 TYPE_INT_HEX = 0x11, 307 // The 'data' is either 0 or 1, for input "false" or "true" respectively. 308 TYPE_INT_BOOLEAN = 0x12, 309 310 // Beginning of color integer flavors... 311 TYPE_FIRST_COLOR_INT = 0x1c, 312 313 // The 'data' is a raw integer value of the form #aarrggbb. 314 TYPE_INT_COLOR_ARGB8 = 0x1c, 315 // The 'data' is a raw integer value of the form #rrggbb. 316 TYPE_INT_COLOR_RGB8 = 0x1d, 317 // The 'data' is a raw integer value of the form #argb. 318 TYPE_INT_COLOR_ARGB4 = 0x1e, 319 // The 'data' is a raw integer value of the form #rgb. 320 TYPE_INT_COLOR_RGB4 = 0x1f, 321 322 // ...end of integer flavors. 323 TYPE_LAST_COLOR_INT = 0x1f, 324 325 // ...end of integer flavors. 326 TYPE_LAST_INT = 0x1f 327 }; 328 uint8_t dataType; 329 330 // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION) 331 enum { 332 // Where the unit type information is. This gives us 16 possible 333 // types, as defined below. 334 COMPLEX_UNIT_SHIFT = 0, 335 COMPLEX_UNIT_MASK = 0xf, 336 337 // TYPE_DIMENSION: Value is raw pixels. 338 COMPLEX_UNIT_PX = 0, 339 // TYPE_DIMENSION: Value is Device Independent Pixels. 340 COMPLEX_UNIT_DIP = 1, 341 // TYPE_DIMENSION: Value is a Scaled device independent Pixels. 342 COMPLEX_UNIT_SP = 2, 343 // TYPE_DIMENSION: Value is in points. 344 COMPLEX_UNIT_PT = 3, 345 // TYPE_DIMENSION: Value is in inches. 346 COMPLEX_UNIT_IN = 4, 347 // TYPE_DIMENSION: Value is in millimeters. 348 COMPLEX_UNIT_MM = 5, 349 350 // TYPE_FRACTION: A basic fraction of the overall size. 351 COMPLEX_UNIT_FRACTION = 0, 352 // TYPE_FRACTION: A fraction of the parent size. 353 COMPLEX_UNIT_FRACTION_PARENT = 1, 354 355 // Where the radix information is, telling where the decimal place 356 // appears in the mantissa. This give us 4 possible fixed point 357 // representations as defined below. 358 COMPLEX_RADIX_SHIFT = 4, 359 COMPLEX_RADIX_MASK = 0x3, 360 361 // The mantissa is an integral number -- i.e., 0xnnnnnn.0 362 COMPLEX_RADIX_23p0 = 0, 363 // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn 364 COMPLEX_RADIX_16p7 = 1, 365 // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn 366 COMPLEX_RADIX_8p15 = 2, 367 // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn 368 COMPLEX_RADIX_0p23 = 3, 369 370 // Where the actual value is. This gives us 23 bits of 371 // precision. The top bit is the sign. 372 COMPLEX_MANTISSA_SHIFT = 8, 373 COMPLEX_MANTISSA_MASK = 0xffffff 374 }; 375 376 // Possible data values for TYPE_NULL. 377 enum { 378 // The value is not defined. 379 DATA_NULL_UNDEFINED = 0, 380 // The value is explicitly defined as empty. 381 DATA_NULL_EMPTY = 1 382 }; 383 384 // The data for this item, as interpreted according to dataType. 385 typedef uint32_t data_type; 386 data_type data; 387 388 void copyFrom_dtoh(const Res_value& src); 389 }; 390 391 /** 392 * This is a reference to a unique entry (a ResTable_entry structure) 393 * in a resource table. The value is structured as: 0xpptteeee, 394 * where pp is the package index, tt is the type index in that 395 * package, and eeee is the entry index in that type. The package 396 * and type values start at 1 for the first item, to help catch cases 397 * where they have not been supplied. 398 */ 399 struct ResTable_ref 400 { 401 uint32_t ident; 402 }; 403 404 /** 405 * Reference to a string in a string pool. 406 */ 407 struct ResStringPool_ref 408 { 409 // Index into the string pool table (uint32_t-offset from the indices 410 // immediately after ResStringPool_header) at which to find the location 411 // of the string data in the pool. 412 uint32_t index; 413 }; 414 415 /** ******************************************************************** 416 * String Pool 417 * 418 * A set of strings that can be references by others through a 419 * ResStringPool_ref. 420 * 421 *********************************************************************** */ 422 423 /** 424 * Definition for a pool of strings. The data of this chunk is an 425 * array of uint32_t providing indices into the pool, relative to 426 * stringsStart. At stringsStart are all of the UTF-16 strings 427 * concatenated together; each starts with a uint16_t of the string's 428 * length and each ends with a 0x0000 terminator. If a string is > 429 * 32767 characters, the high bit of the length is set meaning to take 430 * those 15 bits as a high word and it will be followed by another 431 * uint16_t containing the low word. 432 * 433 * If styleCount is not zero, then immediately following the array of 434 * uint32_t indices into the string table is another array of indices 435 * into a style table starting at stylesStart. Each entry in the 436 * style table is an array of ResStringPool_span structures. 437 */ 438 struct ResStringPool_header 439 { 440 struct ResChunk_header header; 441 442 // Number of strings in this pool (number of uint32_t indices that follow 443 // in the data). 444 uint32_t stringCount; 445 446 // Number of style span arrays in the pool (number of uint32_t indices 447 // follow the string indices). 448 uint32_t styleCount; 449 450 // Flags. 451 enum { 452 // If set, the string index is sorted by the string values (based 453 // on strcmp16()). 454 SORTED_FLAG = 1<<0, 455 456 // String pool is encoded in UTF-8 457 UTF8_FLAG = 1<<8 458 }; 459 uint32_t flags; 460 461 // Index from header of the string data. 462 uint32_t stringsStart; 463 464 // Index from header of the style data. 465 uint32_t stylesStart; 466 }; 467 468 /** 469 * This structure defines a span of style information associated with 470 * a string in the pool. 471 */ 472 struct ResStringPool_span 473 { 474 enum { 475 END = 0xFFFFFFFF 476 }; 477 478 // This is the name of the span -- that is, the name of the XML 479 // tag that defined it. The special value END (0xFFFFFFFF) indicates 480 // the end of an array of spans. 481 ResStringPool_ref name; 482 483 // The range of characters in the string that this span applies to. 484 uint32_t firstChar, lastChar; 485 }; 486 487 /** 488 * Convenience class for accessing data in a ResStringPool resource. 489 */ 490 class ResStringPool 491 { 492 public: 493 ResStringPool(); 494 ResStringPool(const void* data, size_t size, bool copyData=false); 495 ~ResStringPool(); 496 497 void setToEmpty(); 498 status_t setTo(const void* data, size_t size, bool copyData=false); 499 500 status_t getError() const; 501 502 void uninit(); 503 504 // Return string entry as UTF16; if the pool is UTF8, the string will 505 // be converted before returning. stringAt(const ResStringPool_ref & ref,size_t * outLen)506 inline const char16_t* stringAt(const ResStringPool_ref& ref, size_t* outLen) const { 507 return stringAt(ref.index, outLen); 508 } 509 const char16_t* stringAt(size_t idx, size_t* outLen) const; 510 511 // Note: returns null if the string pool is not UTF8. 512 const char* string8At(size_t idx, size_t* outLen) const; 513 514 // Return string whether the pool is UTF8 or UTF16. Does not allow you 515 // to distinguish null. 516 const String8 string8ObjectAt(size_t idx) const; 517 518 const ResStringPool_span* styleAt(const ResStringPool_ref& ref) const; 519 const ResStringPool_span* styleAt(size_t idx) const; 520 521 ssize_t indexOfString(const char16_t* str, size_t strLen) const; 522 523 size_t size() const; 524 size_t styleCount() const; 525 size_t bytes() const; 526 527 bool isSorted() const; 528 bool isUTF8() const; 529 530 private: 531 status_t mError; 532 void* mOwnedData; 533 const ResStringPool_header* mHeader; 534 size_t mSize; 535 mutable Mutex mDecodeLock; 536 const uint32_t* mEntries; 537 const uint32_t* mEntryStyles; 538 const void* mStrings; 539 char16_t mutable** mCache; 540 uint32_t mStringPoolSize; // number of uint16_t 541 const uint32_t* mStyles; 542 uint32_t mStylePoolSize; // number of uint32_t 543 544 const char* stringDecodeAt(size_t idx, const uint8_t* str, const size_t encLen, 545 size_t* outLen) const; 546 }; 547 548 /** 549 * Wrapper class that allows the caller to retrieve a string from 550 * a string pool without knowing which string pool to look. 551 */ 552 class StringPoolRef { 553 public: 554 StringPoolRef() = default; 555 StringPoolRef(const ResStringPool* pool, uint32_t index); 556 557 const char* string8(size_t* outLen) const; 558 const char16_t* string16(size_t* outLen) const; 559 560 private: 561 const ResStringPool* mPool = nullptr; 562 uint32_t mIndex = 0u; 563 }; 564 565 /** ******************************************************************** 566 * XML Tree 567 * 568 * Binary representation of an XML document. This is designed to 569 * express everything in an XML document, in a form that is much 570 * easier to parse on the device. 571 * 572 *********************************************************************** */ 573 574 /** 575 * XML tree header. This appears at the front of an XML tree, 576 * describing its content. It is followed by a flat array of 577 * ResXMLTree_node structures; the hierarchy of the XML document 578 * is described by the occurrance of RES_XML_START_ELEMENT_TYPE 579 * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array. 580 */ 581 struct ResXMLTree_header 582 { 583 struct ResChunk_header header; 584 }; 585 586 /** 587 * Basic XML tree node. A single item in the XML document. Extended info 588 * about the node can be found after header.headerSize. 589 */ 590 struct ResXMLTree_node 591 { 592 struct ResChunk_header header; 593 594 // Line number in original source file at which this element appeared. 595 uint32_t lineNumber; 596 597 // Optional XML comment that was associated with this element; -1 if none. 598 struct ResStringPool_ref comment; 599 }; 600 601 /** 602 * Extended XML tree node for CDATA tags -- includes the CDATA string. 603 * Appears header.headerSize bytes after a ResXMLTree_node. 604 */ 605 struct ResXMLTree_cdataExt 606 { 607 // The raw CDATA character data. 608 struct ResStringPool_ref data; 609 610 // The typed value of the character data if this is a CDATA node. 611 struct Res_value typedData; 612 }; 613 614 /** 615 * Extended XML tree node for namespace start/end nodes. 616 * Appears header.headerSize bytes after a ResXMLTree_node. 617 */ 618 struct ResXMLTree_namespaceExt 619 { 620 // The prefix of the namespace. 621 struct ResStringPool_ref prefix; 622 623 // The URI of the namespace. 624 struct ResStringPool_ref uri; 625 }; 626 627 /** 628 * Extended XML tree node for element start/end nodes. 629 * Appears header.headerSize bytes after a ResXMLTree_node. 630 */ 631 struct ResXMLTree_endElementExt 632 { 633 // String of the full namespace of this element. 634 struct ResStringPool_ref ns; 635 636 // String name of this node if it is an ELEMENT; the raw 637 // character data if this is a CDATA node. 638 struct ResStringPool_ref name; 639 }; 640 641 /** 642 * Extended XML tree node for start tags -- includes attribute 643 * information. 644 * Appears header.headerSize bytes after a ResXMLTree_node. 645 */ 646 struct ResXMLTree_attrExt 647 { 648 // String of the full namespace of this element. 649 struct ResStringPool_ref ns; 650 651 // String name of this node if it is an ELEMENT; the raw 652 // character data if this is a CDATA node. 653 struct ResStringPool_ref name; 654 655 // Byte offset from the start of this structure where the attributes start. 656 uint16_t attributeStart; 657 658 // Size of the ResXMLTree_attribute structures that follow. 659 uint16_t attributeSize; 660 661 // Number of attributes associated with an ELEMENT. These are 662 // available as an array of ResXMLTree_attribute structures 663 // immediately following this node. 664 uint16_t attributeCount; 665 666 // Index (1-based) of the "id" attribute. 0 if none. 667 uint16_t idIndex; 668 669 // Index (1-based) of the "class" attribute. 0 if none. 670 uint16_t classIndex; 671 672 // Index (1-based) of the "style" attribute. 0 if none. 673 uint16_t styleIndex; 674 }; 675 676 struct ResXMLTree_attribute 677 { 678 // Namespace of this attribute. 679 struct ResStringPool_ref ns; 680 681 // Name of this attribute. 682 struct ResStringPool_ref name; 683 684 // The original raw string value of this attribute. 685 struct ResStringPool_ref rawValue; 686 687 // Processesd typed value of this attribute. 688 struct Res_value typedValue; 689 }; 690 691 class ResXMLTree; 692 693 class ResXMLParser 694 { 695 public: 696 explicit ResXMLParser(const ResXMLTree& tree); 697 698 enum event_code_t { 699 BAD_DOCUMENT = -1, 700 START_DOCUMENT = 0, 701 END_DOCUMENT = 1, 702 703 FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE, 704 705 START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE, 706 END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE, 707 START_TAG = RES_XML_START_ELEMENT_TYPE, 708 END_TAG = RES_XML_END_ELEMENT_TYPE, 709 TEXT = RES_XML_CDATA_TYPE 710 }; 711 712 struct ResXMLPosition 713 { 714 event_code_t eventCode; 715 const ResXMLTree_node* curNode; 716 const void* curExt; 717 }; 718 719 void restart(); 720 721 const ResStringPool& getStrings() const; 722 723 event_code_t getEventType() const; 724 // Note, unlike XmlPullParser, the first call to next() will return 725 // START_TAG of the first element. 726 event_code_t next(); 727 728 // These are available for all nodes: 729 int32_t getCommentID() const; 730 const char16_t* getComment(size_t* outLen) const; 731 uint32_t getLineNumber() const; 732 733 // This is available for TEXT: 734 int32_t getTextID() const; 735 const char16_t* getText(size_t* outLen) const; 736 ssize_t getTextValue(Res_value* outValue) const; 737 738 // These are available for START_NAMESPACE and END_NAMESPACE: 739 int32_t getNamespacePrefixID() const; 740 const char16_t* getNamespacePrefix(size_t* outLen) const; 741 int32_t getNamespaceUriID() const; 742 const char16_t* getNamespaceUri(size_t* outLen) const; 743 744 // These are available for START_TAG and END_TAG: 745 int32_t getElementNamespaceID() const; 746 const char16_t* getElementNamespace(size_t* outLen) const; 747 int32_t getElementNameID() const; 748 const char16_t* getElementName(size_t* outLen) const; 749 750 // Remaining methods are for retrieving information about attributes 751 // associated with a START_TAG: 752 753 size_t getAttributeCount() const; 754 755 // Returns -1 if no namespace, -2 if idx out of range. 756 int32_t getAttributeNamespaceID(size_t idx) const; 757 const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const; 758 759 int32_t getAttributeNameID(size_t idx) const; 760 const char16_t* getAttributeName(size_t idx, size_t* outLen) const; 761 uint32_t getAttributeNameResID(size_t idx) const; 762 763 // These will work only if the underlying string pool is UTF-8. 764 const char* getAttributeNamespace8(size_t idx, size_t* outLen) const; 765 const char* getAttributeName8(size_t idx, size_t* outLen) const; 766 767 int32_t getAttributeValueStringID(size_t idx) const; 768 const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const; 769 770 int32_t getAttributeDataType(size_t idx) const; 771 int32_t getAttributeData(size_t idx) const; 772 ssize_t getAttributeValue(size_t idx, Res_value* outValue) const; 773 774 ssize_t indexOfAttribute(const char* ns, const char* attr) const; 775 ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen, 776 const char16_t* attr, size_t attrLen) const; 777 778 ssize_t indexOfID() const; 779 ssize_t indexOfClass() const; 780 ssize_t indexOfStyle() const; 781 782 void getPosition(ResXMLPosition* pos) const; 783 void setPosition(const ResXMLPosition& pos); 784 785 void setSourceResourceId(const uint32_t resId); 786 uint32_t getSourceResourceId() const; 787 788 private: 789 friend class ResXMLTree; 790 791 event_code_t nextNode(); 792 793 const ResXMLTree& mTree; 794 event_code_t mEventCode; 795 const ResXMLTree_node* mCurNode; 796 const void* mCurExt; 797 uint32_t mSourceResourceId; 798 }; 799 800 class DynamicRefTable; 801 802 /** 803 * Convenience class for accessing data in a ResXMLTree resource. 804 */ 805 class ResXMLTree : public ResXMLParser 806 { 807 public: 808 /** 809 * Creates a ResXMLTree with the specified DynamicRefTable for run-time package id translation. 810 * The tree stores a clone of the specified DynamicRefTable, so any changes to the original 811 * DynamicRefTable will not affect this tree after instantiation. 812 **/ 813 explicit ResXMLTree(const DynamicRefTable* dynamicRefTable); 814 ResXMLTree(); 815 ~ResXMLTree(); 816 817 status_t setTo(const void* data, size_t size, bool copyData=false); 818 819 status_t getError() const; 820 821 void uninit(); 822 823 private: 824 friend class ResXMLParser; 825 826 status_t validateNode(const ResXMLTree_node* node) const; 827 828 std::unique_ptr<const DynamicRefTable> mDynamicRefTable; 829 830 status_t mError; 831 void* mOwnedData; 832 const ResXMLTree_header* mHeader; 833 size_t mSize; 834 const uint8_t* mDataEnd; 835 ResStringPool mStrings; 836 const uint32_t* mResIds; 837 size_t mNumResIds; 838 const ResXMLTree_node* mRootNode; 839 const void* mRootExt; 840 event_code_t mRootCode; 841 }; 842 843 /** ******************************************************************** 844 * RESOURCE TABLE 845 * 846 *********************************************************************** */ 847 848 /** 849 * Header for a resource table. Its data contains a series of 850 * additional chunks: 851 * * A ResStringPool_header containing all table values. This string pool 852 * contains all of the string values in the entire resource table (not 853 * the names of entries or type identifiers however). 854 * * One or more ResTable_package chunks. 855 * 856 * Specific entries within a resource table can be uniquely identified 857 * with a single integer as defined by the ResTable_ref structure. 858 */ 859 struct ResTable_header 860 { 861 struct ResChunk_header header; 862 863 // The number of ResTable_package structures. 864 uint32_t packageCount; 865 }; 866 867 /** 868 * A collection of resource data types within a package. Followed by 869 * one or more ResTable_type and ResTable_typeSpec structures containing the 870 * entry values for each resource type. 871 */ 872 struct ResTable_package 873 { 874 struct ResChunk_header header; 875 876 // If this is a base package, its ID. Package IDs start 877 // at 1 (corresponding to the value of the package bits in a 878 // resource identifier). 0 means this is not a base package. 879 uint32_t id; 880 881 // Actual name of this package, \0-terminated. 882 uint16_t name[128]; 883 884 // Offset to a ResStringPool_header defining the resource 885 // type symbol table. If zero, this package is inheriting from 886 // another base package (overriding specific values in it). 887 uint32_t typeStrings; 888 889 // Last index into typeStrings that is for public use by others. 890 uint32_t lastPublicType; 891 892 // Offset to a ResStringPool_header defining the resource 893 // key symbol table. If zero, this package is inheriting from 894 // another base package (overriding specific values in it). 895 uint32_t keyStrings; 896 897 // Last index into keyStrings that is for public use by others. 898 uint32_t lastPublicKey; 899 900 uint32_t typeIdOffset; 901 }; 902 903 // The most specific locale can consist of: 904 // 905 // - a 3 char language code 906 // - a 3 char region code prefixed by a 'r' 907 // - a 4 char script code prefixed by a 's' 908 // - a 8 char variant code prefixed by a 'v' 909 // 910 // each separated by a single char separator, which sums up to a total of 24 911 // chars, (25 include the string terminator). Numbering system specificator, 912 // if present, can add up to 14 bytes (-u-nu-xxxxxxxx), giving 39 bytes, 913 // or 40 bytes to make it 4 bytes aligned. 914 #define RESTABLE_MAX_LOCALE_LEN 40 915 916 917 /** 918 * Describes a particular resource configuration. 919 */ 920 struct ResTable_config 921 { 922 // Number of bytes in this structure. 923 uint32_t size; 924 925 union { 926 struct { 927 // Mobile country code (from SIM). 0 means "any". 928 uint16_t mcc; 929 // Mobile network code (from SIM). 0 means "any". 930 uint16_t mnc; 931 }; 932 uint32_t imsi; 933 }; 934 935 union { 936 struct { 937 // This field can take three different forms: 938 // - \0\0 means "any". 939 // 940 // - Two 7 bit ascii values interpreted as ISO-639-1 language 941 // codes ('fr', 'en' etc. etc.). The high bit for both bytes is 942 // zero. 943 // 944 // - A single 16 bit little endian packed value representing an 945 // ISO-639-2 3 letter language code. This will be of the form: 946 // 947 // {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f} 948 // 949 // bit[0, 4] = first letter of the language code 950 // bit[5, 9] = second letter of the language code 951 // bit[10, 14] = third letter of the language code. 952 // bit[15] = 1 always 953 // 954 // For backwards compatibility, languages that have unambiguous 955 // two letter codes are represented in that format. 956 // 957 // The layout is always bigendian irrespective of the runtime 958 // architecture. 959 char language[2]; 960 961 // This field can take three different forms: 962 // - \0\0 means "any". 963 // 964 // - Two 7 bit ascii values interpreted as 2 letter region 965 // codes ('US', 'GB' etc.). The high bit for both bytes is zero. 966 // 967 // - An UN M.49 3 digit region code. For simplicity, these are packed 968 // in the same manner as the language codes, though we should need 969 // only 10 bits to represent them, instead of the 15. 970 // 971 // The layout is always bigendian irrespective of the runtime 972 // architecture. 973 char country[2]; 974 }; 975 uint32_t locale; 976 }; 977 978 enum { 979 ORIENTATION_ANY = ACONFIGURATION_ORIENTATION_ANY, 980 ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT, 981 ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND, 982 ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE, 983 }; 984 985 enum { 986 TOUCHSCREEN_ANY = ACONFIGURATION_TOUCHSCREEN_ANY, 987 TOUCHSCREEN_NOTOUCH = ACONFIGURATION_TOUCHSCREEN_NOTOUCH, 988 TOUCHSCREEN_STYLUS = ACONFIGURATION_TOUCHSCREEN_STYLUS, 989 TOUCHSCREEN_FINGER = ACONFIGURATION_TOUCHSCREEN_FINGER, 990 }; 991 992 enum { 993 DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT, 994 DENSITY_LOW = ACONFIGURATION_DENSITY_LOW, 995 DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM, 996 DENSITY_TV = ACONFIGURATION_DENSITY_TV, 997 DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH, 998 DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH, 999 DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH, 1000 DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH, 1001 DENSITY_ANY = ACONFIGURATION_DENSITY_ANY, 1002 DENSITY_NONE = ACONFIGURATION_DENSITY_NONE 1003 }; 1004 1005 union { 1006 struct { 1007 uint8_t orientation; 1008 uint8_t touchscreen; 1009 uint16_t density; 1010 }; 1011 uint32_t screenType; 1012 }; 1013 1014 enum { 1015 KEYBOARD_ANY = ACONFIGURATION_KEYBOARD_ANY, 1016 KEYBOARD_NOKEYS = ACONFIGURATION_KEYBOARD_NOKEYS, 1017 KEYBOARD_QWERTY = ACONFIGURATION_KEYBOARD_QWERTY, 1018 KEYBOARD_12KEY = ACONFIGURATION_KEYBOARD_12KEY, 1019 }; 1020 1021 enum { 1022 NAVIGATION_ANY = ACONFIGURATION_NAVIGATION_ANY, 1023 NAVIGATION_NONAV = ACONFIGURATION_NAVIGATION_NONAV, 1024 NAVIGATION_DPAD = ACONFIGURATION_NAVIGATION_DPAD, 1025 NAVIGATION_TRACKBALL = ACONFIGURATION_NAVIGATION_TRACKBALL, 1026 NAVIGATION_WHEEL = ACONFIGURATION_NAVIGATION_WHEEL, 1027 }; 1028 1029 enum { 1030 MASK_KEYSHIDDEN = 0x0003, 1031 KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY, 1032 KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO, 1033 KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES, 1034 KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT, 1035 }; 1036 1037 enum { 1038 MASK_NAVHIDDEN = 0x000c, 1039 SHIFT_NAVHIDDEN = 2, 1040 NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN, 1041 NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN, 1042 NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN, 1043 }; 1044 1045 union { 1046 struct { 1047 uint8_t keyboard; 1048 uint8_t navigation; 1049 uint8_t inputFlags; 1050 uint8_t inputPad0; 1051 }; 1052 uint32_t input; 1053 }; 1054 1055 enum { 1056 SCREENWIDTH_ANY = 0 1057 }; 1058 1059 enum { 1060 SCREENHEIGHT_ANY = 0 1061 }; 1062 1063 union { 1064 struct { 1065 uint16_t screenWidth; 1066 uint16_t screenHeight; 1067 }; 1068 uint32_t screenSize; 1069 }; 1070 1071 enum { 1072 SDKVERSION_ANY = 0 1073 }; 1074 1075 enum { 1076 MINORVERSION_ANY = 0 1077 }; 1078 1079 union { 1080 struct { 1081 uint16_t sdkVersion; 1082 // For now minorVersion must always be 0!!! Its meaning 1083 // is currently undefined. 1084 uint16_t minorVersion; 1085 }; 1086 uint32_t version; 1087 }; 1088 1089 enum { 1090 // screenLayout bits for screen size class. 1091 MASK_SCREENSIZE = 0x0f, 1092 SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY, 1093 SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL, 1094 SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL, 1095 SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE, 1096 SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE, 1097 1098 // screenLayout bits for wide/long screen variation. 1099 MASK_SCREENLONG = 0x30, 1100 SHIFT_SCREENLONG = 4, 1101 SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG, 1102 SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG, 1103 SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG, 1104 1105 // screenLayout bits for layout direction. 1106 MASK_LAYOUTDIR = 0xC0, 1107 SHIFT_LAYOUTDIR = 6, 1108 LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR, 1109 LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR, 1110 LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR, 1111 }; 1112 1113 enum { 1114 // uiMode bits for the mode type. 1115 MASK_UI_MODE_TYPE = 0x0f, 1116 UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY, 1117 UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL, 1118 UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK, 1119 UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR, 1120 UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION, 1121 UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE, 1122 UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH, 1123 UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET, 1124 1125 // uiMode bits for the night switch. 1126 MASK_UI_MODE_NIGHT = 0x30, 1127 SHIFT_UI_MODE_NIGHT = 4, 1128 UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT, 1129 UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT, 1130 UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT, 1131 }; 1132 1133 union { 1134 struct { 1135 uint8_t screenLayout; 1136 uint8_t uiMode; 1137 uint16_t smallestScreenWidthDp; 1138 }; 1139 uint32_t screenConfig; 1140 }; 1141 1142 union { 1143 struct { 1144 uint16_t screenWidthDp; 1145 uint16_t screenHeightDp; 1146 }; 1147 uint32_t screenSizeDp; 1148 }; 1149 1150 // The ISO-15924 short name for the script corresponding to this 1151 // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with 1152 // the locale field. 1153 char localeScript[4]; 1154 1155 // A single BCP-47 variant subtag. Will vary in length between 4 and 8 1156 // chars. Interpreted in conjunction with the locale field. 1157 char localeVariant[8]; 1158 1159 enum { 1160 // screenLayout2 bits for round/notround. 1161 MASK_SCREENROUND = 0x03, 1162 SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY, 1163 SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO, 1164 SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES, 1165 }; 1166 1167 enum { 1168 // colorMode bits for wide-color gamut/narrow-color gamut. 1169 MASK_WIDE_COLOR_GAMUT = 0x03, 1170 WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY, 1171 WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO, 1172 WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES, 1173 1174 // colorMode bits for HDR/LDR. 1175 MASK_HDR = 0x0c, 1176 SHIFT_COLOR_MODE_HDR = 2, 1177 HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR, 1178 HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR, 1179 HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR, 1180 }; 1181 1182 // An extension of screenConfig. 1183 union { 1184 struct { 1185 uint8_t screenLayout2; // Contains round/notround qualifier. 1186 uint8_t colorMode; // Wide-gamut, HDR, etc. 1187 uint16_t screenConfigPad2; // Reserved padding. 1188 }; 1189 uint32_t screenConfig2; 1190 }; 1191 1192 // If false and localeScript is set, it means that the script of the locale 1193 // was explicitly provided. 1194 // 1195 // If true, it means that localeScript was automatically computed. 1196 // localeScript may still not be set in this case, which means that we 1197 // tried but could not compute a script. 1198 bool localeScriptWasComputed; 1199 1200 // The value of BCP 47 Unicode extension for key 'nu' (numbering system). 1201 // Varies in length from 3 to 8 chars. Zero-filled value. 1202 char localeNumberingSystem[8]; 1203 1204 void copyFromDeviceNoSwap(const ResTable_config& o); 1205 1206 void copyFromDtoH(const ResTable_config& o); 1207 1208 void swapHtoD(); 1209 1210 int compare(const ResTable_config& o) const; 1211 int compareLogical(const ResTable_config& o) const; 1212 1213 inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; } 1214 1215 // Flags indicating a set of config values. These flag constants must 1216 // match the corresponding ones in android.content.pm.ActivityInfo and 1217 // attrs_manifest.xml. 1218 enum { 1219 CONFIG_MCC = ACONFIGURATION_MCC, 1220 CONFIG_MNC = ACONFIGURATION_MNC, 1221 CONFIG_LOCALE = ACONFIGURATION_LOCALE, 1222 CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN, 1223 CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD, 1224 CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN, 1225 CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION, 1226 CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION, 1227 CONFIG_DENSITY = ACONFIGURATION_DENSITY, 1228 CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE, 1229 CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE, 1230 CONFIG_VERSION = ACONFIGURATION_VERSION, 1231 CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT, 1232 CONFIG_UI_MODE = ACONFIGURATION_UI_MODE, 1233 CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR, 1234 CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND, 1235 CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE, 1236 }; 1237 1238 // Compare two configuration, returning CONFIG_* flags set for each value 1239 // that is different. 1240 int diff(const ResTable_config& o) const; 1241 1242 // Return true if 'this' is more specific than 'o'. 1243 bool isMoreSpecificThan(const ResTable_config& o) const; 1244 1245 // Return true if 'this' is a better match than 'o' for the 'requested' 1246 // configuration. This assumes that match() has already been used to 1247 // remove any configurations that don't match the requested configuration 1248 // at all; if they are not first filtered, non-matching results can be 1249 // considered better than matching ones. 1250 // The general rule per attribute: if the request cares about an attribute 1251 // (it normally does), if the two (this and o) are equal it's a tie. If 1252 // they are not equal then one must be generic because only generic and 1253 // '==requested' will pass the match() call. So if this is not generic, 1254 // it wins. If this IS generic, o wins (return false). 1255 bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1256 1257 // Return true if 'this' can be considered a match for the parameters in 1258 // 'settings'. 1259 // Note this is asymetric. A default piece of data will match every request 1260 // but a request for the default should not match odd specifics 1261 // (ie, request with no mcc should not match a particular mcc's data) 1262 // settings is the requested settings 1263 bool match(const ResTable_config& settings) const; 1264 1265 // Get the string representation of the locale component of this 1266 // Config. The maximum size of this representation will be 1267 // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0'). 1268 // 1269 // Example: en-US, en-Latn-US, en-POSIX. 1270 // 1271 // If canonicalize is set, Tagalog (tl) locales get converted 1272 // to Filipino (fil). 1273 void getBcp47Locale(char* out, bool canonicalize=false) const; 1274 1275 // Append to str the resource-qualifer string representation of the 1276 // locale component of this Config. If the locale is only country 1277 // and language, it will look like en-rUS. If it has scripts and 1278 // variants, it will be a modified bcp47 tag: b+en+Latn+US. 1279 void appendDirLocale(String8& str) const; 1280 1281 // Sets the values of language, region, script, variant and numbering 1282 // system to the well formed BCP 47 locale contained in |in|. 1283 // The input locale is assumed to be valid and no validation is performed. 1284 void setBcp47Locale(const char* in); 1285 clearLocaleResTable_config1286 inline void clearLocale() { 1287 locale = 0; 1288 localeScriptWasComputed = false; 1289 memset(localeScript, 0, sizeof(localeScript)); 1290 memset(localeVariant, 0, sizeof(localeVariant)); 1291 memset(localeNumberingSystem, 0, sizeof(localeNumberingSystem)); 1292 } 1293 computeScriptResTable_config1294 inline void computeScript() { 1295 localeDataComputeScript(localeScript, language, country); 1296 } 1297 1298 // Get the 2 or 3 letter language code of this configuration. Trailing 1299 // bytes are set to '\0'. 1300 size_t unpackLanguage(char language[4]) const; 1301 // Get the 2 or 3 letter language code of this configuration. Trailing 1302 // bytes are set to '\0'. 1303 size_t unpackRegion(char region[4]) const; 1304 1305 // Sets the language code of this configuration to the first three 1306 // chars at |language|. 1307 // 1308 // If |language| is a 2 letter code, the trailing byte must be '\0' or 1309 // the BCP-47 separator '-'. 1310 void packLanguage(const char* language); 1311 // Sets the region code of this configuration to the first three bytes 1312 // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0' 1313 // or the BCP-47 separator '-'. 1314 void packRegion(const char* region); 1315 1316 // Returns a positive integer if this config is more specific than |o| 1317 // with respect to their locales, a negative integer if |o| is more specific 1318 // and 0 if they're equally specific. 1319 int isLocaleMoreSpecificThan(const ResTable_config &o) const; 1320 1321 // Returns an integer representng the imporance score of the configuration locale. 1322 int getImportanceScoreOfLocale() const; 1323 1324 // Return true if 'this' is a better locale match than 'o' for the 1325 // 'requested' configuration. Similar to isBetterThan(), this assumes that 1326 // match() has already been used to remove any configurations that don't 1327 // match the requested configuration at all. 1328 bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const; 1329 1330 String8 toString() const; 1331 }; 1332 1333 /** 1334 * A specification of the resources defined by a particular type. 1335 * 1336 * There should be one of these chunks for each resource type. 1337 * 1338 * This structure is followed by an array of integers providing the set of 1339 * configuration change flags (ResTable_config::CONFIG_*) that have multiple 1340 * resources for that configuration. In addition, the high bit is set if that 1341 * resource has been made public. 1342 */ 1343 struct ResTable_typeSpec 1344 { 1345 struct ResChunk_header header; 1346 1347 // The type identifier this chunk is holding. Type IDs start 1348 // at 1 (corresponding to the value of the type bits in a 1349 // resource identifier). 0 is invalid. 1350 uint8_t id; 1351 1352 // Must be 0. 1353 uint8_t res0; 1354 // Must be 0. 1355 uint16_t res1; 1356 1357 // Number of uint32_t entry configuration masks that follow. 1358 uint32_t entryCount; 1359 1360 enum : uint32_t { 1361 // Additional flag indicating an entry is public. 1362 SPEC_PUBLIC = 0x40000000u, 1363 }; 1364 }; 1365 1366 /** 1367 * A collection of resource entries for a particular resource data 1368 * type. 1369 * 1370 * If the flag FLAG_SPARSE is not set in `flags`, then this struct is 1371 * followed by an array of uint32_t defining the resource 1372 * values, corresponding to the array of type strings in the 1373 * ResTable_package::typeStrings string block. Each of these hold an 1374 * index from entriesStart; a value of NO_ENTRY means that entry is 1375 * not defined. 1376 * 1377 * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed 1378 * by an array of ResTable_sparseTypeEntry defining only the entries that 1379 * have values for this type. Each entry is sorted by their entry ID such 1380 * that a binary search can be performed over the entries. The ID and offset 1381 * are encoded in a uint32_t. See ResTabe_sparseTypeEntry. 1382 * 1383 * There may be multiple of these chunks for a particular resource type, 1384 * supply different configuration variations for the resource values of 1385 * that type. 1386 * 1387 * It would be nice to have an additional ordered index of entries, so 1388 * we can do a binary search if trying to find a resource by string name. 1389 */ 1390 struct ResTable_type 1391 { 1392 struct ResChunk_header header; 1393 1394 enum { 1395 NO_ENTRY = 0xFFFFFFFF 1396 }; 1397 1398 // The type identifier this chunk is holding. Type IDs start 1399 // at 1 (corresponding to the value of the type bits in a 1400 // resource identifier). 0 is invalid. 1401 uint8_t id; 1402 1403 enum { 1404 // If set, the entry is sparse, and encodes both the entry ID and offset into each entry, 1405 // and a binary search is used to find the key. Only available on platforms >= O. 1406 // Mark any types that use this with a v26 qualifier to prevent runtime issues on older 1407 // platforms. 1408 FLAG_SPARSE = 0x01, 1409 }; 1410 uint8_t flags; 1411 1412 // Must be 0. 1413 uint16_t reserved; 1414 1415 // Number of uint32_t entry indices that follow. 1416 uint32_t entryCount; 1417 1418 // Offset from header where ResTable_entry data starts. 1419 uint32_t entriesStart; 1420 1421 // Configuration this collection of entries is designed for. This must always be last. 1422 ResTable_config config; 1423 }; 1424 1425 // The minimum size required to read any version of ResTable_type. 1426 constexpr size_t kResTableTypeMinSize = 1427 sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size); 1428 1429 // Assert that the ResTable_config is always the last field. This poses a problem for extending 1430 // ResTable_type in the future, as ResTable_config is variable (over different releases). 1431 static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config), 1432 "ResTable_config must be last field in ResTable_type"); 1433 1434 /** 1435 * An entry in a ResTable_type with the flag `FLAG_SPARSE` set. 1436 */ 1437 union ResTable_sparseTypeEntry { 1438 // Holds the raw uint32_t encoded value. Do not read this. 1439 uint32_t entry; 1440 struct { 1441 // The index of the entry. 1442 uint16_t idx; 1443 1444 // The offset from ResTable_type::entriesStart, divided by 4. 1445 uint16_t offset; 1446 }; 1447 }; 1448 1449 static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t), 1450 "ResTable_sparseTypeEntry must be 4 bytes in size"); 1451 1452 /** 1453 * This is the beginning of information about an entry in the resource 1454 * table. It holds the reference to the name of this entry, and is 1455 * immediately followed by one of: 1456 * * A Res_value structure, if FLAG_COMPLEX is -not- set. 1457 * * An array of ResTable_map structures, if FLAG_COMPLEX is set. 1458 * These supply a set of name/value mappings of data. 1459 */ 1460 struct ResTable_entry 1461 { 1462 // Number of bytes in this structure. 1463 uint16_t size; 1464 1465 enum { 1466 // If set, this is a complex entry, holding a set of name/value 1467 // mappings. It is followed by an array of ResTable_map structures. 1468 FLAG_COMPLEX = 0x0001, 1469 // If set, this resource has been declared public, so libraries 1470 // are allowed to reference it. 1471 FLAG_PUBLIC = 0x0002, 1472 // If set, this is a weak resource and may be overriden by strong 1473 // resources of the same name/type. This is only useful during 1474 // linking with other resource tables. 1475 FLAG_WEAK = 0x0004 1476 }; 1477 uint16_t flags; 1478 1479 // Reference into ResTable_package::keyStrings identifying this entry. 1480 struct ResStringPool_ref key; 1481 }; 1482 1483 /** 1484 * Extended form of a ResTable_entry for map entries, defining a parent map 1485 * resource from which to inherit values. 1486 */ 1487 struct ResTable_map_entry : public ResTable_entry 1488 { 1489 // Resource identifier of the parent mapping, or 0 if there is none. 1490 // This is always treated as a TYPE_DYNAMIC_REFERENCE. 1491 ResTable_ref parent; 1492 // Number of name/value pairs that follow for FLAG_COMPLEX. 1493 uint32_t count; 1494 }; 1495 1496 /** 1497 * A single name/value mapping that is part of a complex resource 1498 * entry. 1499 */ 1500 struct ResTable_map 1501 { 1502 // The resource identifier defining this mapping's name. For attribute 1503 // resources, 'name' can be one of the following special resource types 1504 // to supply meta-data about the attribute; for all other resource types 1505 // it must be an attribute resource. 1506 ResTable_ref name; 1507 1508 // Special values for 'name' when defining attribute resources. 1509 enum { 1510 // This entry holds the attribute's type code. 1511 ATTR_TYPE = Res_MAKEINTERNAL(0), 1512 1513 // For integral attributes, this is the minimum value it can hold. 1514 ATTR_MIN = Res_MAKEINTERNAL(1), 1515 1516 // For integral attributes, this is the maximum value it can hold. 1517 ATTR_MAX = Res_MAKEINTERNAL(2), 1518 1519 // Localization of this resource is can be encouraged or required with 1520 // an aapt flag if this is set 1521 ATTR_L10N = Res_MAKEINTERNAL(3), 1522 1523 // for plural support, see android.content.res.PluralRules#attrForQuantity(int) 1524 ATTR_OTHER = Res_MAKEINTERNAL(4), 1525 ATTR_ZERO = Res_MAKEINTERNAL(5), 1526 ATTR_ONE = Res_MAKEINTERNAL(6), 1527 ATTR_TWO = Res_MAKEINTERNAL(7), 1528 ATTR_FEW = Res_MAKEINTERNAL(8), 1529 ATTR_MANY = Res_MAKEINTERNAL(9) 1530 1531 }; 1532 1533 // Bit mask of allowed types, for use with ATTR_TYPE. 1534 enum { 1535 // No type has been defined for this attribute, use generic 1536 // type handling. The low 16 bits are for types that can be 1537 // handled generically; the upper 16 require additional information 1538 // in the bag so can not be handled generically for TYPE_ANY. 1539 TYPE_ANY = 0x0000FFFF, 1540 1541 // Attribute holds a references to another resource. 1542 TYPE_REFERENCE = 1<<0, 1543 1544 // Attribute holds a generic string. 1545 TYPE_STRING = 1<<1, 1546 1547 // Attribute holds an integer value. ATTR_MIN and ATTR_MIN can 1548 // optionally specify a constrained range of possible integer values. 1549 TYPE_INTEGER = 1<<2, 1550 1551 // Attribute holds a boolean integer. 1552 TYPE_BOOLEAN = 1<<3, 1553 1554 // Attribute holds a color value. 1555 TYPE_COLOR = 1<<4, 1556 1557 // Attribute holds a floating point value. 1558 TYPE_FLOAT = 1<<5, 1559 1560 // Attribute holds a dimension value, such as "20px". 1561 TYPE_DIMENSION = 1<<6, 1562 1563 // Attribute holds a fraction value, such as "20%". 1564 TYPE_FRACTION = 1<<7, 1565 1566 // Attribute holds an enumeration. The enumeration values are 1567 // supplied as additional entries in the map. 1568 TYPE_ENUM = 1<<16, 1569 1570 // Attribute holds a bitmaks of flags. The flag bit values are 1571 // supplied as additional entries in the map. 1572 TYPE_FLAGS = 1<<17 1573 }; 1574 1575 // Enum of localization modes, for use with ATTR_L10N. 1576 enum { 1577 L10N_NOT_REQUIRED = 0, 1578 L10N_SUGGESTED = 1 1579 }; 1580 1581 // This mapping's value. 1582 Res_value value; 1583 }; 1584 1585 /** 1586 * A package-id to package name mapping for any shared libraries used 1587 * in this resource table. The package-id's encoded in this resource 1588 * table may be different than the id's assigned at runtime. We must 1589 * be able to translate the package-id's based on the package name. 1590 */ 1591 struct ResTable_lib_header 1592 { 1593 struct ResChunk_header header; 1594 1595 // The number of shared libraries linked in this resource table. 1596 uint32_t count; 1597 }; 1598 1599 /** 1600 * A shared library package-id to package name entry. 1601 */ 1602 struct ResTable_lib_entry 1603 { 1604 // The package-id this shared library was assigned at build time. 1605 // We use a uint32 to keep the structure aligned on a uint32 boundary. 1606 uint32_t packageId; 1607 1608 // The package name of the shared library. \0 terminated. 1609 uint16_t packageName[128]; 1610 }; 1611 1612 /** 1613 * Specifies the set of resources that are explicitly allowed to be overlaid by RROs. 1614 */ 1615 struct ResTable_overlayable_header 1616 { 1617 struct ResChunk_header header; 1618 1619 // The name of the overlayable set of resources that overlays target. 1620 uint16_t name[256]; 1621 1622 // The component responsible for enabling and disabling overlays targeting this chunk. 1623 uint16_t actor[256]; 1624 }; 1625 1626 /** 1627 * Holds a list of resource ids that are protected from being overlaid by a set of policies. If 1628 * the overlay fulfils at least one of the policies, then the overlay can overlay the list of 1629 * resources. 1630 */ 1631 struct ResTable_overlayable_policy_header 1632 { 1633 struct ResChunk_header header; 1634 1635 enum PolicyFlags : uint32_t { 1636 // Any overlay can overlay these resources. 1637 POLICY_PUBLIC = 0x00000001, 1638 1639 // The overlay must reside of the system partition or must have existed on the system partition 1640 // before an upgrade to overlay these resources. 1641 POLICY_SYSTEM_PARTITION = 0x00000002, 1642 1643 // The overlay must reside of the vendor partition or must have existed on the vendor partition 1644 // before an upgrade to overlay these resources. 1645 POLICY_VENDOR_PARTITION = 0x00000004, 1646 1647 // The overlay must reside of the product partition or must have existed on the product 1648 // partition before an upgrade to overlay these resources. 1649 POLICY_PRODUCT_PARTITION = 0x00000008, 1650 1651 // The overlay must be signed with the same signature as the actor of the target resource, 1652 // which can be separate or the same as the target package with the resource. 1653 POLICY_SIGNATURE = 0x00000010, 1654 1655 // The overlay must reside of the odm partition or must have existed on the odm 1656 // partition before an upgrade to overlay these resources. 1657 POLICY_ODM_PARTITION = 0x00000020, 1658 1659 // The overlay must reside of the oem partition or must have existed on the oem 1660 // partition before an upgrade to overlay these resources. 1661 POLICY_OEM_PARTITION = 0x00000040, 1662 }; 1663 uint32_t policy_flags; 1664 1665 // The number of ResTable_ref that follow this header. 1666 uint32_t entry_count; 1667 }; 1668 1669 struct alignas(uint32_t) Idmap_header { 1670 // Always 0x504D4449 ('IDMP') 1671 uint32_t magic; 1672 1673 uint32_t version; 1674 1675 uint32_t target_crc32; 1676 uint32_t overlay_crc32; 1677 1678 uint8_t target_path[256]; 1679 uint8_t overlay_path[256]; 1680 1681 uint16_t target_package_id; 1682 uint16_t type_count; 1683 } __attribute__((packed)); 1684 1685 struct alignas(uint32_t) IdmapEntry_header { 1686 uint16_t target_type_id; 1687 uint16_t overlay_type_id; 1688 uint16_t entry_count; 1689 uint16_t entry_id_offset; 1690 uint32_t entries[0]; 1691 } __attribute__((packed)); 1692 1693 class AssetManager2; 1694 1695 /** 1696 * Holds the shared library ID table. Shared libraries are assigned package IDs at 1697 * build time, but they may be loaded in a different order, so we need to maintain 1698 * a mapping of build-time package ID to run-time assigned package ID. 1699 * 1700 * Dynamic references are not currently supported in overlays. Only the base package 1701 * may have dynamic references. 1702 */ 1703 class DynamicRefTable 1704 { 1705 friend class AssetManager2; 1706 public: 1707 DynamicRefTable(); 1708 DynamicRefTable(uint8_t packageId, bool appAsLib); 1709 1710 // Loads an unmapped reference table from the package. 1711 status_t load(const ResTable_lib_header* const header); 1712 1713 // Adds mappings from the other DynamicRefTable 1714 status_t addMappings(const DynamicRefTable& other); 1715 1716 // Creates a mapping from build-time package ID to run-time package ID for 1717 // the given package. 1718 status_t addMapping(const String16& packageName, uint8_t packageId); 1719 1720 void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId); 1721 1722 // Creates a new clone of the reference table 1723 std::unique_ptr<DynamicRefTable> clone() const; 1724 1725 // Performs the actual conversion of build-time resource ID to run-time 1726 // resource ID. 1727 status_t lookupResourceId(uint32_t* resId) const; 1728 status_t lookupResourceValue(Res_value* value) const; 1729 entries()1730 inline const KeyedVector<String16, uint8_t>& entries() const { 1731 return mEntries; 1732 } 1733 1734 private: 1735 uint8_t mAssignedPackageId; 1736 uint8_t mLookupTable[256]; 1737 KeyedVector<String16, uint8_t> mEntries; 1738 bool mAppAsLib; 1739 }; 1740 1741 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue); 1742 1743 /** 1744 * Convenience class for accessing data in a ResTable resource. 1745 */ 1746 class ResTable 1747 { 1748 public: 1749 ResTable(); 1750 ResTable(const void* data, size_t size, const int32_t cookie, 1751 bool copyData=false); 1752 ~ResTable(); 1753 1754 status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false); 1755 status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 1756 const int32_t cookie=-1, bool copyData=false, bool appAsLib=false); 1757 1758 status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false); 1759 status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false, 1760 bool appAsLib=false, bool isSystemAsset=false); 1761 1762 status_t add(ResTable* src, bool isSystemAsset=false); 1763 status_t addEmpty(const int32_t cookie); 1764 1765 status_t getError() const; 1766 1767 void uninit(); 1768 1769 struct resource_name 1770 { 1771 const char16_t* package = NULL; 1772 size_t packageLen; 1773 const char16_t* type = NULL; 1774 const char* type8 = NULL; 1775 size_t typeLen; 1776 const char16_t* name = NULL; 1777 const char* name8 = NULL; 1778 size_t nameLen; 1779 }; 1780 1781 bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const; 1782 1783 bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const; 1784 1785 /** 1786 * Returns whether or not the package for the given resource has been dynamically assigned. 1787 * If the resource can't be found, returns 'false'. 1788 */ 1789 bool isResourceDynamic(uint32_t resID) const; 1790 1791 /** 1792 * Returns whether or not the given package has been dynamically assigned. 1793 * If the package can't be found, returns 'false'. 1794 */ 1795 bool isPackageDynamic(uint8_t packageID) const; 1796 1797 /** 1798 * Retrieve the value of a resource. If the resource is found, returns a 1799 * value >= 0 indicating the table it is in (for use with 1800 * getTableStringBlock() and getTableCookie()) and fills in 'outValue'. If 1801 * not found, returns a negative error code. 1802 * 1803 * Note that this function does not do reference traversal. If you want 1804 * to follow references to other resources to get the "real" value to 1805 * use, you need to call resolveReference() after this function. 1806 * 1807 * @param resID The desired resoruce identifier. 1808 * @param outValue Filled in with the resource data that was found. 1809 * 1810 * @return ssize_t Either a >= 0 table index or a negative error code. 1811 */ 1812 ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false, 1813 uint16_t density = 0, 1814 uint32_t* outSpecFlags = NULL, 1815 ResTable_config* outConfig = NULL) const; 1816 1817 inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue, 1818 uint32_t* outSpecFlags=NULL) const { 1819 return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL); 1820 } 1821 1822 ssize_t resolveReference(Res_value* inOutValue, 1823 ssize_t blockIndex, 1824 uint32_t* outLastRef = NULL, 1825 uint32_t* inoutTypeSpecFlags = NULL, 1826 ResTable_config* outConfig = NULL) const; 1827 1828 enum { 1829 TMP_BUFFER_SIZE = 16 1830 }; 1831 const char16_t* valueToString(const Res_value* value, size_t stringBlock, 1832 char16_t tmpBuffer[TMP_BUFFER_SIZE], 1833 size_t* outLen) const; 1834 1835 struct bag_entry { 1836 ssize_t stringBlock; 1837 ResTable_map map; 1838 }; 1839 1840 /** 1841 * Retrieve the bag of a resource. If the resoruce is found, returns the 1842 * number of bags it contains and 'outBag' points to an array of their 1843 * values. If not found, a negative error code is returned. 1844 * 1845 * Note that this function -does- do reference traversal of the bag data. 1846 * 1847 * @param resID The desired resource identifier. 1848 * @param outBag Filled inm with a pointer to the bag mappings. 1849 * 1850 * @return ssize_t Either a >= 0 bag count of negative error code. 1851 */ 1852 ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const; 1853 1854 void unlockBag(const bag_entry* bag) const; 1855 1856 void lock() const; 1857 1858 ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag, 1859 uint32_t* outTypeSpecFlags=NULL) const; 1860 1861 void unlock() const; 1862 1863 class Theme { 1864 public: 1865 explicit Theme(const ResTable& table); 1866 ~Theme(); 1867 getResTable()1868 inline const ResTable& getResTable() const { return mTable; } 1869 1870 status_t applyStyle(uint32_t resID, bool force=false); 1871 status_t setTo(const Theme& other); 1872 status_t clear(); 1873 1874 /** 1875 * Retrieve a value in the theme. If the theme defines this 1876 * value, returns a value >= 0 indicating the table it is in 1877 * (for use with getTableStringBlock() and getTableCookie) and 1878 * fills in 'outValue'. If not found, returns a negative error 1879 * code. 1880 * 1881 * Note that this function does not do reference traversal. If you want 1882 * to follow references to other resources to get the "real" value to 1883 * use, you need to call resolveReference() after this function. 1884 * 1885 * @param resID A resource identifier naming the desired theme 1886 * attribute. 1887 * @param outValue Filled in with the theme value that was 1888 * found. 1889 * 1890 * @return ssize_t Either a >= 0 table index or a negative error code. 1891 */ 1892 ssize_t getAttribute(uint32_t resID, Res_value* outValue, 1893 uint32_t* outTypeSpecFlags = NULL) const; 1894 1895 /** 1896 * This is like ResTable::resolveReference(), but also takes 1897 * care of resolving attribute references to the theme. 1898 */ 1899 ssize_t resolveAttributeReference(Res_value* inOutValue, 1900 ssize_t blockIndex, uint32_t* outLastRef = NULL, 1901 uint32_t* inoutTypeSpecFlags = NULL, 1902 ResTable_config* inoutConfig = NULL) const; 1903 1904 /** 1905 * Returns a bit mask of configuration changes that will impact this 1906 * theme (and thus require completely reloading it). 1907 */ 1908 uint32_t getChangingConfigurations() const; 1909 1910 void dumpToLog() const; 1911 1912 private: 1913 Theme(const Theme&); 1914 Theme& operator=(const Theme&); 1915 1916 struct theme_entry { 1917 ssize_t stringBlock; 1918 uint32_t typeSpecFlags; 1919 Res_value value; 1920 }; 1921 1922 struct type_info { 1923 size_t numEntries; 1924 theme_entry* entries; 1925 }; 1926 1927 struct package_info { 1928 type_info types[Res_MAXTYPE + 1]; 1929 }; 1930 1931 void free_package(package_info* pi); 1932 package_info* copy_package(package_info* pi); 1933 1934 const ResTable& mTable; 1935 package_info* mPackages[Res_MAXPACKAGE]; 1936 uint32_t mTypeSpecFlags; 1937 }; 1938 1939 void setParameters(const ResTable_config* params); 1940 void getParameters(ResTable_config* params) const; 1941 1942 // Retrieve an identifier (which can be passed to getResource) 1943 // for a given resource name. The 'name' can be fully qualified 1944 // (<package>:<type>.<basename>) or the package or type components 1945 // can be dropped if default values are supplied here. 1946 // 1947 // Returns 0 if no such resource was found, else a valid resource ID. 1948 uint32_t identifierForName(const char16_t* name, size_t nameLen, 1949 const char16_t* type = 0, size_t typeLen = 0, 1950 const char16_t* defPackage = 0, 1951 size_t defPackageLen = 0, 1952 uint32_t* outTypeSpecFlags = NULL) const; 1953 1954 static bool expandResourceRef(const char16_t* refStr, size_t refLen, 1955 String16* outPackage, 1956 String16* outType, 1957 String16* outName, 1958 const String16* defType = NULL, 1959 const String16* defPackage = NULL, 1960 const char** outErrorMsg = NULL, 1961 bool* outPublicOnly = NULL); 1962 1963 static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue); 1964 static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue); 1965 1966 // Used with stringToValue. 1967 class Accessor 1968 { 1969 public: ~Accessor()1970 inline virtual ~Accessor() { } 1971 1972 virtual const String16& getAssetsPackage() const = 0; 1973 1974 virtual uint32_t getCustomResource(const String16& package, 1975 const String16& type, 1976 const String16& name) const = 0; 1977 virtual uint32_t getCustomResourceWithCreation(const String16& package, 1978 const String16& type, 1979 const String16& name, 1980 const bool createIfNeeded = false) = 0; 1981 virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0; 1982 virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0; 1983 virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0; 1984 virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0; 1985 virtual bool getAttributeEnum(uint32_t attrID, 1986 const char16_t* name, size_t nameLen, 1987 Res_value* outValue) = 0; 1988 virtual bool getAttributeFlags(uint32_t attrID, 1989 const char16_t* name, size_t nameLen, 1990 Res_value* outValue) = 0; 1991 virtual uint32_t getAttributeL10N(uint32_t attrID) = 0; 1992 virtual bool getLocalizationSetting() = 0; 1993 virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0; 1994 }; 1995 1996 // Convert a string to a resource value. Handles standard "@res", 1997 // "#color", "123", and "0x1bd" types; performs escaping of strings. 1998 // The resulting value is placed in 'outValue'; if it is a string type, 1999 // 'outString' receives the string. If 'attrID' is supplied, the value is 2000 // type checked against this attribute and it is used to perform enum 2001 // evaluation. If 'acccessor' is supplied, it will be used to attempt to 2002 // resolve resources that do not exist in this ResTable. If 'attrType' is 2003 // supplied, the value will be type checked for this format if 'attrID' 2004 // is not supplied or found. 2005 bool stringToValue(Res_value* outValue, String16* outString, 2006 const char16_t* s, size_t len, 2007 bool preserveSpaces, bool coerceType, 2008 uint32_t attrID = 0, 2009 const String16* defType = NULL, 2010 const String16* defPackage = NULL, 2011 Accessor* accessor = NULL, 2012 void* accessorCookie = NULL, 2013 uint32_t attrType = ResTable_map::TYPE_ANY, 2014 bool enforcePrivate = true) const; 2015 2016 // Perform processing of escapes and quotes in a string. 2017 static bool collectString(String16* outString, 2018 const char16_t* s, size_t len, 2019 bool preserveSpaces, 2020 const char** outErrorMsg = NULL, 2021 bool append = false); 2022 2023 size_t getBasePackageCount() const; 2024 const String16 getBasePackageName(size_t idx) const; 2025 uint32_t getBasePackageId(size_t idx) const; 2026 uint32_t getLastTypeIdForPackage(size_t idx) const; 2027 2028 // Return the number of resource tables that the object contains. 2029 size_t getTableCount() const; 2030 // Return the values string pool for the resource table at the given 2031 // index. This string pool contains all of the strings for values 2032 // contained in the resource table -- that is the item values themselves, 2033 // but not the names their entries or types. 2034 const ResStringPool* getTableStringBlock(size_t index) const; 2035 // Return unique cookie identifier for the given resource table. 2036 int32_t getTableCookie(size_t index) const; 2037 2038 const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const; 2039 2040 // Return the configurations (ResTable_config) that we know about 2041 void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false, 2042 bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const; 2043 2044 void getLocales(Vector<String8>* locales, bool includeSystemLocales=true, 2045 bool mergeEquivalentLangs=false) const; 2046 2047 // Generate an idmap. 2048 // 2049 // Return value: on success: NO_ERROR; caller is responsible for free-ing 2050 // outData (using free(3)). On failure, any status_t value other than 2051 // NO_ERROR; the caller should not free outData. 2052 status_t createIdmap(const ResTable& targetResTable, 2053 uint32_t targetCrc, uint32_t overlayCrc, 2054 const char* targetPath, const char* overlayPath, 2055 void** outData, size_t* outSize) const; 2056 2057 static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256; 2058 static const uint32_t IDMAP_CURRENT_VERSION = 0x00000001; 2059 2060 // Retrieve idmap meta-data. 2061 // 2062 // This function only requires the idmap header (the first 2063 // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file. 2064 static bool getIdmapInfo(const void* idmap, size_t size, 2065 uint32_t* pVersion, 2066 uint32_t* pTargetCrc, uint32_t* pOverlayCrc, 2067 String8* pTargetPath, String8* pOverlayPath); 2068 2069 void print(bool inclValues) const; 2070 static String8 normalizeForOutput(const char* input); 2071 2072 private: 2073 struct Header; 2074 struct Type; 2075 struct Entry; 2076 struct Package; 2077 struct PackageGroup; 2078 typedef Vector<Type*> TypeList; 2079 2080 struct bag_set { 2081 size_t numAttrs; // number in array 2082 size_t availAttrs; // total space in array 2083 uint32_t typeSpecFlags; 2084 // Followed by 'numAttr' bag_entry structures. 2085 }; 2086 2087 /** 2088 * Configuration dependent cached data. This must be cleared when the configuration is 2089 * changed (setParameters). 2090 */ 2091 struct TypeCacheEntry { TypeCacheEntryTypeCacheEntry2092 TypeCacheEntry() : cachedBags(NULL) {} 2093 2094 // Computed attribute bags for this type. 2095 bag_set** cachedBags; 2096 2097 // Pre-filtered list of configurations (per asset path) that match the parameters set on this 2098 // ResTable. 2099 Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs; 2100 }; 2101 2102 status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize, 2103 bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false); 2104 2105 ssize_t getResourcePackageIndex(uint32_t resID) const; 2106 ssize_t getResourcePackageIndexFromPackage(uint8_t packageID) const; 2107 2108 status_t getEntry( 2109 const PackageGroup* packageGroup, int typeIndex, int entryIndex, 2110 const ResTable_config* config, 2111 Entry* outEntry) const; 2112 2113 uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name, 2114 size_t nameLen, uint32_t* outTypeSpecFlags) const; 2115 2116 status_t parsePackage( 2117 const ResTable_package* const pkg, const Header* const header, 2118 bool appAsLib, bool isSystemAsset); 2119 2120 void print_value(const Package* pkg, const Res_value& value) const; 2121 2122 template <typename Func> 2123 void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage, 2124 bool includeSystemConfigs, const Func& f) const; 2125 2126 mutable Mutex mLock; 2127 2128 // Mutex that controls access to the list of pre-filtered configurations 2129 // to check when looking up entries. 2130 // When iterating over a bag, the mLock mutex is locked. While mLock is locked, 2131 // we do resource lookups. 2132 // Mutex is not reentrant, so we must use a different lock than mLock. 2133 mutable Mutex mFilteredConfigLock; 2134 2135 status_t mError; 2136 2137 ResTable_config mParams; 2138 2139 // Array of all resource tables. 2140 Vector<Header*> mHeaders; 2141 2142 // Array of packages in all resource tables. 2143 Vector<PackageGroup*> mPackageGroups; 2144 2145 // Mapping from resource package IDs to indices into the internal 2146 // package array. 2147 uint8_t mPackageMap[256]; 2148 2149 uint8_t mNextPackageId; 2150 }; 2151 2152 } // namespace android 2153 2154 #endif // _LIBS_UTILS_RESOURCE_TYPES_H 2155