1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define TRACE_TAG SYSDEPS
18 
19 #include "sysdeps.h"
20 
21 #include <lmcons.h>
22 #include <windows.h>
23 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
24 
25 #include <errno.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 
29 #include <algorithm>
30 #include <memory>
31 #include <mutex>
32 #include <string>
33 #include <string_view>
34 #include <unordered_map>
35 #include <vector>
36 
37 #include <cutils/sockets.h>
38 
39 #include <android-base/errors.h>
40 #include <android-base/file.h>
41 #include <android-base/logging.h>
42 #include <android-base/macros.h>
43 #include <android-base/stringprintf.h>
44 #include <android-base/strings.h>
45 #include <android-base/utf8.h>
46 
47 #include "adb.h"
48 #include "adb_utils.h"
49 
50 #include "sysdeps/uio.h"
51 
52 /* forward declarations */
53 
54 typedef const struct FHClassRec_* FHClass;
55 typedef struct FHRec_* FH;
56 
57 typedef struct FHClassRec_ {
58     void (*_fh_init)(FH);
59     int (*_fh_close)(FH);
60     int64_t (*_fh_lseek)(FH, int64_t, int);
61     int (*_fh_read)(FH, void*, int);
62     int (*_fh_write)(FH, const void*, int);
63     int (*_fh_writev)(FH, const adb_iovec*, int);
64     intptr_t (*_fh_get_os_handle)(FH);
65 } FHClassRec;
66 
67 static void _fh_file_init(FH);
68 static int _fh_file_close(FH);
69 static int64_t _fh_file_lseek(FH, int64_t, int);
70 static int _fh_file_read(FH, void*, int);
71 static int _fh_file_write(FH, const void*, int);
72 static int _fh_file_writev(FH, const adb_iovec*, int);
73 static intptr_t _fh_file_get_os_handle(FH f);
74 
75 static const FHClassRec _fh_file_class = {
76         _fh_file_init,  _fh_file_close,  _fh_file_lseek,         _fh_file_read,
77         _fh_file_write, _fh_file_writev, _fh_file_get_os_handle,
78 };
79 
80 static void _fh_socket_init(FH);
81 static int _fh_socket_close(FH);
82 static int64_t _fh_socket_lseek(FH, int64_t, int);
83 static int _fh_socket_read(FH, void*, int);
84 static int _fh_socket_write(FH, const void*, int);
85 static int _fh_socket_writev(FH, const adb_iovec*, int);
86 static intptr_t _fh_socket_get_os_handle(FH f);
87 
88 static const FHClassRec _fh_socket_class = {
89         _fh_socket_init,  _fh_socket_close,  _fh_socket_lseek,         _fh_socket_read,
90         _fh_socket_write, _fh_socket_writev, _fh_socket_get_os_handle,
91 };
92 
93 #if defined(assert)
94 #undef assert
95 #endif
96 
operator ()(HANDLE h)97 void handle_deleter::operator()(HANDLE h) {
98     // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
99     // implying that NULL is a valid handle, but this is probably impossible.
100     // Other APIs like CreateEvent() are documented to return NULL on error,
101     // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
102     // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
103     // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
104     // only need to check for INVALID_HANDLE_VALUE.
105     if (h != INVALID_HANDLE_VALUE) {
106         if (!CloseHandle(h)) {
107             D("CloseHandle(%p) failed: %s", h,
108               android::base::SystemErrorCodeToString(GetLastError()).c_str());
109         }
110     }
111 }
112 
113 /**************************************************************************/
114 /**************************************************************************/
115 /*****                                                                *****/
116 /*****    common file descriptor handling                             *****/
117 /*****                                                                *****/
118 /**************************************************************************/
119 /**************************************************************************/
120 
121 typedef struct FHRec_
122 {
123     FHClass    clazz;
124     int        used;
125     int        eof;
126     union {
127         HANDLE      handle;
128         SOCKET      socket;
129     } u;
130 
131     char  name[32];
132 } FHRec;
133 
134 #define  fh_handle  u.handle
135 #define  fh_socket  u.socket
136 
137 #define  WIN32_FH_BASE    2048
138 #define  WIN32_MAX_FHS    2048
139 
140 static  std::mutex&  _win32_lock = *new std::mutex();
141 static  FHRec        _win32_fhs[ WIN32_MAX_FHS ];
142 static  int          _win32_fh_next;  // where to start search for free FHRec
143 
_fh_from_int(borrowed_fd bfd,const char * func)144 static FH _fh_from_int(borrowed_fd bfd, const char* func) {
145     FH f;
146 
147     int fd = bfd.get();
148     fd -= WIN32_FH_BASE;
149 
150     if (fd < 0 || fd >= WIN32_MAX_FHS) {
151         D("_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, func);
152         errno = EBADF;
153         return nullptr;
154     }
155 
156     f = &_win32_fhs[fd];
157 
158     if (f->used == 0) {
159         D("_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, func);
160         errno = EBADF;
161         return nullptr;
162     }
163 
164     return f;
165 }
166 
_fh_to_int(FH f)167 static int _fh_to_int(FH f) {
168     if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
169         return (int)(f - _win32_fhs) + WIN32_FH_BASE;
170 
171     return -1;
172 }
173 
_fh_alloc(FHClass clazz)174 static FH _fh_alloc(FHClass clazz) {
175     FH f = nullptr;
176 
177     std::lock_guard<std::mutex> lock(_win32_lock);
178 
179     for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
180         if (_win32_fhs[i].clazz == nullptr) {
181             f = &_win32_fhs[i];
182             _win32_fh_next = i + 1;
183             f->clazz = clazz;
184             f->used = 1;
185             f->eof = 0;
186             f->name[0] = '\0';
187             clazz->_fh_init(f);
188             return f;
189         }
190     }
191 
192     D("_fh_alloc: no more free file descriptors");
193     errno = EMFILE;  // Too many open files
194     return nullptr;
195 }
196 
_fh_close(FH f)197 static int _fh_close(FH f) {
198     // Use lock so that closing only happens once and so that _fh_alloc can't
199     // allocate a FH that we're in the middle of closing.
200     std::lock_guard<std::mutex> lock(_win32_lock);
201 
202     int offset = f - _win32_fhs;
203     if (_win32_fh_next > offset) {
204         _win32_fh_next = offset;
205     }
206 
207     if (f->used) {
208         f->clazz->_fh_close( f );
209         f->name[0] = '\0';
210         f->eof     = 0;
211         f->used    = 0;
212         f->clazz   = nullptr;
213     }
214     return 0;
215 }
216 
217 // Deleter for unique_fh.
218 class fh_deleter {
219  public:
operator ()(struct FHRec_ * fh)220   void operator()(struct FHRec_* fh) {
221     // We're called from a destructor and destructors should not overwrite
222     // errno because callers may do:
223     //   errno = EBLAH;
224     //   return -1; // calls destructor, which should not overwrite errno
225     const int saved_errno = errno;
226     _fh_close(fh);
227     errno = saved_errno;
228   }
229 };
230 
231 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
232 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
233 
234 /**************************************************************************/
235 /**************************************************************************/
236 /*****                                                                *****/
237 /*****    file-based descriptor handling                              *****/
238 /*****                                                                *****/
239 /**************************************************************************/
240 /**************************************************************************/
241 
_fh_file_init(FH f)242 static void _fh_file_init(FH f) {
243     f->fh_handle = INVALID_HANDLE_VALUE;
244 }
245 
_fh_file_close(FH f)246 static int _fh_file_close(FH f) {
247     CloseHandle(f->fh_handle);
248     f->fh_handle = INVALID_HANDLE_VALUE;
249     return 0;
250 }
251 
_fh_file_read(FH f,void * buf,int len)252 static int _fh_file_read(FH f, void* buf, int len) {
253     DWORD read_bytes;
254 
255     if (!ReadFile(f->fh_handle, buf, (DWORD)len, &read_bytes, nullptr)) {
256         D("adb_read: could not read %d bytes from %s", len, f->name);
257         errno = EIO;
258         return -1;
259     } else if (read_bytes < (DWORD)len) {
260         f->eof = 1;
261     }
262     return read_bytes;
263 }
264 
_fh_file_write(FH f,const void * buf,int len)265 static int _fh_file_write(FH f, const void* buf, int len) {
266     DWORD wrote_bytes;
267 
268     if (!WriteFile(f->fh_handle, buf, (DWORD)len, &wrote_bytes, nullptr)) {
269         D("adb_file_write: could not write %d bytes from %s", len, f->name);
270         errno = EIO;
271         return -1;
272     } else if (wrote_bytes < (DWORD)len) {
273         f->eof = 1;
274     }
275     return wrote_bytes;
276 }
277 
_fh_file_writev(FH f,const adb_iovec * iov,int iovcnt)278 static int _fh_file_writev(FH f, const adb_iovec* iov, int iovcnt) {
279     if (iovcnt <= 0) {
280         errno = EINVAL;
281         return -1;
282     }
283 
284     DWORD wrote_bytes = 0;
285 
286     for (int i = 0; i < iovcnt; ++i) {
287         ssize_t rc = _fh_file_write(f, iov[i].iov_base, iov[i].iov_len);
288         if (rc == -1) {
289             return wrote_bytes > 0 ? wrote_bytes : -1;
290         } else if (rc == 0) {
291             return wrote_bytes;
292         }
293 
294         wrote_bytes += rc;
295 
296         if (static_cast<size_t>(rc) < iov[i].iov_len) {
297             return wrote_bytes;
298         }
299     }
300 
301     return wrote_bytes;
302 }
303 
_fh_file_lseek(FH f,int64_t pos,int origin)304 static int64_t _fh_file_lseek(FH f, int64_t pos, int origin) {
305     DWORD method;
306     switch (origin) {
307         case SEEK_SET:
308             method = FILE_BEGIN;
309             break;
310         case SEEK_CUR:
311             method = FILE_CURRENT;
312             break;
313         case SEEK_END:
314             method = FILE_END;
315             break;
316         default:
317             errno = EINVAL;
318             return -1;
319     }
320 
321     LARGE_INTEGER li = {.QuadPart = pos};
322     if (!SetFilePointerEx(f->fh_handle, li, &li, method)) {
323         errno = EIO;
324         return -1;
325     }
326     f->eof = 0;
327     return li.QuadPart;
328 }
329 
_fh_file_get_os_handle(FH f)330 static intptr_t _fh_file_get_os_handle(FH f) {
331     return reinterpret_cast<intptr_t>(f->u.handle);
332 }
333 
334 /**************************************************************************/
335 /**************************************************************************/
336 /*****                                                                *****/
337 /*****    file-based descriptor handling                              *****/
338 /*****                                                                *****/
339 /**************************************************************************/
340 /**************************************************************************/
341 
adb_open(const char * path,int options)342 int adb_open(const char* path, int options) {
343     FH f;
344 
345     DWORD desiredAccess = 0;
346     DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
347 
348     // CreateFileW is inherently O_CLOEXEC by default.
349     options &= ~O_CLOEXEC;
350 
351     switch (options) {
352         case O_RDONLY:
353             desiredAccess = GENERIC_READ;
354             break;
355         case O_WRONLY:
356             desiredAccess = GENERIC_WRITE;
357             break;
358         case O_RDWR:
359             desiredAccess = GENERIC_READ | GENERIC_WRITE;
360             break;
361         default:
362             D("adb_open: invalid options (0x%0x)", options);
363             errno = EINVAL;
364             return -1;
365     }
366 
367     f = _fh_alloc(&_fh_file_class);
368     if (!f) {
369         return -1;
370     }
371 
372     std::wstring path_wide;
373     if (!android::base::UTF8ToWide(path, &path_wide)) {
374         return -1;
375     }
376     f->fh_handle =
377         CreateFileW(path_wide.c_str(), desiredAccess, shareMode, nullptr, OPEN_EXISTING, 0, nullptr);
378 
379     if (f->fh_handle == INVALID_HANDLE_VALUE) {
380         const DWORD err = GetLastError();
381         _fh_close(f);
382         D("adb_open: could not open '%s': ", path);
383         switch (err) {
384             case ERROR_FILE_NOT_FOUND:
385                 D("file not found");
386                 errno = ENOENT;
387                 return -1;
388 
389             case ERROR_PATH_NOT_FOUND:
390                 D("path not found");
391                 errno = ENOTDIR;
392                 return -1;
393 
394             default:
395                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
396                 errno = ENOENT;
397                 return -1;
398         }
399     }
400 
401     snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
402     D("adb_open: '%s' => fd %d", path, _fh_to_int(f));
403     return _fh_to_int(f);
404 }
405 
406 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)407 int adb_creat(const char* path, int mode) {
408     FH f;
409 
410     f = _fh_alloc(&_fh_file_class);
411     if (!f) {
412         return -1;
413     }
414 
415     std::wstring path_wide;
416     if (!android::base::UTF8ToWide(path, &path_wide)) {
417         return -1;
418     }
419     f->fh_handle = CreateFileW(path_wide.c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
420                                nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr);
421 
422     if (f->fh_handle == INVALID_HANDLE_VALUE) {
423         const DWORD err = GetLastError();
424         _fh_close(f);
425         D("adb_creat: could not open '%s': ", path);
426         switch (err) {
427             case ERROR_FILE_NOT_FOUND:
428                 D("file not found");
429                 errno = ENOENT;
430                 return -1;
431 
432             case ERROR_PATH_NOT_FOUND:
433                 D("path not found");
434                 errno = ENOTDIR;
435                 return -1;
436 
437             default:
438                 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
439                 errno = ENOENT;
440                 return -1;
441         }
442     }
443     snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
444     D("adb_creat: '%s' => fd %d", path, _fh_to_int(f));
445     return _fh_to_int(f);
446 }
447 
adb_read(borrowed_fd fd,void * buf,int len)448 int adb_read(borrowed_fd fd, void* buf, int len) {
449     FH f = _fh_from_int(fd, __func__);
450 
451     if (f == nullptr) {
452         errno = EBADF;
453         return -1;
454     }
455 
456     return f->clazz->_fh_read(f, buf, len);
457 }
458 
adb_pread(borrowed_fd fd,void * buf,int len,off64_t offset)459 int adb_pread(borrowed_fd fd, void* buf, int len, off64_t offset) {
460     OVERLAPPED overlapped = {};
461     overlapped.Offset = static_cast<DWORD>(offset);
462     overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32);
463     DWORD bytes_read;
464     if (!::ReadFile(adb_get_os_handle(fd), buf, static_cast<DWORD>(len), &bytes_read,
465                     &overlapped)) {
466         D("adb_pread: could not read %d bytes from FD %d", len, fd.get());
467         switch (::GetLastError()) {
468             case ERROR_IO_PENDING:
469                 errno = EAGAIN;
470                 return -1;
471             default:
472                 errno = EINVAL;
473                 return -1;
474         }
475     }
476     return static_cast<int>(bytes_read);
477 }
478 
adb_write(borrowed_fd fd,const void * buf,int len)479 int adb_write(borrowed_fd fd, const void* buf, int len) {
480     FH f = _fh_from_int(fd, __func__);
481 
482     if (f == nullptr) {
483         errno = EBADF;
484         return -1;
485     }
486 
487     return f->clazz->_fh_write(f, buf, len);
488 }
489 
adb_writev(borrowed_fd fd,const adb_iovec * iov,int iovcnt)490 ssize_t adb_writev(borrowed_fd fd, const adb_iovec* iov, int iovcnt) {
491     FH f = _fh_from_int(fd, __func__);
492 
493     if (f == nullptr) {
494         errno = EBADF;
495         return -1;
496     }
497 
498     return f->clazz->_fh_writev(f, iov, iovcnt);
499 }
500 
adb_pwrite(borrowed_fd fd,const void * buf,int len,off64_t offset)501 int adb_pwrite(borrowed_fd fd, const void* buf, int len, off64_t offset) {
502     OVERLAPPED params = {};
503     params.Offset = static_cast<DWORD>(offset);
504     params.OffsetHigh = static_cast<DWORD>(offset >> 32);
505     DWORD bytes_written = 0;
506     if (!::WriteFile(adb_get_os_handle(fd), buf, len, &bytes_written, &params)) {
507         D("adb_pwrite: could not write %d bytes to FD %d", len, fd.get());
508         switch (::GetLastError()) {
509             case ERROR_IO_PENDING:
510                 errno = EAGAIN;
511                 return -1;
512             default:
513                 errno = EINVAL;
514                 return -1;
515         }
516     }
517     return static_cast<int>(bytes_written);
518 }
519 
adb_lseek(borrowed_fd fd,int64_t pos,int where)520 int64_t adb_lseek(borrowed_fd fd, int64_t pos, int where) {
521     FH f = _fh_from_int(fd, __func__);
522     if (!f) {
523         errno = EBADF;
524         return -1;
525     }
526     return f->clazz->_fh_lseek(f, pos, where);
527 }
528 
adb_close(int fd)529 int adb_close(int fd) {
530     FH f = _fh_from_int(fd, __func__);
531 
532     if (!f) {
533         errno = EBADF;
534         return -1;
535     }
536 
537     D("adb_close: %s", f->name);
538     _fh_close(f);
539     return 0;
540 }
541 
adb_get_os_handle(borrowed_fd fd)542 HANDLE adb_get_os_handle(borrowed_fd fd) {
543     FH f = _fh_from_int(fd, __func__);
544 
545     if (!f) {
546         errno = EBADF;
547         return nullptr;
548     }
549 
550     D("adb_get_os_handle: %s", f->name);
551     const intptr_t intptr_handle = f->clazz->_fh_get_os_handle(f);
552     const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
553     return handle;
554 }
555 
556 /**************************************************************************/
557 /**************************************************************************/
558 /*****                                                                *****/
559 /*****    socket-based file descriptors                               *****/
560 /*****                                                                *****/
561 /**************************************************************************/
562 /**************************************************************************/
563 
564 #undef setsockopt
565 
_socket_set_errno(const DWORD err)566 static void _socket_set_errno( const DWORD err ) {
567     // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
568     // lot of POSIX and socket error codes, some of the resulting error codes
569     // are mapped to strings by adb_strerror().
570     switch ( err ) {
571     case 0:              errno = 0; break;
572     // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
573     // case WSAEINTR:    errno = EINTR; break;
574     case WSAEFAULT:      errno = EFAULT; break;
575     case WSAEINVAL:      errno = EINVAL; break;
576     case WSAEMFILE:      errno = EMFILE; break;
577     // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
578     // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
579     // callers check specifically for EAGAIN.
580     case WSAEWOULDBLOCK: errno = EAGAIN; break;
581     case WSAENOTSOCK:    errno = ENOTSOCK; break;
582     case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
583     case WSAEOPNOTSUPP:  errno = EOPNOTSUPP; break;
584     case WSAENETDOWN:    errno = ENETDOWN; break;
585     case WSAENETRESET:   errno = ENETRESET; break;
586     // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
587     // to use EPIPE for these situations and there are some callers that look
588     // for EPIPE.
589     case WSAECONNABORTED: errno = EPIPE; break;
590     case WSAECONNRESET:  errno = ECONNRESET; break;
591     case WSAENOBUFS:     errno = ENOBUFS; break;
592     case WSAENOTCONN:    errno = ENOTCONN; break;
593     // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
594     // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
595     // considerations: Reportedly send() can return zero on timeout, and POSIX
596     // code may expect EAGAIN instead of ETIMEDOUT on timeout.
597     // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
598     case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
599     default:
600         errno = EINVAL;
601         D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
602            err, errno );
603     }
604 }
605 
adb_poll(adb_pollfd * fds,size_t nfds,int timeout)606 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
607     // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
608     int skipped = 0;
609     std::vector<WSAPOLLFD> sockets;
610     std::vector<adb_pollfd*> original;
611 
612     for (size_t i = 0; i < nfds; ++i) {
613         FH fh = _fh_from_int(fds[i].fd, __func__);
614         if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
615             D("adb_poll received bad FD %d", fds[i].fd);
616             fds[i].revents = POLLNVAL;
617             ++skipped;
618         } else {
619             WSAPOLLFD wsapollfd = {
620                 .fd = fh->u.socket,
621                 .events = static_cast<short>(fds[i].events)
622             };
623             sockets.push_back(wsapollfd);
624             original.push_back(&fds[i]);
625         }
626     }
627 
628     if (sockets.empty()) {
629         return skipped;
630     }
631 
632     // If we have any invalid FDs in our FD set, make sure to return immediately.
633     if (skipped > 0) {
634         timeout = 0;
635     }
636 
637     int result = WSAPoll(sockets.data(), sockets.size(), timeout);
638     if (result == SOCKET_ERROR) {
639         _socket_set_errno(WSAGetLastError());
640         return -1;
641     }
642 
643     // Map the results back onto the original set.
644     for (size_t i = 0; i < sockets.size(); ++i) {
645         original[i]->revents = sockets[i].revents;
646     }
647 
648     // WSAPoll appears to return the number of unique FDs with available events, instead of how many
649     // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
650     // to do. Ignore its result and calculate the proper return value.
651     result = 0;
652     for (size_t i = 0; i < nfds; ++i) {
653         if (fds[i].revents != 0) {
654             ++result;
655         }
656     }
657     return result;
658 }
659 
_fh_socket_init(FH f)660 static void _fh_socket_init(FH f) {
661     f->fh_socket = INVALID_SOCKET;
662 }
663 
_fh_socket_close(FH f)664 static int _fh_socket_close(FH f) {
665     if (f->fh_socket != INVALID_SOCKET) {
666         if (closesocket(f->fh_socket) == SOCKET_ERROR) {
667             // Don't set errno here, since adb_close will ignore it.
668             const DWORD err = WSAGetLastError();
669             D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
670         }
671         f->fh_socket = INVALID_SOCKET;
672     }
673     return 0;
674 }
675 
_fh_socket_lseek(FH f,int64_t pos,int origin)676 static int64_t _fh_socket_lseek(FH f, int64_t pos, int origin) {
677     errno = EPIPE;
678     return -1;
679 }
680 
_fh_socket_read(FH f,void * buf,int len)681 static int _fh_socket_read(FH f, void* buf, int len) {
682     int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
683     if (result == SOCKET_ERROR) {
684         const DWORD err = WSAGetLastError();
685         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
686         // that to reduce spam and confusion.
687         if (err != WSAEWOULDBLOCK) {
688             D("recv fd %d failed: %s", _fh_to_int(f),
689               android::base::SystemErrorCodeToString(err).c_str());
690         }
691         _socket_set_errno(err);
692         result = -1;
693     }
694     return result;
695 }
696 
_fh_socket_write(FH f,const void * buf,int len)697 static int _fh_socket_write(FH f, const void* buf, int len) {
698     int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
699     if (result == SOCKET_ERROR) {
700         const DWORD err = WSAGetLastError();
701         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
702         // that to reduce spam and confusion.
703         if (err != WSAEWOULDBLOCK) {
704             D("send fd %d failed: %s", _fh_to_int(f),
705               android::base::SystemErrorCodeToString(err).c_str());
706         }
707         _socket_set_errno(err);
708         result = -1;
709     } else {
710         // According to https://code.google.com/p/chromium/issues/detail?id=27870
711         // Winsock Layered Service Providers may cause this.
712         CHECK_LE(result, len) << "Tried to write " << len << " bytes to " << f->name << ", but "
713                               << result << " bytes reportedly written";
714     }
715     return result;
716 }
717 
718 // Make sure that adb_iovec is compatible with WSABUF.
719 static_assert(sizeof(adb_iovec) == sizeof(WSABUF), "");
720 static_assert(SIZEOF_MEMBER(adb_iovec, iov_len) == SIZEOF_MEMBER(WSABUF, len), "");
721 static_assert(offsetof(adb_iovec, iov_len) == offsetof(WSABUF, len), "");
722 
723 static_assert(SIZEOF_MEMBER(adb_iovec, iov_base) == SIZEOF_MEMBER(WSABUF, buf), "");
724 static_assert(offsetof(adb_iovec, iov_base) == offsetof(WSABUF, buf), "");
725 
_fh_socket_writev(FH f,const adb_iovec * iov,int iovcnt)726 static int _fh_socket_writev(FH f, const adb_iovec* iov, int iovcnt) {
727     if (iovcnt <= 0) {
728         errno = EINVAL;
729         return -1;
730     }
731 
732     WSABUF* wsabuf = reinterpret_cast<WSABUF*>(const_cast<adb_iovec*>(iov));
733     DWORD bytes_written = 0;
734     int result = WSASend(f->fh_socket, wsabuf, iovcnt, &bytes_written, 0, nullptr, nullptr);
735     if (result == SOCKET_ERROR) {
736         const DWORD err = WSAGetLastError();
737         // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
738         // that to reduce spam and confusion.
739         if (err != WSAEWOULDBLOCK) {
740             D("send fd %d failed: %s", _fh_to_int(f),
741               android::base::SystemErrorCodeToString(err).c_str());
742         }
743         _socket_set_errno(err);
744         return -1;
745     }
746     CHECK_GE(static_cast<DWORD>(std::numeric_limits<int>::max()), bytes_written);
747     return static_cast<int>(bytes_written);
748 }
749 
_fh_socket_get_os_handle(FH f)750 static intptr_t _fh_socket_get_os_handle(FH f) {
751     return f->u.socket;
752 }
753 
754 /**************************************************************************/
755 /**************************************************************************/
756 /*****                                                                *****/
757 /*****    replacement for libs/cutils/socket_xxxx.c                   *****/
758 /*****                                                                *****/
759 /**************************************************************************/
760 /**************************************************************************/
761 
_init_winsock()762 static void _init_winsock() {
763     static std::once_flag once;
764     std::call_once(once, []() {
765         WSADATA wsaData;
766         int rc = WSAStartup(MAKEWORD(2, 2), &wsaData);
767         if (rc != 0) {
768             LOG(FATAL) << "could not initialize Winsock: "
769                        << android::base::SystemErrorCodeToString(rc);
770         }
771 
772         // Note that we do not call atexit() to register WSACleanup to be called
773         // at normal process termination because:
774         // 1) When exit() is called, there are still threads actively using
775         //    Winsock because we don't cleanly shutdown all threads, so it
776         //    doesn't make sense to call WSACleanup() and may cause problems
777         //    with those threads.
778         // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
779         //    calls WSACleanup() which tries to unload a DLL, which tries to
780         //    grab the LoaderLock. This conflicts with the device_poll_thread
781         //    which holds the LoaderLock because AdbWinApi.dll calls
782         //    setupapi.dll which tries to load wintrust.dll which tries to load
783         //    crypt32.dll which calls atexit() which tries to acquire the C
784         //    Runtime lock that the other thread holds.
785     });
786 }
787 
788 // Map a socket type to an explicit socket protocol instead of using the socket
789 // protocol of 0. Explicit socket protocols are used by most apps and we should
790 // do the same to reduce the chance of exercising uncommon code-paths that might
791 // have problems or that might load different Winsock service providers that
792 // have problems.
GetSocketProtocolFromSocketType(int type)793 static int GetSocketProtocolFromSocketType(int type) {
794     switch (type) {
795         case SOCK_STREAM:
796             return IPPROTO_TCP;
797         case SOCK_DGRAM:
798             return IPPROTO_UDP;
799         default:
800             LOG(FATAL) << "Unknown socket type: " << type;
801             return 0;
802     }
803 }
804 
network_loopback_client(int port,int type,std::string * error)805 int network_loopback_client(int port, int type, std::string* error) {
806     struct sockaddr_in addr;
807     SOCKET s;
808 
809     unique_fh f(_fh_alloc(&_fh_socket_class));
810     if (!f) {
811         *error = strerror(errno);
812         return -1;
813     }
814 
815     memset(&addr, 0, sizeof(addr));
816     addr.sin_family = AF_INET;
817     addr.sin_port = htons(port);
818     addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
819 
820     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
821     if (s == INVALID_SOCKET) {
822         const DWORD err = WSAGetLastError();
823         *error = android::base::StringPrintf("cannot create socket: %s",
824                                              android::base::SystemErrorCodeToString(err).c_str());
825         D("%s", error->c_str());
826         _socket_set_errno(err);
827         return -1;
828     }
829     f->fh_socket = s;
830 
831     if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
832         // Save err just in case inet_ntoa() or ntohs() changes the last error.
833         const DWORD err = WSAGetLastError();
834         *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
835                                              inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
836                                              android::base::SystemErrorCodeToString(err).c_str());
837         D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
838           error->c_str());
839         _socket_set_errno(err);
840         return -1;
841     }
842 
843     const int fd = _fh_to_int(f.get());
844     snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
845              port);
846     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
847     f.release();
848     return fd;
849 }
850 
851 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
_network_server(int port,int type,u_long interface_address,std::string * error)852 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
853     struct sockaddr_in addr;
854     SOCKET s;
855     int n;
856 
857     unique_fh f(_fh_alloc(&_fh_socket_class));
858     if (!f) {
859         *error = strerror(errno);
860         return -1;
861     }
862 
863     memset(&addr, 0, sizeof(addr));
864     addr.sin_family = AF_INET;
865     addr.sin_port = htons(port);
866     addr.sin_addr.s_addr = htonl(interface_address);
867 
868     // TODO: Consider using dual-stack socket that can simultaneously listen on
869     // IPv4 and IPv6.
870     s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
871     if (s == INVALID_SOCKET) {
872         const DWORD err = WSAGetLastError();
873         *error = android::base::StringPrintf("cannot create socket: %s",
874                                              android::base::SystemErrorCodeToString(err).c_str());
875         D("%s", error->c_str());
876         _socket_set_errno(err);
877         return -1;
878     }
879 
880     f->fh_socket = s;
881 
882     // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
883     // same port, so instead use SO_EXCLUSIVEADDRUSE.
884     n = 1;
885     if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
886         const DWORD err = WSAGetLastError();
887         *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
888                                              android::base::SystemErrorCodeToString(err).c_str());
889         D("%s", error->c_str());
890         _socket_set_errno(err);
891         return -1;
892     }
893 
894     if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
895         // Save err just in case inet_ntoa() or ntohs() changes the last error.
896         const DWORD err = WSAGetLastError();
897         *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
898                                              ntohs(addr.sin_port),
899                                              android::base::SystemErrorCodeToString(err).c_str());
900         D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
901         _socket_set_errno(err);
902         return -1;
903     }
904     if (type == SOCK_STREAM) {
905         if (listen(s, SOMAXCONN) == SOCKET_ERROR) {
906             const DWORD err = WSAGetLastError();
907             *error = android::base::StringPrintf(
908                 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
909             D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
910               error->c_str());
911             _socket_set_errno(err);
912             return -1;
913         }
914     }
915     const int fd = _fh_to_int(f.get());
916     snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
917              interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
918              port);
919     D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
920     f.release();
921     return fd;
922 }
923 
network_loopback_server(int port,int type,std::string * error,bool prefer_ipv4)924 int network_loopback_server(int port, int type, std::string* error, bool prefer_ipv4) {
925     // TODO implement IPv6 support on windows
926     return _network_server(port, type, INADDR_LOOPBACK, error);
927 }
928 
network_inaddr_any_server(int port,int type,std::string * error)929 int network_inaddr_any_server(int port, int type, std::string* error) {
930     return _network_server(port, type, INADDR_ANY, error);
931 }
932 
network_connect(const std::string & host,int port,int type,int timeout,std::string * error)933 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
934     unique_fh f(_fh_alloc(&_fh_socket_class));
935     if (!f) {
936         *error = strerror(errno);
937         return -1;
938     }
939 
940     struct addrinfo hints;
941     memset(&hints, 0, sizeof(hints));
942     hints.ai_family = AF_UNSPEC;
943     hints.ai_socktype = type;
944     hints.ai_protocol = GetSocketProtocolFromSocketType(type);
945 
946     char port_str[16];
947     snprintf(port_str, sizeof(port_str), "%d", port);
948 
949     struct addrinfo* addrinfo_ptr = nullptr;
950 
951 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
952 // TODO: When the Android SDK tools increases the Windows system
953 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
954 #else
955 // Otherwise, keep using getaddrinfo(), or do runtime API detection
956 // with GetProcAddress("GetAddrInfoW").
957 #endif
958     if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
959         const DWORD err = WSAGetLastError();
960         *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
961                                              host.c_str(), port_str,
962                                              android::base::SystemErrorCodeToString(err).c_str());
963 
964         D("%s", error->c_str());
965         _socket_set_errno(err);
966         return -1;
967     }
968     std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo);
969     addrinfo_ptr = nullptr;
970 
971     // TODO: Try all the addresses if there's more than one? This just uses
972     // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
973     // which tries all addresses, takes a timeout and more.
974     SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
975     if (s == INVALID_SOCKET) {
976         const DWORD err = WSAGetLastError();
977         *error = android::base::StringPrintf("cannot create socket: %s",
978                                              android::base::SystemErrorCodeToString(err).c_str());
979         D("%s", error->c_str());
980         _socket_set_errno(err);
981         return -1;
982     }
983     f->fh_socket = s;
984 
985     // TODO: Implement timeouts for Windows. Seems like the default in theory
986     // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
987     if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
988         // TODO: Use WSAAddressToString or inet_ntop on address.
989         const DWORD err = WSAGetLastError();
990         *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
991                                              android::base::SystemErrorCodeToString(err).c_str());
992         D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
993           port_str, error->c_str());
994         _socket_set_errno(err);
995         return -1;
996     }
997 
998     const int fd = _fh_to_int(f.get());
999     snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
1000              port);
1001     D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
1002       fd);
1003     f.release();
1004     return fd;
1005 }
1006 
adb_register_socket(SOCKET s)1007 int adb_register_socket(SOCKET s) {
1008     FH f = _fh_alloc(&_fh_socket_class);
1009     f->fh_socket = s;
1010     return _fh_to_int(f);
1011 }
1012 
isBlankStr(const char * str)1013 static bool isBlankStr(const char* str) {
1014     for (; *str != '\0'; ++str) {
1015         if (!isblank(*str)) {
1016             return false;
1017         }
1018     }
1019     return true;
1020 }
1021 
adb_gethostname(char * name,size_t len)1022 int adb_gethostname(char* name, size_t len) {
1023     const char* computerName = adb_getenv("COMPUTERNAME");
1024     if (computerName && !isBlankStr(computerName)) {
1025         strncpy(name, computerName, len);
1026         name[len - 1] = '\0';
1027         return 0;
1028     }
1029 
1030     wchar_t buffer[MAX_COMPUTERNAME_LENGTH + 1];
1031     DWORD size = sizeof(buffer);
1032     if (!GetComputerNameW(buffer, &size)) {
1033         return -1;
1034     }
1035     std::string name_utf8;
1036     if (!android::base::WideToUTF8(buffer, &name_utf8)) {
1037         return -1;
1038     }
1039 
1040     strncpy(name, name_utf8.c_str(), len);
1041     name[len - 1] = '\0';
1042     return 0;
1043 }
1044 
adb_getlogin_r(char * buf,size_t bufsize)1045 int adb_getlogin_r(char* buf, size_t bufsize) {
1046     wchar_t buffer[UNLEN + 1];
1047     DWORD len = sizeof(buffer);
1048     if (!GetUserNameW(buffer, &len)) {
1049         return -1;
1050     }
1051 
1052     std::string login;
1053     if (!android::base::WideToUTF8(buffer, &login)) {
1054         return -1;
1055     }
1056 
1057     strncpy(buf, login.c_str(), bufsize);
1058     buf[bufsize - 1] = '\0';
1059     return 0;
1060 }
1061 
1062 #undef accept
adb_socket_accept(borrowed_fd serverfd,struct sockaddr * addr,socklen_t * addrlen)1063 int adb_socket_accept(borrowed_fd serverfd, struct sockaddr* addr, socklen_t* addrlen) {
1064     FH serverfh = _fh_from_int(serverfd, __func__);
1065 
1066     if (!serverfh || serverfh->clazz != &_fh_socket_class) {
1067         D("adb_socket_accept: invalid fd %d", serverfd.get());
1068         errno = EBADF;
1069         return -1;
1070     }
1071 
1072     unique_fh fh(_fh_alloc(&_fh_socket_class));
1073     if (!fh) {
1074         PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
1075                        "descriptor";
1076         return -1;
1077     }
1078 
1079     fh->fh_socket = accept(serverfh->fh_socket, addr, addrlen);
1080     if (fh->fh_socket == INVALID_SOCKET) {
1081         const DWORD err = WSAGetLastError();
1082         LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd.get()
1083                    << " failed: " + android::base::SystemErrorCodeToString(err);
1084         _socket_set_errno(err);
1085         return -1;
1086     }
1087 
1088     const int fd = _fh_to_int(fh.get());
1089     snprintf(fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name);
1090     D("adb_socket_accept on fd %d returns fd %d", serverfd.get(), fd);
1091     fh.release();
1092     return fd;
1093 }
1094 
adb_setsockopt(borrowed_fd fd,int level,int optname,const void * optval,socklen_t optlen)1095 int adb_setsockopt(borrowed_fd fd, int level, int optname, const void* optval, socklen_t optlen) {
1096     FH fh = _fh_from_int(fd, __func__);
1097 
1098     if (!fh || fh->clazz != &_fh_socket_class) {
1099         D("adb_setsockopt: invalid fd %d", fd.get());
1100         errno = EBADF;
1101         return -1;
1102     }
1103 
1104     // TODO: Once we can assume Windows Vista or later, if the caller is trying
1105     // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
1106     // auto-tuning.
1107 
1108     int result =
1109         setsockopt(fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen);
1110     if (result == SOCKET_ERROR) {
1111         const DWORD err = WSAGetLastError();
1112         D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n", fd.get(), level,
1113           optname, android::base::SystemErrorCodeToString(err).c_str());
1114         _socket_set_errno(err);
1115         result = -1;
1116     }
1117     return result;
1118 }
1119 
adb_getsockname(borrowed_fd fd,struct sockaddr * sockaddr,socklen_t * optlen)1120 static int adb_getsockname(borrowed_fd fd, struct sockaddr* sockaddr, socklen_t* optlen) {
1121     FH fh = _fh_from_int(fd, __func__);
1122 
1123     if (!fh || fh->clazz != &_fh_socket_class) {
1124         D("adb_getsockname: invalid fd %d", fd.get());
1125         errno = EBADF;
1126         return -1;
1127     }
1128 
1129     int result = getsockname(fh->fh_socket, sockaddr, optlen);
1130     if (result == SOCKET_ERROR) {
1131         const DWORD err = WSAGetLastError();
1132         D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd.get(),
1133           android::base::SystemErrorCodeToString(err).c_str());
1134         _socket_set_errno(err);
1135         result = -1;
1136     }
1137     return result;
1138 }
1139 
adb_socket_get_local_port(borrowed_fd fd)1140 int adb_socket_get_local_port(borrowed_fd fd) {
1141     sockaddr_storage addr_storage;
1142     socklen_t addr_len = sizeof(addr_storage);
1143 
1144     if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1145         D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno));
1146         return -1;
1147     }
1148 
1149     if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) {
1150         D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family);
1151         errno = ECONNABORTED;
1152         return -1;
1153     }
1154 
1155     return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port);
1156 }
1157 
adb_shutdown(borrowed_fd fd,int direction)1158 int adb_shutdown(borrowed_fd fd, int direction) {
1159     FH f = _fh_from_int(fd, __func__);
1160 
1161     if (!f || f->clazz != &_fh_socket_class) {
1162         D("adb_shutdown: invalid fd %d", fd.get());
1163         errno = EBADF;
1164         return -1;
1165     }
1166 
1167     D("adb_shutdown: %s", f->name);
1168     if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) {
1169         const DWORD err = WSAGetLastError();
1170         D("socket shutdown fd %d failed: %s", fd.get(),
1171           android::base::SystemErrorCodeToString(err).c_str());
1172         _socket_set_errno(err);
1173         return -1;
1174     }
1175     return 0;
1176 }
1177 
1178 // Emulate socketpair(2) by binding and connecting to a socket.
adb_socketpair(int sv[2])1179 int adb_socketpair(int sv[2]) {
1180     int server = -1;
1181     int client = -1;
1182     int accepted = -1;
1183     int local_port = -1;
1184     std::string error;
1185 
1186     server = network_loopback_server(0, SOCK_STREAM, &error, true);
1187     if (server < 0) {
1188         D("adb_socketpair: failed to create server: %s", error.c_str());
1189         goto fail;
1190     }
1191 
1192     local_port = adb_socket_get_local_port(server);
1193     if (local_port < 0) {
1194         D("adb_socketpair: failed to get server port number: %s", error.c_str());
1195         goto fail;
1196     }
1197     D("adb_socketpair: bound on port %d", local_port);
1198 
1199     client = network_loopback_client(local_port, SOCK_STREAM, &error);
1200     if (client < 0) {
1201         D("adb_socketpair: failed to connect client: %s", error.c_str());
1202         goto fail;
1203     }
1204 
1205     accepted = adb_socket_accept(server, nullptr, nullptr);
1206     if (accepted < 0) {
1207         D("adb_socketpair: failed to accept: %s", strerror(errno));
1208         goto fail;
1209     }
1210     adb_close(server);
1211     sv[0] = client;
1212     sv[1] = accepted;
1213     return 0;
1214 
1215 fail:
1216     if (server >= 0) {
1217         adb_close(server);
1218     }
1219     if (client >= 0) {
1220         adb_close(client);
1221     }
1222     if (accepted >= 0) {
1223         adb_close(accepted);
1224     }
1225     return -1;
1226 }
1227 
set_file_block_mode(borrowed_fd fd,bool block)1228 bool set_file_block_mode(borrowed_fd fd, bool block) {
1229     FH fh = _fh_from_int(fd, __func__);
1230 
1231     if (!fh || !fh->used) {
1232         errno = EBADF;
1233         D("Setting nonblocking on bad file descriptor %d", fd.get());
1234         return false;
1235     }
1236 
1237     if (fh->clazz == &_fh_socket_class) {
1238         u_long x = !block;
1239         if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1240             int error = WSAGetLastError();
1241             _socket_set_errno(error);
1242             D("Setting %d nonblocking failed (%d)", fd.get(), error);
1243             return false;
1244         }
1245         return true;
1246     } else {
1247         errno = ENOTSOCK;
1248         D("Setting nonblocking on non-socket %d", fd.get());
1249         return false;
1250     }
1251 }
1252 
set_tcp_keepalive(borrowed_fd fd,int interval_sec)1253 bool set_tcp_keepalive(borrowed_fd fd, int interval_sec) {
1254     FH fh = _fh_from_int(fd, __func__);
1255 
1256     if (!fh || fh->clazz != &_fh_socket_class) {
1257         D("set_tcp_keepalive(%d) failed: invalid fd", fd.get());
1258         errno = EBADF;
1259         return false;
1260     }
1261 
1262     tcp_keepalive keepalive;
1263     keepalive.onoff = (interval_sec > 0);
1264     keepalive.keepalivetime = interval_sec * 1000;
1265     keepalive.keepaliveinterval = interval_sec * 1000;
1266 
1267     DWORD bytes_returned = 0;
1268     if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1269                  &bytes_returned, nullptr, nullptr) != 0) {
1270         const DWORD err = WSAGetLastError();
1271         D("set_tcp_keepalive(%d) failed: %s", fd.get(),
1272           android::base::SystemErrorCodeToString(err).c_str());
1273         _socket_set_errno(err);
1274         return false;
1275     }
1276 
1277     return true;
1278 }
1279 
1280 /**************************************************************************/
1281 /**************************************************************************/
1282 /*****                                                                *****/
1283 /*****      Console Window Terminal Emulation                         *****/
1284 /*****                                                                *****/
1285 /**************************************************************************/
1286 /**************************************************************************/
1287 
1288 // This reads input from a Win32 console window and translates it into Unix
1289 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1290 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
1291 // is emulated instead of xterm because it is probably more popular than xterm:
1292 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1293 // supports modern fonts, etc. It seems best to emulate the terminal that most
1294 // Android developers use because they'll fix apps (the shell, etc.) to keep
1295 // working with that terminal's emulation.
1296 //
1297 // The point of this emulation is not to be perfect or to solve all issues with
1298 // console windows on Windows, but to be better than the original code which
1299 // just called read() (which called ReadFile(), which called ReadConsoleA())
1300 // which did not support Ctrl-C, tab completion, shell input line editing
1301 // keys, server echo, and more.
1302 //
1303 // This implementation reconfigures the console with SetConsoleMode(), then
1304 // calls ReadConsoleInput() to get raw input which it remaps to Unix
1305 // terminal-style sequences which is returned via unix_read() which is used
1306 // by the 'adb shell' command.
1307 //
1308 // Code organization:
1309 //
1310 // * _get_console_handle() and unix_isatty() provide console information.
1311 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1312 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
1313 // * _console_read() is the main code of the emulation.
1314 
1315 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1316 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1317 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
_get_console_handle(borrowed_fd fd,DWORD * mode=nullptr)1318 static HANDLE _get_console_handle(borrowed_fd fd, DWORD* mode = nullptr) {
1319     // First check isatty(); this is very fast and eliminates most non-console
1320     // FDs, but returns 1 for both consoles and character devices like NUL.
1321 #pragma push_macro("isatty")
1322 #undef isatty
1323     if (!isatty(fd.get())) {
1324         return nullptr;
1325     }
1326 #pragma pop_macro("isatty")
1327 
1328     // To differentiate between character devices and consoles we need to get
1329     // the underlying HANDLE and use GetConsoleMode(), which is what requires
1330     // GENERIC_READ permissions.
1331     const intptr_t intptr_handle = _get_osfhandle(fd.get());
1332     if (intptr_handle == -1) {
1333         return nullptr;
1334     }
1335     const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1336     DWORD temp_mode = 0;
1337     if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1338         return nullptr;
1339     }
1340 
1341     return handle;
1342 }
1343 
1344 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
_get_console_handle(FILE * const stream)1345 static HANDLE _get_console_handle(FILE* const stream) {
1346     // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1347     android::base::ErrnoRestorer er;
1348     const int fd = fileno(stream);
1349     if (fd < 0) {
1350         return nullptr;
1351     }
1352     return _get_console_handle(fd);
1353 }
1354 
unix_isatty(borrowed_fd fd)1355 int unix_isatty(borrowed_fd fd) {
1356     return _get_console_handle(fd) ? 1 : 0;
1357 }
1358 
1359 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console,INPUT_RECORD * const input_record)1360 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1361     for (;;) {
1362         DWORD read_count = 0;
1363         memset(input_record, 0, sizeof(*input_record));
1364         if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1365             D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1366               android::base::SystemErrorCodeToString(GetLastError()).c_str());
1367             errno = EIO;
1368             return false;
1369         }
1370 
1371         if (read_count == 0) {   // should be impossible
1372             LOG(FATAL) << "ReadConsoleInputA returned 0";
1373         }
1374 
1375         if (read_count != 1) {   // should be impossible
1376             LOG(FATAL) << "ReadConsoleInputA did not return one input record";
1377         }
1378 
1379         // If the console window is resized, emulate SIGWINCH by breaking out
1380         // of read() with errno == EINTR. Note that there is no event on
1381         // vertical resize because we don't give the console our own custom
1382         // screen buffer (with CreateConsoleScreenBuffer() +
1383         // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1384         // supports scrollback, but doesn't seem to raise an event for vertical
1385         // window resize.
1386         if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1387             errno = EINTR;
1388             return false;
1389         }
1390 
1391         if ((input_record->EventType == KEY_EVENT) &&
1392             (input_record->Event.KeyEvent.bKeyDown)) {
1393             if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1394                 LOG(FATAL) << "ReadConsoleInputA returned a key event with zero repeat count";
1395             }
1396 
1397             // Got an interesting INPUT_RECORD, so return
1398             return true;
1399         }
1400     }
1401 }
1402 
_is_shift_pressed(const DWORD control_key_state)1403 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1404     return (control_key_state & SHIFT_PRESSED) != 0;
1405 }
1406 
_is_ctrl_pressed(const DWORD control_key_state)1407 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1408     return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1409 }
1410 
_is_alt_pressed(const DWORD control_key_state)1411 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1412     return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1413 }
1414 
_is_numlock_on(const DWORD control_key_state)1415 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1416     return (control_key_state & NUMLOCK_ON) != 0;
1417 }
1418 
_is_capslock_on(const DWORD control_key_state)1419 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1420     return (control_key_state & CAPSLOCK_ON) != 0;
1421 }
1422 
_is_enhanced_key(const DWORD control_key_state)1423 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1424     return (control_key_state & ENHANCED_KEY) != 0;
1425 }
1426 
1427 // Constants from MSDN for ToAscii().
1428 static const BYTE TOASCII_KEY_OFF = 0x00;
1429 static const BYTE TOASCII_KEY_DOWN = 0x80;
1430 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock
1431 
1432 // Given a key event, ignore a modifier key and return the character that was
1433 // entered without the modifier. Writes to *ch and returns the number of bytes
1434 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)1435 static size_t _get_char_ignoring_modifier(char* const ch,
1436     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1437     const WORD modifier) {
1438     // If there is no character from Windows, try ignoring the specified
1439     // modifier and look for a character. Note that if AltGr is being used,
1440     // there will be a character from Windows.
1441     if (key_event->uChar.AsciiChar == '\0') {
1442         // Note that we read the control key state from the passed in argument
1443         // instead of from key_event since the argument has been normalized.
1444         if (((modifier == VK_SHIFT)   &&
1445             _is_shift_pressed(control_key_state)) ||
1446             ((modifier == VK_CONTROL) &&
1447             _is_ctrl_pressed(control_key_state)) ||
1448             ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) {
1449 
1450             BYTE key_state[256]   = {0};
1451             key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ?
1452                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1453             key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ?
1454                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1455             key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ?
1456                 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1457             key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ?
1458                 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1459 
1460             // cause this modifier to be ignored
1461             key_state[modifier]   = TOASCII_KEY_OFF;
1462 
1463             WORD translated = 0;
1464             if (ToAscii(key_event->wVirtualKeyCode,
1465                 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1466                 // Ignoring the modifier, we found a character.
1467                 *ch = (CHAR)translated;
1468                 return 1;
1469             }
1470         }
1471     }
1472 
1473     // Just use whatever Windows told us originally.
1474     *ch = key_event->uChar.AsciiChar;
1475 
1476     // If the character from Windows is NULL, return a size of zero.
1477     return (*ch == '\0') ? 0 : 1;
1478 }
1479 
1480 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1481 // but taking into account the shift key. This is because for a sequence like
1482 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1483 // we want to find the character ')'.
1484 //
1485 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1486 // because it is the default key-sequence to switch the input language.
1487 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1488 static __inline__ size_t _get_non_control_char(char* const ch,
1489     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1490     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1491         VK_CONTROL);
1492 }
1493 
1494 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1495 static __inline__ size_t _get_non_alt_char(char* const ch,
1496     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1497     return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1498         VK_MENU);
1499 }
1500 
1501 // Ignore the control key, find the character from Windows, and apply any
1502 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1503 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1504 static size_t _get_control_character(char* const pch,
1505     const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1506     const size_t len = _get_non_control_char(pch, key_event,
1507         control_key_state);
1508 
1509     if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1510         char ch = *pch;
1511         switch (ch) {
1512         case '2':
1513         case '@':
1514         case '`':
1515             ch = '\0';
1516             break;
1517         case '3':
1518         case '[':
1519         case '{':
1520             ch = '\x1b';
1521             break;
1522         case '4':
1523         case '\\':
1524         case '|':
1525             ch = '\x1c';
1526             break;
1527         case '5':
1528         case ']':
1529         case '}':
1530             ch = '\x1d';
1531             break;
1532         case '6':
1533         case '^':
1534         case '~':
1535             ch = '\x1e';
1536             break;
1537         case '7':
1538         case '-':
1539         case '_':
1540             ch = '\x1f';
1541             break;
1542         case '8':
1543             ch = '\x7f';
1544             break;
1545         case '/':
1546             if (!_is_alt_pressed(control_key_state)) {
1547                 ch = '\x1f';
1548             }
1549             break;
1550         case '?':
1551             if (!_is_alt_pressed(control_key_state)) {
1552                 ch = '\x7f';
1553             }
1554             break;
1555         }
1556         *pch = ch;
1557     }
1558 
1559     return len;
1560 }
1561 
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)1562 static DWORD _normalize_altgr_control_key_state(
1563     const KEY_EVENT_RECORD* const key_event) {
1564     DWORD control_key_state = key_event->dwControlKeyState;
1565 
1566     // If we're in an AltGr situation where the AltGr key is down (depending on
1567     // the keyboard layout, that might be the physical right alt key which
1568     // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1569     // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1570     // a character (which indicates that there was an AltGr mapping), then act
1571     // as if alt and control are not really down for the purposes of modifiers.
1572     // This makes it so that if the user with, say, a German keyboard layout
1573     // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1574     // output the key and we don't see the Alt and Ctrl keys.
1575     if (_is_ctrl_pressed(control_key_state) &&
1576         _is_alt_pressed(control_key_state)
1577         && (key_event->uChar.AsciiChar != '\0')) {
1578         // Try to remove as few bits as possible to improve our chances of
1579         // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1580         // Left-Alt + Right-Ctrl + AltGr.
1581         if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1582             // Remove Right-Alt.
1583             control_key_state &= ~RIGHT_ALT_PRESSED;
1584             // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1585             // pressed, Left-Ctrl is almost always set, except if the user
1586             // presses Right-Ctrl, then AltGr (in that specific order) for
1587             // whatever reason. At any rate, make sure the bit is not set.
1588             control_key_state &= ~LEFT_CTRL_PRESSED;
1589         } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1590             // Remove Left-Alt.
1591             control_key_state &= ~LEFT_ALT_PRESSED;
1592             // Whichever Ctrl key is down, remove it from the state. We only
1593             // remove one key, to improve our chances of detecting the
1594             // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1595             if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1596                 // Remove Left-Ctrl.
1597                 control_key_state &= ~LEFT_CTRL_PRESSED;
1598             } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1599                 // Remove Right-Ctrl.
1600                 control_key_state &= ~RIGHT_CTRL_PRESSED;
1601             }
1602         }
1603 
1604         // Note that this logic isn't 100% perfect because Windows doesn't
1605         // allow us to detect all combinations because a physical AltGr key
1606         // press shows up as two bits, plus some combinations are ambiguous
1607         // about what is actually physically pressed.
1608     }
1609 
1610     return control_key_state;
1611 }
1612 
1613 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1614 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1615 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1616 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)1617 static DWORD _normalize_keypad_control_key_state(const WORD vk,
1618     const DWORD control_key_state) {
1619     if (!_is_numlock_on(control_key_state)) {
1620         return control_key_state;
1621     }
1622     if (!_is_enhanced_key(control_key_state)) {
1623         switch (vk) {
1624             case VK_INSERT: // 0
1625             case VK_DELETE: // .
1626             case VK_END:    // 1
1627             case VK_DOWN:   // 2
1628             case VK_NEXT:   // 3
1629             case VK_LEFT:   // 4
1630             case VK_CLEAR:  // 5
1631             case VK_RIGHT:  // 6
1632             case VK_HOME:   // 7
1633             case VK_UP:     // 8
1634             case VK_PRIOR:  // 9
1635                 return control_key_state | SHIFT_PRESSED;
1636         }
1637     }
1638 
1639     return control_key_state;
1640 }
1641 
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)1642 static const char* _get_keypad_sequence(const DWORD control_key_state,
1643     const char* const normal, const char* const shifted) {
1644     if (_is_shift_pressed(control_key_state)) {
1645         // Shift is pressed and NumLock is off
1646         return shifted;
1647     } else {
1648         // Shift is not pressed and NumLock is off, or,
1649         // Shift is pressed and NumLock is on, in which case we want the
1650         // NumLock and Shift to neutralize each other, thus, we want the normal
1651         // sequence.
1652         return normal;
1653     }
1654     // If Shift is not pressed and NumLock is on, a different virtual key code
1655     // is returned by Windows, which can be taken care of by a different case
1656     // statement in _console_read().
1657 }
1658 
1659 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)1660 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1661     DWORD control_key_state, const char* const normal) {
1662     // Copy the base sequence into buf.
1663     const size_t len = strlen(normal);
1664     memcpy(buf, normal, len);
1665 
1666     int code = 0;
1667 
1668     control_key_state = _normalize_keypad_control_key_state(vk,
1669         control_key_state);
1670 
1671     if (_is_shift_pressed(control_key_state)) {
1672         code |= 0x1;
1673     }
1674     if (_is_alt_pressed(control_key_state)) {   // any alt key pressed
1675         code |= 0x2;
1676     }
1677     if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed
1678         code |= 0x4;
1679     }
1680     // If some modifier was held down, then we need to insert the modifier code
1681     if (code != 0) {
1682         if (len == 0) {
1683             // Should be impossible because caller should pass a string of
1684             // non-zero length.
1685             return 0;
1686         }
1687         size_t index = len - 1;
1688         const char lastChar = buf[index];
1689         if (lastChar != '~') {
1690             buf[index++] = '1';
1691         }
1692         buf[index++] = ';';         // modifier separator
1693         // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1694         // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1695         buf[index++] = '1' + code;
1696         buf[index++] = lastChar;    // move ~ (or other last char) to the end
1697         return index;
1698     }
1699     return len;
1700 }
1701 
1702 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)1703 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1704     const DWORD control_key_state, const char* const normal,
1705     const char shifted) {
1706     if (_is_shift_pressed(control_key_state)) {
1707         // Shift is pressed and NumLock is off
1708         if (shifted != '\0') {
1709             buf[0] = shifted;
1710             return sizeof(buf[0]);
1711         } else {
1712             return 0;
1713         }
1714     } else {
1715         // Shift is not pressed and NumLock is off, or,
1716         // Shift is pressed and NumLock is on, in which case we want the
1717         // NumLock and Shift to neutralize each other, thus, we want the normal
1718         // sequence.
1719         return _get_modifier_sequence(buf, vk, control_key_state, normal);
1720     }
1721     // If Shift is not pressed and NumLock is on, a different virtual key code
1722     // is returned by Windows, which can be taken care of by a different case
1723     // statement in _console_read().
1724 }
1725 
1726 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1727 // Standard German. Figure this out at runtime so we know what to output for
1728 // Shift-VK_DELETE.
_get_decimal_char()1729 static char _get_decimal_char() {
1730     return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1731 }
1732 
1733 // Prefix the len bytes in buf with the escape character, and then return the
1734 // new buffer length.
_escape_prefix(char * const buf,const size_t len)1735 static size_t _escape_prefix(char* const buf, const size_t len) {
1736     // If nothing to prefix, don't do anything. We might be called with
1737     // len == 0, if alt was held down with a dead key which produced nothing.
1738     if (len == 0) {
1739         return 0;
1740     }
1741 
1742     memmove(&buf[1], buf, len);
1743     buf[0] = '\x1b';
1744     return len + 1;
1745 }
1746 
1747 // Internal buffer to satisfy future _console_read() calls.
1748 static auto& g_console_input_buffer = *new std::vector<char>();
1749 
1750 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1751 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)1752 static int _console_read(const HANDLE console, void* buf, size_t len) {
1753     for (;;) {
1754         // Read of zero bytes should not block waiting for something from the console.
1755         if (len == 0) {
1756             return 0;
1757         }
1758 
1759         // Flush as much as possible from input buffer.
1760         if (!g_console_input_buffer.empty()) {
1761             const int bytes_read = std::min(len, g_console_input_buffer.size());
1762             memcpy(buf, g_console_input_buffer.data(), bytes_read);
1763             const auto begin = g_console_input_buffer.begin();
1764             g_console_input_buffer.erase(begin, begin + bytes_read);
1765             return bytes_read;
1766         }
1767 
1768         // Read from the actual console. This may block until input.
1769         INPUT_RECORD input_record;
1770         if (!_get_key_event_record(console, &input_record)) {
1771             return -1;
1772         }
1773 
1774         KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1775         const WORD vk = key_event->wVirtualKeyCode;
1776         const CHAR ch = key_event->uChar.AsciiChar;
1777         const DWORD control_key_state = _normalize_altgr_control_key_state(
1778             key_event);
1779 
1780         // The following emulation code should write the output sequence to
1781         // either seqstr or to seqbuf and seqbuflen.
1782         const char* seqstr = nullptr;  // NULL terminated C-string
1783         // Enough space for max sequence string below, plus modifiers and/or
1784         // escape prefix.
1785         char seqbuf[16];
1786         size_t seqbuflen = 0;       // Space used in seqbuf.
1787 
1788 #define MATCH(vk, normal) \
1789             case (vk): \
1790             { \
1791                 seqstr = (normal); \
1792             } \
1793             break;
1794 
1795         // Modifier keys should affect the output sequence.
1796 #define MATCH_MODIFIER(vk, normal) \
1797             case (vk): \
1798             { \
1799                 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1800                     control_key_state, (normal)); \
1801             } \
1802             break;
1803 
1804         // The shift key should affect the output sequence.
1805 #define MATCH_KEYPAD(vk, normal, shifted) \
1806             case (vk): \
1807             { \
1808                 seqstr = _get_keypad_sequence(control_key_state, (normal), \
1809                     (shifted)); \
1810             } \
1811             break;
1812 
1813         // The shift key and other modifier keys should affect the output
1814         // sequence.
1815 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1816             case (vk): \
1817             { \
1818                 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1819                     control_key_state, (normal), (shifted)); \
1820             } \
1821             break;
1822 
1823 #define ESC "\x1b"
1824 #define CSI ESC "["
1825 #define SS3 ESC "O"
1826 
1827         // Only support normal mode, not application mode.
1828 
1829         // Enhanced keys:
1830         // * 6-pack: insert, delete, home, end, page up, page down
1831         // * cursor keys: up, down, right, left
1832         // * keypad: divide, enter
1833         // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1834         //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
1835         if (_is_enhanced_key(control_key_state)) {
1836             switch (vk) {
1837                 case VK_RETURN: // Enter key on keypad
1838                     if (_is_ctrl_pressed(control_key_state)) {
1839                         seqstr = "\n";
1840                     } else {
1841                         seqstr = "\r";
1842                     }
1843                     break;
1844 
1845                 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
1846                 MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down
1847 
1848                 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
1849                 // will be fixed soon to match xterm which sends CSI "F" and
1850                 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
1851                 MATCH(VK_END,  CSI "F");
1852                 MATCH(VK_HOME, CSI "H");
1853 
1854                 MATCH_MODIFIER(VK_LEFT,  CSI "D");
1855                 MATCH_MODIFIER(VK_UP,    CSI "A");
1856                 MATCH_MODIFIER(VK_RIGHT, CSI "C");
1857                 MATCH_MODIFIER(VK_DOWN,  CSI "B");
1858 
1859                 MATCH_MODIFIER(VK_INSERT, CSI "2~");
1860                 MATCH_MODIFIER(VK_DELETE, CSI "3~");
1861 
1862                 MATCH(VK_DIVIDE, "/");
1863             }
1864         } else {    // Non-enhanced keys:
1865             switch (vk) {
1866                 case VK_BACK:   // backspace
1867                     if (_is_alt_pressed(control_key_state)) {
1868                         seqstr = ESC "\x7f";
1869                     } else {
1870                         seqstr = "\x7f";
1871                     }
1872                     break;
1873 
1874                 case VK_TAB:
1875                     if (_is_shift_pressed(control_key_state)) {
1876                         seqstr = CSI "Z";
1877                     } else {
1878                         seqstr = "\t";
1879                     }
1880                     break;
1881 
1882                 // Number 5 key in keypad when NumLock is off, or if NumLock is
1883                 // on and Shift is down.
1884                 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
1885 
1886                 case VK_RETURN:     // Enter key on main keyboard
1887                     if (_is_alt_pressed(control_key_state)) {
1888                         seqstr = ESC "\n";
1889                     } else if (_is_ctrl_pressed(control_key_state)) {
1890                         seqstr = "\n";
1891                     } else {
1892                         seqstr = "\r";
1893                     }
1894                     break;
1895 
1896                 // VK_ESCAPE: Don't do any special handling. The OS uses many
1897                 // of the sequences with Escape and many of the remaining
1898                 // sequences don't produce bKeyDown messages, only !bKeyDown
1899                 // for whatever reason.
1900 
1901                 case VK_SPACE:
1902                     if (_is_alt_pressed(control_key_state)) {
1903                         seqstr = ESC " ";
1904                     } else if (_is_ctrl_pressed(control_key_state)) {
1905                         seqbuf[0] = '\0';   // NULL char
1906                         seqbuflen = 1;
1907                     } else {
1908                         seqstr = " ";
1909                     }
1910                     break;
1911 
1912                 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
1913                 MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down
1914 
1915                 MATCH_KEYPAD(VK_END,  CSI "4~", "1");
1916                 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
1917 
1918                 MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4');
1919                 MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8');
1920                 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
1921                 MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2');
1922 
1923                 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
1924                 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
1925                     _get_decimal_char());
1926 
1927                 case 0x30:          // 0
1928                 case 0x31:          // 1
1929                 case 0x39:          // 9
1930                 case VK_OEM_1:      // ;:
1931                 case VK_OEM_PLUS:   // =+
1932                 case VK_OEM_COMMA:  // ,<
1933                 case VK_OEM_PERIOD: // .>
1934                 case VK_OEM_7:      // '"
1935                 case VK_OEM_102:    // depends on keyboard, could be <> or \|
1936                 case VK_OEM_2:      // /?
1937                 case VK_OEM_3:      // `~
1938                 case VK_OEM_4:      // [{
1939                 case VK_OEM_5:      // \|
1940                 case VK_OEM_6:      // ]}
1941                 {
1942                     seqbuflen = _get_control_character(seqbuf, key_event,
1943                         control_key_state);
1944 
1945                     if (_is_alt_pressed(control_key_state)) {
1946                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1947                     }
1948                 }
1949                 break;
1950 
1951                 case 0x32:          // 2
1952                 case 0x33:          // 3
1953                 case 0x34:          // 4
1954                 case 0x35:          // 5
1955                 case 0x36:          // 6
1956                 case 0x37:          // 7
1957                 case 0x38:          // 8
1958                 case VK_OEM_MINUS:  // -_
1959                 {
1960                     seqbuflen = _get_control_character(seqbuf, key_event,
1961                         control_key_state);
1962 
1963                     // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
1964                     // prefix with escape.
1965                     if (_is_alt_pressed(control_key_state) &&
1966                         !(_is_ctrl_pressed(control_key_state) &&
1967                         !_is_shift_pressed(control_key_state))) {
1968                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1969                     }
1970                 }
1971                 break;
1972 
1973                 case 0x41:  // a
1974                 case 0x42:  // b
1975                 case 0x43:  // c
1976                 case 0x44:  // d
1977                 case 0x45:  // e
1978                 case 0x46:  // f
1979                 case 0x47:  // g
1980                 case 0x48:  // h
1981                 case 0x49:  // i
1982                 case 0x4a:  // j
1983                 case 0x4b:  // k
1984                 case 0x4c:  // l
1985                 case 0x4d:  // m
1986                 case 0x4e:  // n
1987                 case 0x4f:  // o
1988                 case 0x50:  // p
1989                 case 0x51:  // q
1990                 case 0x52:  // r
1991                 case 0x53:  // s
1992                 case 0x54:  // t
1993                 case 0x55:  // u
1994                 case 0x56:  // v
1995                 case 0x57:  // w
1996                 case 0x58:  // x
1997                 case 0x59:  // y
1998                 case 0x5a:  // z
1999                 {
2000                     seqbuflen = _get_non_alt_char(seqbuf, key_event,
2001                         control_key_state);
2002 
2003                     // If Alt is pressed, then prefix with escape.
2004                     if (_is_alt_pressed(control_key_state)) {
2005                         seqbuflen = _escape_prefix(seqbuf, seqbuflen);
2006                     }
2007                 }
2008                 break;
2009 
2010                 // These virtual key codes are generated by the keys on the
2011                 // keypad *when NumLock is on* and *Shift is up*.
2012                 MATCH(VK_NUMPAD0, "0");
2013                 MATCH(VK_NUMPAD1, "1");
2014                 MATCH(VK_NUMPAD2, "2");
2015                 MATCH(VK_NUMPAD3, "3");
2016                 MATCH(VK_NUMPAD4, "4");
2017                 MATCH(VK_NUMPAD5, "5");
2018                 MATCH(VK_NUMPAD6, "6");
2019                 MATCH(VK_NUMPAD7, "7");
2020                 MATCH(VK_NUMPAD8, "8");
2021                 MATCH(VK_NUMPAD9, "9");
2022 
2023                 MATCH(VK_MULTIPLY, "*");
2024                 MATCH(VK_ADD,      "+");
2025                 MATCH(VK_SUBTRACT, "-");
2026                 // VK_DECIMAL is generated by the . key on the keypad *when
2027                 // NumLock is on* and *Shift is up* and the sequence is not
2028                 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
2029                 // Windows Security screen to come up).
2030                 case VK_DECIMAL:
2031                     // U.S. English uses '.', Germany German uses ','.
2032                     seqbuflen = _get_non_control_char(seqbuf, key_event,
2033                         control_key_state);
2034                     break;
2035 
2036                 MATCH_MODIFIER(VK_F1,  SS3 "P");
2037                 MATCH_MODIFIER(VK_F2,  SS3 "Q");
2038                 MATCH_MODIFIER(VK_F3,  SS3 "R");
2039                 MATCH_MODIFIER(VK_F4,  SS3 "S");
2040                 MATCH_MODIFIER(VK_F5,  CSI "15~");
2041                 MATCH_MODIFIER(VK_F6,  CSI "17~");
2042                 MATCH_MODIFIER(VK_F7,  CSI "18~");
2043                 MATCH_MODIFIER(VK_F8,  CSI "19~");
2044                 MATCH_MODIFIER(VK_F9,  CSI "20~");
2045                 MATCH_MODIFIER(VK_F10, CSI "21~");
2046                 MATCH_MODIFIER(VK_F11, CSI "23~");
2047                 MATCH_MODIFIER(VK_F12, CSI "24~");
2048 
2049                 MATCH_MODIFIER(VK_F13, CSI "25~");
2050                 MATCH_MODIFIER(VK_F14, CSI "26~");
2051                 MATCH_MODIFIER(VK_F15, CSI "28~");
2052                 MATCH_MODIFIER(VK_F16, CSI "29~");
2053                 MATCH_MODIFIER(VK_F17, CSI "31~");
2054                 MATCH_MODIFIER(VK_F18, CSI "32~");
2055                 MATCH_MODIFIER(VK_F19, CSI "33~");
2056                 MATCH_MODIFIER(VK_F20, CSI "34~");
2057 
2058                 // MATCH_MODIFIER(VK_F21, ???);
2059                 // MATCH_MODIFIER(VK_F22, ???);
2060                 // MATCH_MODIFIER(VK_F23, ???);
2061                 // MATCH_MODIFIER(VK_F24, ???);
2062             }
2063         }
2064 
2065 #undef MATCH
2066 #undef MATCH_MODIFIER
2067 #undef MATCH_KEYPAD
2068 #undef MATCH_MODIFIER_KEYPAD
2069 #undef ESC
2070 #undef CSI
2071 #undef SS3
2072 
2073         const char* out;
2074         size_t outlen;
2075 
2076         // Check for output in any of:
2077         // * seqstr is set (and strlen can be used to determine the length).
2078         // * seqbuf and seqbuflen are set
2079         // Fallback to ch from Windows.
2080         if (seqstr != nullptr) {
2081             out = seqstr;
2082             outlen = strlen(seqstr);
2083         } else if (seqbuflen > 0) {
2084             out = seqbuf;
2085             outlen = seqbuflen;
2086         } else if (ch != '\0') {
2087             // Use whatever Windows told us it is.
2088             seqbuf[0] = ch;
2089             seqbuflen = 1;
2090             out = seqbuf;
2091             outlen = seqbuflen;
2092         } else {
2093             // No special handling for the virtual key code and Windows isn't
2094             // telling us a character code, then we don't know how to translate
2095             // the key press.
2096             //
2097             // Consume the input and 'continue' to cause us to get a new key
2098             // event.
2099             D("_console_read: unknown virtual key code: %d, enhanced: %s",
2100                 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
2101             continue;
2102         }
2103 
2104         // put output wRepeatCount times into g_console_input_buffer
2105         while (key_event->wRepeatCount-- > 0) {
2106             g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
2107         }
2108 
2109         // Loop around and try to flush g_console_input_buffer
2110     }
2111 }
2112 
2113 static DWORD _old_console_mode; // previous GetConsoleMode() result
2114 static HANDLE _console_handle;  // when set, console mode should be restored
2115 
stdin_raw_init()2116 void stdin_raw_init() {
2117     const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
2118     if (in == nullptr) {
2119         return;
2120     }
2121 
2122     // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
2123     // calling the process Ctrl-C routine (configured by
2124     // SetConsoleCtrlHandler()).
2125     // Disable ENABLE_LINE_INPUT so that input is immediately sent.
2126     // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
2127     // flag also seems necessary to have proper line-ending processing.
2128     DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
2129                                                    ENABLE_LINE_INPUT |
2130                                                    ENABLE_ECHO_INPUT);
2131     // Enable ENABLE_WINDOW_INPUT to get window resizes.
2132     new_console_mode |= ENABLE_WINDOW_INPUT;
2133 
2134     if (!SetConsoleMode(in, new_console_mode)) {
2135         // This really should not fail.
2136         D("stdin_raw_init: SetConsoleMode() failed: %s",
2137           android::base::SystemErrorCodeToString(GetLastError()).c_str());
2138     }
2139 
2140     // Once this is set, it means that stdin has been configured for
2141     // reading from and that the old console mode should be restored later.
2142     _console_handle = in;
2143 
2144     // Note that we don't need to configure C Runtime line-ending
2145     // translation because _console_read() does not call the C Runtime to
2146     // read from the console.
2147 }
2148 
stdin_raw_restore()2149 void stdin_raw_restore() {
2150     if (_console_handle != nullptr) {
2151         const HANDLE in = _console_handle;
2152         _console_handle = nullptr;  // clear state
2153 
2154         if (!SetConsoleMode(in, _old_console_mode)) {
2155             // This really should not fail.
2156             D("stdin_raw_restore: SetConsoleMode() failed: %s",
2157               android::base::SystemErrorCodeToString(GetLastError()).c_str());
2158         }
2159     }
2160 }
2161 
2162 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
unix_read_interruptible(borrowed_fd fd,void * buf,size_t len)2163 int unix_read_interruptible(borrowed_fd fd, void* buf, size_t len) {
2164     if ((fd == STDIN_FILENO) && (_console_handle != nullptr)) {
2165         // If it is a request to read from stdin, and stdin_raw_init() has been
2166         // called, and it successfully configured the console, then read from
2167         // the console using Win32 console APIs and partially emulate a unix
2168         // terminal.
2169         return _console_read(_console_handle, buf, len);
2170     } else {
2171         // On older versions of Windows (definitely 7, definitely not 10),
2172         // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2173         // we need to limit the read size.
2174         if (len > 4096 && unix_isatty(fd)) {
2175             len = 4096;
2176         }
2177         // Just call into C Runtime which can read from pipes/files and which
2178         // can do LF/CR translation (which is overridable with _setmode()).
2179         // Undefine the macro that is set in sysdeps.h which bans calls to
2180         // plain read() in favor of unix_read() or adb_read().
2181 #pragma push_macro("read")
2182 #undef read
2183         return read(fd.get(), buf, len);
2184 #pragma pop_macro("read")
2185     }
2186 }
2187 
2188 /**************************************************************************/
2189 /**************************************************************************/
2190 /*****                                                                *****/
2191 /*****      Unicode support                                           *****/
2192 /*****                                                                *****/
2193 /**************************************************************************/
2194 /**************************************************************************/
2195 
2196 // This implements support for using files with Unicode filenames and for
2197 // outputting Unicode text to a Win32 console window. This is inspired from
2198 // http://utf8everywhere.org/.
2199 //
2200 // Background
2201 // ----------
2202 //
2203 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2204 // filenames to APIs such as open(). This works because filenames are largely
2205 // opaque 'cookies' (perhaps excluding path separators).
2206 //
2207 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2208 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2209 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
2210 // CreateFile() API is really just a macro that adds the W/A based on whether
2211 // the UNICODE preprocessor symbol is defined).
2212 //
2213 // Options
2214 // -------
2215 //
2216 // Thus, to write a portable program, there are a few options:
2217 //
2218 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
2219 //    For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2220 //    that takes a wchar_t string, converts it to UTF-8 and then calls the real
2221 //    open() API.
2222 //
2223 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2224 //    1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2225 //    potentially touching a lot of code.
2226 //
2227 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
2228 //    UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2229 //    takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2230 //    or C Runtime API.
2231 //
2232 // The Choice
2233 // ----------
2234 //
2235 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2236 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2237 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
2238 // args that are passed to main() at the beginning of program startup. We also use
2239 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2240 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
2241 //
2242 // Unicode console output
2243 // ----------------------
2244 //
2245 // The way to output Unicode to a Win32 console window is to call
2246 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2247 // such as Lucida Console or Consolas, and in the case of East Asian languages
2248 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2249 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2250 // font to be used in console windows.)
2251 //
2252 // The problem is getting the C Runtime to make fprintf and related APIs call
2253 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2254 // promising, but the various modes have issues:
2255 //
2256 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2257 //    UTF-16 do not display properly.
2258 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2259 //    totally wrong.
2260 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2261 //    handler to be called (upon a later I/O call), aborting the process.
2262 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2263 //    to output nothing.
2264 //
2265 // So the only solution is to write our own adb_fprintf() that converts UTF-8
2266 // to UTF-16 and then calls WriteConsoleW().
2267 
2268 
2269 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2270 // be passed to main().
NarrowArgs(const int argc,wchar_t ** const argv)2271 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2272     narrow_args = new char*[argc + 1];
2273 
2274     for (int i = 0; i < argc; ++i) {
2275         std::string arg_narrow;
2276         if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2277             PLOG(FATAL) << "cannot convert argument from UTF-16 to UTF-8";
2278         }
2279         narrow_args[i] = strdup(arg_narrow.c_str());
2280     }
2281     narrow_args[argc] = nullptr;   // terminate
2282 }
2283 
~NarrowArgs()2284 NarrowArgs::~NarrowArgs() {
2285     if (narrow_args != nullptr) {
2286         for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2287             free(*argp);
2288         }
2289         delete[] narrow_args;
2290         narrow_args = nullptr;
2291     }
2292 }
2293 
unix_open(std::string_view path,int options,...)2294 int unix_open(std::string_view path, int options, ...) {
2295     std::wstring path_wide;
2296     if (!android::base::UTF8ToWide(path.data(), path.size(), &path_wide)) {
2297         return -1;
2298     }
2299     if ((options & O_CREAT) == 0) {
2300         return _wopen(path_wide.c_str(), options);
2301     } else {
2302         int mode;
2303         va_list  args;
2304         va_start(args, options);
2305         mode = va_arg(args, int);
2306         va_end(args);
2307         return _wopen(path_wide.c_str(), options, mode);
2308     }
2309 }
2310 
2311 // Version of opendir() that takes a UTF-8 path.
adb_opendir(const char * path)2312 DIR* adb_opendir(const char* path) {
2313     std::wstring path_wide;
2314     if (!android::base::UTF8ToWide(path, &path_wide)) {
2315         return nullptr;
2316     }
2317 
2318     // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2319     // the fields, but right now all the callers treat the structure as
2320     // opaque.
2321     return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2322 }
2323 
2324 // Version of readdir() that returns UTF-8 paths.
adb_readdir(DIR * dir)2325 struct dirent* adb_readdir(DIR* dir) {
2326     _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2327     struct _wdirent* const went = _wreaddir(wdir);
2328     if (went == nullptr) {
2329         return nullptr;
2330     }
2331 
2332     // Convert from UTF-16 to UTF-8.
2333     std::string name_utf8;
2334     if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2335         return nullptr;
2336     }
2337 
2338     // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2339     // space for UTF-16 wchar_t's) with UTF-8 char's.
2340     struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2341 
2342     if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2343         // Name too big to fit in existing buffer.
2344         errno = ENOMEM;
2345         return nullptr;
2346     }
2347 
2348     // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2349     // because _wdirent contains wchar_t instead of char. So even if name_utf8
2350     // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2351     // bigger than the caller expects because they expect a dirent structure
2352     // which has a smaller d_name field. Ignore this since the caller should be
2353     // resilient.
2354 
2355     // Rewrite the UTF-16 d_name field to UTF-8.
2356     strcpy(ent->d_name, name_utf8.c_str());
2357 
2358     return ent;
2359 }
2360 
2361 // Version of closedir() to go with our version of adb_opendir().
adb_closedir(DIR * dir)2362 int adb_closedir(DIR* dir) {
2363     return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2364 }
2365 
2366 // Version of unlink() that takes a UTF-8 path.
adb_unlink(const char * path)2367 int adb_unlink(const char* path) {
2368     std::wstring wpath;
2369     if (!android::base::UTF8ToWide(path, &wpath)) {
2370         return -1;
2371     }
2372 
2373     int  rc = _wunlink(wpath.c_str());
2374 
2375     if (rc == -1 && errno == EACCES) {
2376         /* unlink returns EACCES when the file is read-only, so we first */
2377         /* try to make it writable, then unlink again...                 */
2378         rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2379         if (rc == 0)
2380             rc = _wunlink(wpath.c_str());
2381     }
2382     return rc;
2383 }
2384 
2385 // Version of mkdir() that takes a UTF-8 path.
adb_mkdir(const std::string & path,int mode)2386 int adb_mkdir(const std::string& path, int mode) {
2387     std::wstring path_wide;
2388     if (!android::base::UTF8ToWide(path, &path_wide)) {
2389         return -1;
2390     }
2391 
2392     return _wmkdir(path_wide.c_str());
2393 }
2394 
adb_rename(const char * oldpath,const char * newpath)2395 int adb_rename(const char* oldpath, const char* newpath) {
2396     std::wstring oldpath_wide, newpath_wide;
2397     if (!android::base::UTF8ToWide(oldpath, &oldpath_wide)) {
2398         return -1;
2399     }
2400     if (!android::base::UTF8ToWide(newpath, &newpath_wide)) {
2401         return -1;
2402     }
2403 
2404     // MSDN just says the return value is non-zero on failure, make sure it
2405     // returns -1 on failure so that it behaves the same as other systems.
2406     return _wrename(oldpath_wide.c_str(), newpath_wide.c_str()) ? -1 : 0;
2407 }
2408 
2409 // Version of utime() that takes a UTF-8 path.
adb_utime(const char * path,struct utimbuf * u)2410 int adb_utime(const char* path, struct utimbuf* u) {
2411     std::wstring path_wide;
2412     if (!android::base::UTF8ToWide(path, &path_wide)) {
2413         return -1;
2414     }
2415 
2416     static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2417         "utimbuf and _utimbuf should be the same size because they both "
2418         "contain the same types, namely time_t");
2419     return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2420 }
2421 
2422 // Version of chmod() that takes a UTF-8 path.
adb_chmod(const char * path,int mode)2423 int adb_chmod(const char* path, int mode) {
2424     std::wstring path_wide;
2425     if (!android::base::UTF8ToWide(path, &path_wide)) {
2426         return -1;
2427     }
2428 
2429     return _wchmod(path_wide.c_str(), mode);
2430 }
2431 
2432 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
utf8_codepoint_len(uint8_t ch)2433 static inline size_t utf8_codepoint_len(uint8_t ch) {
2434     return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2435 }
2436 
2437 namespace internal {
2438 
2439 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2440 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2441 // remaining_bytes.
ParseCompleteUTF8(const char * const first,const char * const last,std::vector<char> * const remaining_bytes)2442 size_t ParseCompleteUTF8(const char* const first, const char* const last,
2443                          std::vector<char>* const remaining_bytes) {
2444     // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2445     // Current_after points one byte past the current byte to be examined.
2446     for (const char* current_after = last; current_after != first; --current_after) {
2447         const char* const current = current_after - 1;
2448         const char ch = *current;
2449         const char kHighBit = 0x80u;
2450         const char kTwoHighestBits = 0xC0u;
2451         if ((ch & kHighBit) == 0) { // high bit not set
2452             // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2453             // bytes with no leading byte, so return the entire buffer.
2454             break;
2455         } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2456             // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2457             const size_t bytes_available = last - current;
2458             if (bytes_available < utf8_codepoint_len(ch)) {
2459                 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2460                 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2461                 // to remaining_bytes.
2462                 remaining_bytes->insert(remaining_bytes->end(), current, last);
2463                 return current - first;
2464             } else {
2465                 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2466                 // trailing bytes with no lead byte, so return the entire buffer.
2467                 break;
2468             }
2469         } else {
2470             // Trailing byte, so keep going backwards looking for the lead byte.
2471         }
2472     }
2473 
2474     // Return the size of the entire buffer. It is possible that we walked backward past invalid
2475     // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2476     // so that they can be processed.
2477     return last - first;
2478 }
2479 
2480 }
2481 
2482 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2483 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
2484 // This matches the behavior of Linux.
2485 
2486 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
_console_write_utf8(const char * const buf,const size_t buf_size,FILE * stream,HANDLE console)2487 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2488                                HANDLE console) {
2489     static std::mutex& console_output_buffer_lock = *new std::mutex();
2490     static auto& console_output_buffer = *new std::vector<char>();
2491 
2492     const int saved_errno = errno;
2493     std::vector<char> combined_buffer;
2494 
2495     // Complete UTF-8 sequences that should be immediately written to the console.
2496     const char* utf8;
2497     size_t utf8_size;
2498 
2499     {
2500         std::lock_guard<std::mutex> lock(console_output_buffer_lock);
2501         if (console_output_buffer.empty()) {
2502             // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2503             // common case with plain ASCII), parse buf directly.
2504             utf8 = buf;
2505             utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer);
2506         } else {
2507             // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2508             // combined_buffer (and effectively clear console_output_buffer) and append buf to
2509             // combined_buffer, then parse it all together.
2510             combined_buffer.swap(console_output_buffer);
2511             combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2512 
2513             utf8 = combined_buffer.data();
2514             utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2515                                                     &console_output_buffer);
2516         }
2517     }
2518 
2519     std::wstring utf16;
2520 
2521     // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2522     // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2523     // random data, runs dmesg (which might have non-UTF-8), etc.
2524     // This could throw std::bad_alloc.
2525     (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2526 
2527     // Note that this does not do \n => \r\n translation because that
2528     // doesn't seem necessary for the Windows console. For the Windows
2529     // console \r moves to the beginning of the line and \n moves to a new
2530     // line.
2531 
2532     // Flush any stream buffering so that our output is afterwards which
2533     // makes sense because our call is afterwards.
2534     (void)fflush(stream);
2535 
2536     // Write UTF-16 to the console.
2537     DWORD written = 0;
2538     if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, nullptr)) {
2539         errno = EIO;
2540         return -1;
2541     }
2542 
2543     // Return the size of the original buffer passed in, signifying that we consumed it all, even
2544     // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2545     // matches the Linux behavior.
2546     errno = saved_errno;
2547     return buf_size;
2548 }
2549 
2550 // Function prototype because attributes cannot be placed on func definitions.
2551 static int _console_vfprintf(const HANDLE console, FILE* stream, const char* format, va_list ap)
2552         __attribute__((__format__(__printf__, 3, 0)));
2553 
2554 // Internal function to format a UTF-8 string and write it to a Win32 console.
2555 // Returns -1 on error.
_console_vfprintf(const HANDLE console,FILE * stream,const char * format,va_list ap)2556 static int _console_vfprintf(const HANDLE console, FILE* stream,
2557                              const char *format, va_list ap) {
2558     const int saved_errno = errno;
2559     std::string output_utf8;
2560 
2561     // Format the string.
2562     // This could throw std::bad_alloc.
2563     android::base::StringAppendV(&output_utf8, format, ap);
2564 
2565     const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2566                                            console);
2567     if (result != -1) {
2568         errno = saved_errno;
2569     } else {
2570         // If -1 was returned, errno has been set.
2571     }
2572     return result;
2573 }
2574 
2575 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
2576 // Windows console.
adb_vfprintf(FILE * stream,const char * format,va_list ap)2577 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2578     const HANDLE console = _get_console_handle(stream);
2579 
2580     // If there is an associated Win32 console, write to it specially,
2581     // otherwise defer to the regular C Runtime, passing it UTF-8.
2582     if (console != nullptr) {
2583         return _console_vfprintf(console, stream, format, ap);
2584     } else {
2585         // If vfprintf is a macro, undefine it, so we can call the real
2586         // C Runtime API.
2587 #pragma push_macro("vfprintf")
2588 #undef vfprintf
2589         return vfprintf(stream, format, ap);
2590 #pragma pop_macro("vfprintf")
2591     }
2592 }
2593 
2594 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
adb_vprintf(const char * format,va_list ap)2595 int adb_vprintf(const char *format, va_list ap) {
2596     return adb_vfprintf(stdout, format, ap);
2597 }
2598 
2599 // Version of fprintf() that takes UTF-8 and can write Unicode to a
2600 // Windows console.
adb_fprintf(FILE * stream,const char * format,...)2601 int adb_fprintf(FILE *stream, const char *format, ...) {
2602     va_list ap;
2603     va_start(ap, format);
2604     const int result = adb_vfprintf(stream, format, ap);
2605     va_end(ap);
2606 
2607     return result;
2608 }
2609 
2610 // Version of printf() that takes UTF-8 and can write Unicode to a
2611 // Windows console.
adb_printf(const char * format,...)2612 int adb_printf(const char *format, ...) {
2613     va_list ap;
2614     va_start(ap, format);
2615     const int result = adb_vfprintf(stdout, format, ap);
2616     va_end(ap);
2617 
2618     return result;
2619 }
2620 
2621 // Version of fputs() that takes UTF-8 and can write Unicode to a
2622 // Windows console.
adb_fputs(const char * buf,FILE * stream)2623 int adb_fputs(const char* buf, FILE* stream) {
2624     // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2625     // which fputs (and hence adb_fputs) should return on error.
2626     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2627     return adb_fprintf(stream, "%s", buf);
2628 }
2629 
2630 // Version of fputc() that takes UTF-8 and can write Unicode to a
2631 // Windows console.
adb_fputc(int ch,FILE * stream)2632 int adb_fputc(int ch, FILE* stream) {
2633     const int result = adb_fprintf(stream, "%c", ch);
2634     if (result == -1) {
2635         return EOF;
2636     }
2637     // For success, fputc returns the char, cast to unsigned char, then to int.
2638     return static_cast<unsigned char>(ch);
2639 }
2640 
2641 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
adb_putchar(int ch)2642 int adb_putchar(int ch) {
2643     return adb_fputc(ch, stdout);
2644 }
2645 
2646 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
adb_puts(const char * buf)2647 int adb_puts(const char* buf) {
2648     // adb_printf returns -1 on error, which is conveniently the same as EOF
2649     // which puts (and hence adb_puts) should return on error.
2650     static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2651     return adb_printf("%s\n", buf);
2652 }
2653 
2654 // Internal function to write UTF-8 to a Win32 console. Returns the number of
2655 // items (of length size) written. On error, returns a short item count or 0.
_console_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream,HANDLE console)2656 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2657                               FILE* stream, HANDLE console) {
2658     const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2659                                            console);
2660     if (result == -1) {
2661         return 0;
2662     }
2663     return result / size;
2664 }
2665 
2666 // Version of fwrite() that takes UTF-8 and can write Unicode to a
2667 // Windows console.
adb_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream)2668 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2669     const HANDLE console = _get_console_handle(stream);
2670 
2671     // If there is an associated Win32 console, write to it specially,
2672     // otherwise defer to the regular C Runtime, passing it UTF-8.
2673     if (console != nullptr) {
2674         return _console_fwrite(ptr, size, nmemb, stream, console);
2675     } else {
2676         // If fwrite is a macro, undefine it, so we can call the real
2677         // C Runtime API.
2678 #pragma push_macro("fwrite")
2679 #undef fwrite
2680         return fwrite(ptr, size, nmemb, stream);
2681 #pragma pop_macro("fwrite")
2682     }
2683 }
2684 
2685 // Version of fopen() that takes a UTF-8 filename and can access a file with
2686 // a Unicode filename.
adb_fopen(const char * path,const char * mode)2687 FILE* adb_fopen(const char* path, const char* mode) {
2688     std::wstring path_wide;
2689     if (!android::base::UTF8ToWide(path, &path_wide)) {
2690         return nullptr;
2691     }
2692 
2693     std::wstring mode_wide;
2694     if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2695         return nullptr;
2696     }
2697 
2698     return _wfopen(path_wide.c_str(), mode_wide.c_str());
2699 }
2700 
2701 // Return a lowercase version of the argument. Uses C Runtime tolower() on
2702 // each byte which is not UTF-8 aware, and theoretically uses the current C
2703 // Runtime locale (which in practice is not changed, so this becomes a ASCII
2704 // conversion).
ToLower(const std::string & anycase)2705 static std::string ToLower(const std::string& anycase) {
2706     // copy string
2707     std::string str(anycase);
2708     // transform the copy
2709     std::transform(str.begin(), str.end(), str.begin(), tolower);
2710     return str;
2711 }
2712 
2713 extern "C" int main(int argc, char** argv);
2714 
2715 // Link with -municode to cause this wmain() to be used as the program
2716 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2717 // regular main() with UTF-8 args.
wmain(int argc,wchar_t ** argv)2718 extern "C" int wmain(int argc, wchar_t **argv) {
2719     // Convert args from UTF-16 to UTF-8 and pass that to main().
2720     NarrowArgs narrow_args(argc, argv);
2721 
2722     // Avoid destructing NarrowArgs: argv might have been mutated to point to string literals.
2723     _exit(main(argc, narrow_args.data()));
2724 }
2725 
2726 // Shadow UTF-8 environment variable name/value pairs that are created from
2727 // _wenviron by _init_env(). Note that this is not currently updated if putenv, setenv, unsetenv are
2728 // called. Note that no thread synchronization is done, but we're called early enough in
2729 // single-threaded startup that things work ok.
2730 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2731 
2732 // Setup shadow UTF-8 environment variables.
_init_env()2733 static void _init_env() {
2734     // If some name/value pairs exist, then we've already done the setup below.
2735     if (g_environ_utf8.size() != 0) {
2736         return;
2737     }
2738 
2739     if (_wenviron == nullptr) {
2740         // If _wenviron is null, then -municode probably wasn't used. That
2741         // linker flag will cause the entry point to setup _wenviron. It will
2742         // also require an implementation of wmain() (which we provide above).
2743         LOG(FATAL) << "_wenviron is not set, did you link with -municode?";
2744     }
2745 
2746     // Read name/value pairs from UTF-16 _wenviron and write new name/value
2747     // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2748     // to use the D() macro here because that tracing only works if the
2749     // ADB_TRACE environment variable is setup, but that env var can't be read
2750     // until this code completes.
2751     for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2752         wchar_t* const equal = wcschr(*env, L'=');
2753         if (equal == nullptr) {
2754             // Malformed environment variable with no equal sign. Shouldn't
2755             // really happen, but we should be resilient to this.
2756             continue;
2757         }
2758 
2759         // If we encounter an error converting UTF-16, don't error-out on account of a single env
2760         // var because the program might never even read this particular variable.
2761         std::string name_utf8;
2762         if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2763             continue;
2764         }
2765 
2766         // Store lowercase name so that we can do case-insensitive searches.
2767         name_utf8 = ToLower(name_utf8);
2768 
2769         std::string value_utf8;
2770         if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2771             continue;
2772         }
2773 
2774         char* const value_dup = strdup(value_utf8.c_str());
2775 
2776         // Don't overwrite a previus env var with the same name. In reality,
2777         // the system probably won't let two env vars with the same name exist
2778         // in _wenviron.
2779         g_environ_utf8.insert({name_utf8, value_dup});
2780     }
2781 }
2782 
2783 // Version of getenv() that takes a UTF-8 environment variable name and
2784 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
adb_getenv(const char * name)2785 char* adb_getenv(const char* name) {
2786     // Case-insensitive search by searching for lowercase name in a map of
2787     // lowercase names.
2788     const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2789     if (it == g_environ_utf8.end()) {
2790         return nullptr;
2791     }
2792 
2793     return it->second;
2794 }
2795 
2796 // Version of getcwd() that returns the current working directory in UTF-8.
adb_getcwd(char * buf,int size)2797 char* adb_getcwd(char* buf, int size) {
2798     wchar_t* wbuf = _wgetcwd(nullptr, 0);
2799     if (wbuf == nullptr) {
2800         return nullptr;
2801     }
2802 
2803     std::string buf_utf8;
2804     const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2805     free(wbuf);
2806     wbuf = nullptr;
2807 
2808     if (!narrow_result) {
2809         return nullptr;
2810     }
2811 
2812     // If size was specified, make sure all the chars will fit.
2813     if (size != 0) {
2814         if (size < static_cast<int>(buf_utf8.length() + 1)) {
2815             errno = ERANGE;
2816             return nullptr;
2817         }
2818     }
2819 
2820     // If buf was not specified, allocate storage.
2821     if (buf == nullptr) {
2822         if (size == 0) {
2823             size = buf_utf8.length() + 1;
2824         }
2825         buf = reinterpret_cast<char*>(malloc(size));
2826         if (buf == nullptr) {
2827             return nullptr;
2828         }
2829     }
2830 
2831     // Destination buffer was allocated with enough space, or we've already
2832     // checked an existing buffer size for enough space.
2833     strcpy(buf, buf_utf8.c_str());
2834 
2835     return buf;
2836 }
2837 
enable_inherit(borrowed_fd fd)2838 void enable_inherit(borrowed_fd fd) {
2839     auto osh = adb_get_os_handle(fd);
2840     const auto h = reinterpret_cast<HANDLE>(osh);
2841     ::SetHandleInformation(h, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT);
2842 }
2843 
disable_inherit(borrowed_fd fd)2844 void disable_inherit(borrowed_fd fd) {
2845     auto osh = adb_get_os_handle(fd);
2846     const auto h = reinterpret_cast<HANDLE>(osh);
2847     ::SetHandleInformation(h, HANDLE_FLAG_INHERIT, 0);
2848 }
2849 
adb_launch_process(std::string_view executable,std::vector<std::string> args,std::initializer_list<int> fds_to_inherit)2850 Process adb_launch_process(std::string_view executable, std::vector<std::string> args,
2851                            std::initializer_list<int> fds_to_inherit) {
2852     std::wstring wexe;
2853     if (!android::base::UTF8ToWide(executable.data(), executable.size(), &wexe)) {
2854         return Process();
2855     }
2856 
2857     std::wstring wargs = L"\"" + wexe + L"\"";
2858     std::wstring warg;
2859     for (auto arg : args) {
2860         warg.clear();
2861         if (!android::base::UTF8ToWide(arg.data(), arg.size(), &warg)) {
2862             return Process();
2863         }
2864         wargs += L" \"";
2865         wargs += warg;
2866         wargs += L'\"';
2867     }
2868 
2869     STARTUPINFOW sinfo = {sizeof(sinfo)};
2870     PROCESS_INFORMATION pinfo = {};
2871 
2872     // TODO: use the Vista+ API to pass the list of inherited handles explicitly;
2873     // see http://blogs.msdn.com/b/oldnewthing/archive/2011/12/16/10248328.aspx
2874     for (auto fd : fds_to_inherit) {
2875         enable_inherit(fd);
2876     }
2877     const auto created = CreateProcessW(wexe.c_str(), wargs.data(),
2878                                         nullptr,                    // process attributes
2879                                         nullptr,                    // thread attributes
2880                                         fds_to_inherit.size() > 0,  // inherit any handles?
2881                                         0,                          // flags
2882                                         nullptr,                    // environment
2883                                         nullptr,                    // current directory
2884                                         &sinfo,                     // startup info
2885                                         &pinfo);
2886     for (auto fd : fds_to_inherit) {
2887         disable_inherit(fd);
2888     }
2889 
2890     if (!created) {
2891         return Process();
2892     }
2893 
2894     ::CloseHandle(pinfo.hThread);
2895     return Process(pinfo.hProcess);
2896 }
2897 
2898 // The SetThreadDescription API was brought in version 1607 of Windows 10.
2899 typedef HRESULT(WINAPI* SetThreadDescription)(HANDLE hThread, PCWSTR lpThreadDescription);
2900 
2901 // Based on PlatformThread::SetName() from
2902 // https://cs.chromium.org/chromium/src/base/threading/platform_thread_win.cc
adb_thread_setname(const std::string & name)2903 int adb_thread_setname(const std::string& name) {
2904     // The SetThreadDescription API works even if no debugger is attached.
2905     auto set_thread_description_func = reinterpret_cast<SetThreadDescription>(
2906             ::GetProcAddress(::GetModuleHandleW(L"Kernel32.dll"), "SetThreadDescription"));
2907     if (set_thread_description_func) {
2908         std::wstring name_wide;
2909         if (!android::base::UTF8ToWide(name.c_str(), &name_wide)) {
2910             return errno;
2911         }
2912         set_thread_description_func(::GetCurrentThread(), name_wide.c_str());
2913     }
2914 
2915     // Don't use the thread naming SEH exception because we're compiled with -fno-exceptions.
2916     // https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-a-thread-name-in-native-code?view=vs-2017
2917 
2918     return 0;
2919 }
2920 
2921 #if !defined(ENABLE_VIRTUAL_TERMINAL_PROCESSING)
2922 #define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
2923 #endif
2924 
2925 #if !defined(DISABLE_NEWLINE_AUTO_RETURN)
2926 #define DISABLE_NEWLINE_AUTO_RETURN 0x0008
2927 #endif
2928 
_init_console()2929 static void _init_console() {
2930     DWORD old_out_console_mode;
2931 
2932     const HANDLE out = _get_console_handle(STDOUT_FILENO, &old_out_console_mode);
2933     if (out == nullptr) {
2934         return;
2935     }
2936 
2937     // Try to use ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output console to process virtual
2938     // terminal sequences on newer versions of Windows 10 and later.
2939     // https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
2940     // On older OSes that don't support the flag, SetConsoleMode() will return an error.
2941     // ENABLE_VIRTUAL_TERMINAL_PROCESSING also solves a problem where the last column of the
2942     // console cannot be overwritten.
2943     //
2944     // Note that we don't use DISABLE_NEWLINE_AUTO_RETURN because it doesn't seem to be necessary.
2945     // If we use DISABLE_NEWLINE_AUTO_RETURN, _console_write_utf8() would need to be modified to
2946     // translate \n to \r\n.
2947     if (!SetConsoleMode(out, old_out_console_mode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
2948         return;
2949     }
2950 
2951     // If SetConsoleMode() succeeded, the console supports virtual terminal processing, so we
2952     // should set the TERM env var to match so that it will be propagated to adbd on devices.
2953     //
2954     // Below's direct manipulation of env vars and not g_environ_utf8 assumes that _init_env() has
2955     // not yet been called. If this fails, _init_env() should be called after _init_console().
2956     if (g_environ_utf8.size() > 0) {
2957         LOG(FATAL) << "environment variables have already been converted to UTF-8";
2958     }
2959 
2960 #pragma push_macro("getenv")
2961 #undef getenv
2962 #pragma push_macro("putenv")
2963 #undef putenv
2964     if (getenv("TERM") == nullptr) {
2965         // This is the same TERM value used by Gnome Terminal and the version of ssh included with
2966         // Windows.
2967         putenv("TERM=xterm-256color");
2968     }
2969 #pragma pop_macro("putenv")
2970 #pragma pop_macro("getenv")
2971 }
2972 
_init_sysdeps()2973 static bool _init_sysdeps() {
2974     // _init_console() depends on _init_env() not being called yet.
2975     _init_console();
2976     _init_env();
2977     _init_winsock();
2978     return true;
2979 }
2980 
2981 static bool _sysdeps_init = _init_sysdeps();
2982