1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 38 import java.lang.Thread.UncaughtExceptionHandler; 39 import java.security.AccessControlContext; 40 import java.security.Permissions; 41 import java.security.ProtectionDomain; 42 import java.util.ArrayList; 43 import java.util.Arrays; 44 import java.util.Collection; 45 import java.util.Collections; 46 import java.util.List; 47 import java.util.concurrent.locks.ReentrantLock; 48 import java.util.concurrent.locks.LockSupport; 49 50 /** 51 * An {@link ExecutorService} for running {@link ForkJoinTask}s. 52 * A {@code ForkJoinPool} provides the entry point for submissions 53 * from non-{@code ForkJoinTask} clients, as well as management and 54 * monitoring operations. 55 * 56 * <p>A {@code ForkJoinPool} differs from other kinds of {@link 57 * ExecutorService} mainly by virtue of employing 58 * <em>work-stealing</em>: all threads in the pool attempt to find and 59 * execute tasks submitted to the pool and/or created by other active 60 * tasks (eventually blocking waiting for work if none exist). This 61 * enables efficient processing when most tasks spawn other subtasks 62 * (as do most {@code ForkJoinTask}s), as well as when many small 63 * tasks are submitted to the pool from external clients. Especially 64 * when setting <em>asyncMode</em> to true in constructors, {@code 65 * ForkJoinPool}s may also be appropriate for use with event-style 66 * tasks that are never joined. 67 * 68 * <p>A static {@link #commonPool()} is available and appropriate for 69 * most applications. The common pool is used by any ForkJoinTask that 70 * is not explicitly submitted to a specified pool. Using the common 71 * pool normally reduces resource usage (its threads are slowly 72 * reclaimed during periods of non-use, and reinstated upon subsequent 73 * use). 74 * 75 * <p>For applications that require separate or custom pools, a {@code 76 * ForkJoinPool} may be constructed with a given target parallelism 77 * level; by default, equal to the number of available processors. 78 * The pool attempts to maintain enough active (or available) threads 79 * by dynamically adding, suspending, or resuming internal worker 80 * threads, even if some tasks are stalled waiting to join others. 81 * However, no such adjustments are guaranteed in the face of blocked 82 * I/O or other unmanaged synchronization. The nested {@link 83 * ManagedBlocker} interface enables extension of the kinds of 84 * synchronization accommodated. 85 * 86 * <p>In addition to execution and lifecycle control methods, this 87 * class provides status check methods (for example 88 * {@link #getStealCount}) that are intended to aid in developing, 89 * tuning, and monitoring fork/join applications. Also, method 90 * {@link #toString} returns indications of pool state in a 91 * convenient form for informal monitoring. 92 * 93 * <p>As is the case with other ExecutorServices, there are three 94 * main task execution methods summarized in the following table. 95 * These are designed to be used primarily by clients not already 96 * engaged in fork/join computations in the current pool. The main 97 * forms of these methods accept instances of {@code ForkJoinTask}, 98 * but overloaded forms also allow mixed execution of plain {@code 99 * Runnable}- or {@code Callable}- based activities as well. However, 100 * tasks that are already executing in a pool should normally instead 101 * use the within-computation forms listed in the table unless using 102 * async event-style tasks that are not usually joined, in which case 103 * there is little difference among choice of methods. 104 * 105 * <table BORDER CELLPADDING=3 CELLSPACING=1> 106 * <caption>Summary of task execution methods</caption> 107 * <tr> 108 * <td></td> 109 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td> 110 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td> 111 * </tr> 112 * <tr> 113 * <td> <b>Arrange async execution</b></td> 114 * <td> {@link #execute(ForkJoinTask)}</td> 115 * <td> {@link ForkJoinTask#fork}</td> 116 * </tr> 117 * <tr> 118 * <td> <b>Await and obtain result</b></td> 119 * <td> {@link #invoke(ForkJoinTask)}</td> 120 * <td> {@link ForkJoinTask#invoke}</td> 121 * </tr> 122 * <tr> 123 * <td> <b>Arrange exec and obtain Future</b></td> 124 * <td> {@link #submit(ForkJoinTask)}</td> 125 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td> 126 * </tr> 127 * </table> 128 * 129 * <p>The common pool is by default constructed with default 130 * parameters, but these may be controlled by setting three 131 * {@linkplain System#getProperty system properties}: 132 * <ul> 133 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism} 134 * - the parallelism level, a non-negative integer 135 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory} 136 * - the class name of a {@link ForkJoinWorkerThreadFactory} 137 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler} 138 * - the class name of a {@link UncaughtExceptionHandler} 139 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares} 140 * - the maximum number of allowed extra threads to maintain target 141 * parallelism (default 256). 142 * </ul> 143 * If a {@link SecurityManager} is present and no factory is 144 * specified, then the default pool uses a factory supplying 145 * threads that have no {@link Permissions} enabled. 146 * The system class loader is used to load these classes. 147 * Upon any error in establishing these settings, default parameters 148 * are used. It is possible to disable or limit the use of threads in 149 * the common pool by setting the parallelism property to zero, and/or 150 * using a factory that may return {@code null}. However doing so may 151 * cause unjoined tasks to never be executed. 152 * 153 * <p><b>Implementation notes</b>: This implementation restricts the 154 * maximum number of running threads to 32767. Attempts to create 155 * pools with greater than the maximum number result in 156 * {@code IllegalArgumentException}. 157 * 158 * <p>This implementation rejects submitted tasks (that is, by throwing 159 * {@link RejectedExecutionException}) only when the pool is shut down 160 * or internal resources have been exhausted. 161 * 162 * @since 1.7 163 * @author Doug Lea 164 */ 165 // Android-removed: @Contended, this hint is not used by the Android runtime. 166 //@jdk.internal.vm.annotation.Contended 167 public class ForkJoinPool extends AbstractExecutorService { 168 169 /* 170 * Implementation Overview 171 * 172 * This class and its nested classes provide the main 173 * functionality and control for a set of worker threads: 174 * Submissions from non-FJ threads enter into submission queues. 175 * Workers take these tasks and typically split them into subtasks 176 * that may be stolen by other workers. Preference rules give 177 * first priority to processing tasks from their own queues (LIFO 178 * or FIFO, depending on mode), then to randomized FIFO steals of 179 * tasks in other queues. This framework began as vehicle for 180 * supporting tree-structured parallelism using work-stealing. 181 * Over time, its scalability advantages led to extensions and 182 * changes to better support more diverse usage contexts. Because 183 * most internal methods and nested classes are interrelated, 184 * their main rationale and descriptions are presented here; 185 * individual methods and nested classes contain only brief 186 * comments about details. 187 * 188 * WorkQueues 189 * ========== 190 * 191 * Most operations occur within work-stealing queues (in nested 192 * class WorkQueue). These are special forms of Deques that 193 * support only three of the four possible end-operations -- push, 194 * pop, and poll (aka steal), under the further constraints that 195 * push and pop are called only from the owning thread (or, as 196 * extended here, under a lock), while poll may be called from 197 * other threads. (If you are unfamiliar with them, you probably 198 * want to read Herlihy and Shavit's book "The Art of 199 * Multiprocessor programming", chapter 16 describing these in 200 * more detail before proceeding.) The main work-stealing queue 201 * design is roughly similar to those in the papers "Dynamic 202 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005 203 * (http://research.sun.com/scalable/pubs/index.html) and 204 * "Idempotent work stealing" by Michael, Saraswat, and Vechev, 205 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186). 206 * The main differences ultimately stem from GC requirements that 207 * we null out taken slots as soon as we can, to maintain as small 208 * a footprint as possible even in programs generating huge 209 * numbers of tasks. To accomplish this, we shift the CAS 210 * arbitrating pop vs poll (steal) from being on the indices 211 * ("base" and "top") to the slots themselves. 212 * 213 * Adding tasks then takes the form of a classic array push(task) 214 * in a circular buffer: 215 * q.array[q.top++ % length] = task; 216 * 217 * (The actual code needs to null-check and size-check the array, 218 * uses masking, not mod, for indexing a power-of-two-sized array, 219 * properly fences accesses, and possibly signals waiting workers 220 * to start scanning -- see below.) Both a successful pop and 221 * poll mainly entail a CAS of a slot from non-null to null. 222 * 223 * The pop operation (always performed by owner) is: 224 * if ((the task at top slot is not null) and 225 * (CAS slot to null)) 226 * decrement top and return task; 227 * 228 * And the poll operation (usually by a stealer) is 229 * if ((the task at base slot is not null) and 230 * (CAS slot to null)) 231 * increment base and return task; 232 * 233 * There are several variants of each of these; for example most 234 * versions of poll pre-screen the CAS by rechecking that the base 235 * has not changed since reading the slot, and most methods only 236 * attempt the CAS if base appears not to be equal to top. 237 * 238 * Memory ordering. See "Correct and Efficient Work-Stealing for 239 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013 240 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an 241 * analysis of memory ordering requirements in work-stealing 242 * algorithms similar to (but different than) the one used here. 243 * Extracting tasks in array slots via (fully fenced) CAS provides 244 * primary synchronization. The base and top indices imprecisely 245 * guide where to extract from. We do not always require strict 246 * orderings of array and index updates, so sometimes let them be 247 * subject to compiler and processor reorderings. However, the 248 * volatile "base" index also serves as a basis for memory 249 * ordering: Slot accesses are preceded by a read of base, 250 * ensuring happens-before ordering with respect to stealers (so 251 * the slots themselves can be read via plain array reads.) The 252 * only other memory orderings relied on are maintained in the 253 * course of signalling and activation (see below). A check that 254 * base == top indicates (momentary) emptiness, but otherwise may 255 * err on the side of possibly making the queue appear nonempty 256 * when a push, pop, or poll have not fully committed, or making 257 * it appear empty when an update of top has not yet been visibly 258 * written. (Method isEmpty() checks the case of a partially 259 * completed removal of the last element.) Because of this, the 260 * poll operation, considered individually, is not wait-free. One 261 * thief cannot successfully continue until another in-progress 262 * one (or, if previously empty, a push) visibly completes. 263 * However, in the aggregate, we ensure at least probabilistic 264 * non-blockingness. If an attempted steal fails, a scanning 265 * thief chooses a different random victim target to try next. So, 266 * in order for one thief to progress, it suffices for any 267 * in-progress poll or new push on any empty queue to 268 * complete. (This is why we normally use method pollAt and its 269 * variants that try once at the apparent base index, else 270 * consider alternative actions, rather than method poll, which 271 * retries.) 272 * 273 * This approach also enables support of a user mode in which 274 * local task processing is in FIFO, not LIFO order, simply by 275 * using poll rather than pop. This can be useful in 276 * message-passing frameworks in which tasks are never joined. 277 * 278 * WorkQueues are also used in a similar way for tasks submitted 279 * to the pool. We cannot mix these tasks in the same queues used 280 * by workers. Instead, we randomly associate submission queues 281 * with submitting threads, using a form of hashing. The 282 * ThreadLocalRandom probe value serves as a hash code for 283 * choosing existing queues, and may be randomly repositioned upon 284 * contention with other submitters. In essence, submitters act 285 * like workers except that they are restricted to executing local 286 * tasks that they submitted (or in the case of CountedCompleters, 287 * others with the same root task). Insertion of tasks in shared 288 * mode requires a lock but we use only a simple spinlock (using 289 * field qlock), because submitters encountering a busy queue move 290 * on to try or create other queues -- they block only when 291 * creating and registering new queues. Because it is used only as 292 * a spinlock, unlocking requires only a "releasing" store (using 293 * putOrderedInt). The qlock is also used during termination 294 * detection, in which case it is forced to a negative 295 * non-lockable value. 296 * 297 * Management 298 * ========== 299 * 300 * The main throughput advantages of work-stealing stem from 301 * decentralized control -- workers mostly take tasks from 302 * themselves or each other, at rates that can exceed a billion 303 * per second. The pool itself creates, activates (enables 304 * scanning for and running tasks), deactivates, blocks, and 305 * terminates threads, all with minimal central information. 306 * There are only a few properties that we can globally track or 307 * maintain, so we pack them into a small number of variables, 308 * often maintaining atomicity without blocking or locking. 309 * Nearly all essentially atomic control state is held in two 310 * volatile variables that are by far most often read (not 311 * written) as status and consistency checks. (Also, field 312 * "config" holds unchanging configuration state.) 313 * 314 * Field "ctl" contains 64 bits holding information needed to 315 * atomically decide to add, inactivate, enqueue (on an event 316 * queue), dequeue, and/or re-activate workers. To enable this 317 * packing, we restrict maximum parallelism to (1<<15)-1 (which is 318 * far in excess of normal operating range) to allow ids, counts, 319 * and their negations (used for thresholding) to fit into 16bit 320 * subfields. 321 * 322 * Field "runState" holds lifetime status, atomically and 323 * monotonically setting STARTED, SHUTDOWN, STOP, and finally 324 * TERMINATED bits. 325 * 326 * Field "auxState" is a ReentrantLock subclass that also 327 * opportunistically holds some other bookkeeping fields accessed 328 * only when locked. It is mainly used to lock (infrequent) 329 * updates to workQueues. The auxState instance is itself lazily 330 * constructed (see tryInitialize), requiring a double-check-style 331 * bootstrapping use of field runState, and locking a private 332 * static. 333 * 334 * Field "workQueues" holds references to WorkQueues. It is 335 * updated (only during worker creation and termination) under the 336 * lock, but is otherwise concurrently readable, and accessed 337 * directly. We also ensure that reads of the array reference 338 * itself never become too stale (for example, re-reading before 339 * each scan). To simplify index-based operations, the array size 340 * is always a power of two, and all readers must tolerate null 341 * slots. Worker queues are at odd indices. Shared (submission) 342 * queues are at even indices, up to a maximum of 64 slots, to 343 * limit growth even if array needs to expand to add more 344 * workers. Grouping them together in this way simplifies and 345 * speeds up task scanning. 346 * 347 * All worker thread creation is on-demand, triggered by task 348 * submissions, replacement of terminated workers, and/or 349 * compensation for blocked workers. However, all other support 350 * code is set up to work with other policies. To ensure that we 351 * do not hold on to worker references that would prevent GC, all 352 * accesses to workQueues are via indices into the workQueues 353 * array (which is one source of some of the messy code 354 * constructions here). In essence, the workQueues array serves as 355 * a weak reference mechanism. Thus for example the stack top 356 * subfield of ctl stores indices, not references. 357 * 358 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we 359 * cannot let workers spin indefinitely scanning for tasks when 360 * none can be found immediately, and we cannot start/resume 361 * workers unless there appear to be tasks available. On the 362 * other hand, we must quickly prod them into action when new 363 * tasks are submitted or generated. In many usages, ramp-up time 364 * to activate workers is the main limiting factor in overall 365 * performance, which is compounded at program start-up by JIT 366 * compilation and allocation. So we streamline this as much as 367 * possible. 368 * 369 * The "ctl" field atomically maintains active and total worker 370 * counts as well as a queue to place waiting threads so they can 371 * be located for signalling. Active counts also play the role of 372 * quiescence indicators, so are decremented when workers believe 373 * that there are no more tasks to execute. The "queue" is 374 * actually a form of Treiber stack. A stack is ideal for 375 * activating threads in most-recently used order. This improves 376 * performance and locality, outweighing the disadvantages of 377 * being prone to contention and inability to release a worker 378 * unless it is topmost on stack. We block/unblock workers after 379 * pushing on the idle worker stack (represented by the lower 380 * 32bit subfield of ctl) when they cannot find work. The top 381 * stack state holds the value of the "scanState" field of the 382 * worker: its index and status, plus a version counter that, in 383 * addition to the count subfields (also serving as version 384 * stamps) provide protection against Treiber stack ABA effects. 385 * 386 * Creating workers. To create a worker, we pre-increment total 387 * count (serving as a reservation), and attempt to construct a 388 * ForkJoinWorkerThread via its factory. Upon construction, the 389 * new thread invokes registerWorker, where it constructs a 390 * WorkQueue and is assigned an index in the workQueues array 391 * (expanding the array if necessary). The thread is then started. 392 * Upon any exception across these steps, or null return from 393 * factory, deregisterWorker adjusts counts and records 394 * accordingly. If a null return, the pool continues running with 395 * fewer than the target number workers. If exceptional, the 396 * exception is propagated, generally to some external caller. 397 * Worker index assignment avoids the bias in scanning that would 398 * occur if entries were sequentially packed starting at the front 399 * of the workQueues array. We treat the array as a simple 400 * power-of-two hash table, expanding as needed. The seedIndex 401 * increment ensures no collisions until a resize is needed or a 402 * worker is deregistered and replaced, and thereafter keeps 403 * probability of collision low. We cannot use 404 * ThreadLocalRandom.getProbe() for similar purposes here because 405 * the thread has not started yet, but do so for creating 406 * submission queues for existing external threads (see 407 * externalPush). 408 * 409 * WorkQueue field scanState is used by both workers and the pool 410 * to manage and track whether a worker is UNSIGNALLED (possibly 411 * blocked waiting for a signal). When a worker is inactivated, 412 * its scanState field is set, and is prevented from executing 413 * tasks, even though it must scan once for them to avoid queuing 414 * races. Note that scanState updates lag queue CAS releases so 415 * usage requires care. When queued, the lower 16 bits of 416 * scanState must hold its pool index. So we place the index there 417 * upon initialization (see registerWorker) and otherwise keep it 418 * there or restore it when necessary. 419 * 420 * The ctl field also serves as the basis for memory 421 * synchronization surrounding activation. This uses a more 422 * efficient version of a Dekker-like rule that task producers and 423 * consumers sync with each other by both writing/CASing ctl (even 424 * if to its current value). This would be extremely costly. So 425 * we relax it in several ways: (1) Producers only signal when 426 * their queue is empty. Other workers propagate this signal (in 427 * method scan) when they find tasks. (2) Workers only enqueue 428 * after scanning (see below) and not finding any tasks. (3) 429 * Rather than CASing ctl to its current value in the common case 430 * where no action is required, we reduce write contention by 431 * equivalently prefacing signalWork when called by an external 432 * task producer using a memory access with full-volatile 433 * semantics or a "fullFence". (4) For internal task producers we 434 * rely on the fact that even if no other workers awaken, the 435 * producer itself will eventually see the task and execute it. 436 * 437 * Almost always, too many signals are issued. A task producer 438 * cannot in general tell if some existing worker is in the midst 439 * of finishing one task (or already scanning) and ready to take 440 * another without being signalled. So the producer might instead 441 * activate a different worker that does not find any work, and 442 * then inactivates. This scarcely matters in steady-state 443 * computations involving all workers, but can create contention 444 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small 445 * computations involving only a few workers. 446 * 447 * Scanning. Method scan() performs top-level scanning for tasks. 448 * Each scan traverses (and tries to poll from) each queue in 449 * pseudorandom permutation order by randomly selecting an origin 450 * index and a step value. (The pseudorandom generator need not 451 * have high-quality statistical properties in the long term, but 452 * just within computations; We use 64bit and 32bit Marsaglia 453 * XorShifts, which are cheap and suffice here.) Scanning also 454 * employs contention reduction: When scanning workers fail a CAS 455 * polling for work, they soon restart with a different 456 * pseudorandom scan order (thus likely retrying at different 457 * intervals). This improves throughput when many threads are 458 * trying to take tasks from few queues. Scans do not otherwise 459 * explicitly take into account core affinities, loads, cache 460 * localities, etc, However, they do exploit temporal locality 461 * (which usually approximates these) by preferring to re-poll (up 462 * to POLL_LIMIT times) from the same queue after a successful 463 * poll before trying others. Restricted forms of scanning occur 464 * in methods helpComplete and findNonEmptyStealQueue, and take 465 * similar but simpler forms. 466 * 467 * Deactivation and waiting. Queuing encounters several intrinsic 468 * races; most notably that an inactivating scanning worker can 469 * miss seeing a task produced during a scan. So when a worker 470 * cannot find a task to steal, it inactivates and enqueues, and 471 * then rescans to ensure that it didn't miss one, reactivating 472 * upon seeing one with probability approximately proportional to 473 * probability of a miss. (In most cases, the worker will be 474 * signalled before self-signalling, avoiding cascades of multiple 475 * signals for the same task). 476 * 477 * Workers block (in method awaitWork) using park/unpark; 478 * advertising the need for signallers to unpark by setting their 479 * "parker" fields. 480 * 481 * Trimming workers. To release resources after periods of lack of 482 * use, a worker starting to wait when the pool is quiescent will 483 * time out and terminate (see awaitWork) if the pool has remained 484 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the 485 * period as the number of threads decreases, eventually removing 486 * all workers. 487 * 488 * Shutdown and Termination. A call to shutdownNow invokes 489 * tryTerminate to atomically set a runState bit. The calling 490 * thread, as well as every other worker thereafter terminating, 491 * helps terminate others by setting their (qlock) status, 492 * cancelling their unprocessed tasks, and waking them up, doing 493 * so repeatedly until stable. Calls to non-abrupt shutdown() 494 * preface this by checking whether termination should commence. 495 * This relies primarily on the active count bits of "ctl" 496 * maintaining consensus -- tryTerminate is called from awaitWork 497 * whenever quiescent. However, external submitters do not take 498 * part in this consensus. So, tryTerminate sweeps through queues 499 * (until stable) to ensure lack of in-flight submissions and 500 * workers about to process them before triggering the "STOP" 501 * phase of termination. (Note: there is an intrinsic conflict if 502 * helpQuiescePool is called when shutdown is enabled. Both wait 503 * for quiescence, but tryTerminate is biased to not trigger until 504 * helpQuiescePool completes.) 505 * 506 * Joining Tasks 507 * ============= 508 * 509 * Any of several actions may be taken when one worker is waiting 510 * to join a task stolen (or always held) by another. Because we 511 * are multiplexing many tasks on to a pool of workers, we can't 512 * just let them block (as in Thread.join). We also cannot just 513 * reassign the joiner's run-time stack with another and replace 514 * it later, which would be a form of "continuation", that even if 515 * possible is not necessarily a good idea since we may need both 516 * an unblocked task and its continuation to progress. Instead we 517 * combine two tactics: 518 * 519 * Helping: Arranging for the joiner to execute some task that it 520 * would be running if the steal had not occurred. 521 * 522 * Compensating: Unless there are already enough live threads, 523 * method tryCompensate() may create or re-activate a spare 524 * thread to compensate for blocked joiners until they unblock. 525 * 526 * A third form (implemented in tryRemoveAndExec) amounts to 527 * helping a hypothetical compensator: If we can readily tell that 528 * a possible action of a compensator is to steal and execute the 529 * task being joined, the joining thread can do so directly, 530 * without the need for a compensation thread (although at the 531 * expense of larger run-time stacks, but the tradeoff is 532 * typically worthwhile). 533 * 534 * The ManagedBlocker extension API can't use helping so relies 535 * only on compensation in method awaitBlocker. 536 * 537 * The algorithm in helpStealer entails a form of "linear 538 * helping". Each worker records (in field currentSteal) the most 539 * recent task it stole from some other worker (or a submission). 540 * It also records (in field currentJoin) the task it is currently 541 * actively joining. Method helpStealer uses these markers to try 542 * to find a worker to help (i.e., steal back a task from and 543 * execute it) that could hasten completion of the actively joined 544 * task. Thus, the joiner executes a task that would be on its 545 * own local deque had the to-be-joined task not been stolen. This 546 * is a conservative variant of the approach described in Wagner & 547 * Calder "Leapfrogging: a portable technique for implementing 548 * efficient futures" SIGPLAN Notices, 1993 549 * (http://portal.acm.org/citation.cfm?id=155354). It differs in 550 * that: (1) We only maintain dependency links across workers upon 551 * steals, rather than use per-task bookkeeping. This sometimes 552 * requires a linear scan of workQueues array to locate stealers, 553 * but often doesn't because stealers leave hints (that may become 554 * stale/wrong) of where to locate them. It is only a hint 555 * because a worker might have had multiple steals and the hint 556 * records only one of them (usually the most current). Hinting 557 * isolates cost to when it is needed, rather than adding to 558 * per-task overhead. (2) It is "shallow", ignoring nesting and 559 * potentially cyclic mutual steals. (3) It is intentionally 560 * racy: field currentJoin is updated only while actively joining, 561 * which means that we miss links in the chain during long-lived 562 * tasks, GC stalls etc (which is OK since blocking in such cases 563 * is usually a good idea). (4) We bound the number of attempts 564 * to find work using checksums and fall back to suspending the 565 * worker and if necessary replacing it with another. 566 * 567 * Helping actions for CountedCompleters do not require tracking 568 * currentJoins: Method helpComplete takes and executes any task 569 * with the same root as the task being waited on (preferring 570 * local pops to non-local polls). However, this still entails 571 * some traversal of completer chains, so is less efficient than 572 * using CountedCompleters without explicit joins. 573 * 574 * Compensation does not aim to keep exactly the target 575 * parallelism number of unblocked threads running at any given 576 * time. Some previous versions of this class employed immediate 577 * compensations for any blocked join. However, in practice, the 578 * vast majority of blockages are transient byproducts of GC and 579 * other JVM or OS activities that are made worse by replacement. 580 * Currently, compensation is attempted only after validating that 581 * all purportedly active threads are processing tasks by checking 582 * field WorkQueue.scanState, which eliminates most false 583 * positives. Also, compensation is bypassed (tolerating fewer 584 * threads) in the most common case in which it is rarely 585 * beneficial: when a worker with an empty queue (thus no 586 * continuation tasks) blocks on a join and there still remain 587 * enough threads to ensure liveness. 588 * 589 * Spare threads are removed as soon as they notice that the 590 * target parallelism level has been exceeded, in method 591 * tryDropSpare. (Method scan arranges returns for rechecks upon 592 * each probe via the "bound" parameter.) 593 * 594 * The compensation mechanism may be bounded. Bounds for the 595 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope 596 * with programming errors and abuse before running out of 597 * resources to do so. In other cases, users may supply factories 598 * that limit thread construction. The effects of bounding in this 599 * pool (like all others) is imprecise. Total worker counts are 600 * decremented when threads deregister, not when they exit and 601 * resources are reclaimed by the JVM and OS. So the number of 602 * simultaneously live threads may transiently exceed bounds. 603 * 604 * Common Pool 605 * =========== 606 * 607 * The static common pool always exists after static 608 * initialization. Since it (or any other created pool) need 609 * never be used, we minimize initial construction overhead and 610 * footprint to the setup of about a dozen fields, with no nested 611 * allocation. Most bootstrapping occurs within method 612 * externalSubmit during the first submission to the pool. 613 * 614 * When external threads submit to the common pool, they can 615 * perform subtask processing (see externalHelpComplete and 616 * related methods) upon joins. This caller-helps policy makes it 617 * sensible to set common pool parallelism level to one (or more) 618 * less than the total number of available cores, or even zero for 619 * pure caller-runs. We do not need to record whether external 620 * submissions are to the common pool -- if not, external help 621 * methods return quickly. These submitters would otherwise be 622 * blocked waiting for completion, so the extra effort (with 623 * liberally sprinkled task status checks) in inapplicable cases 624 * amounts to an odd form of limited spin-wait before blocking in 625 * ForkJoinTask.join. 626 * 627 * As a more appropriate default in managed environments, unless 628 * overridden by system properties, we use workers of subclass 629 * InnocuousForkJoinWorkerThread when there is a SecurityManager 630 * present. These workers have no permissions set, do not belong 631 * to any user-defined ThreadGroup, and erase all ThreadLocals 632 * after executing any top-level task (see WorkQueue.runTask). 633 * The associated mechanics (mainly in ForkJoinWorkerThread) may 634 * be JVM-dependent and must access particular Thread class fields 635 * to achieve this effect. 636 * 637 * Style notes 638 * =========== 639 * 640 * Memory ordering relies mainly on Unsafe intrinsics that carry 641 * the further responsibility of explicitly performing null- and 642 * bounds- checks otherwise carried out implicitly by JVMs. This 643 * can be awkward and ugly, but also reflects the need to control 644 * outcomes across the unusual cases that arise in very racy code 645 * with very few invariants. So these explicit checks would exist 646 * in some form anyway. All fields are read into locals before 647 * use, and null-checked if they are references. This is usually 648 * done in a "C"-like style of listing declarations at the heads 649 * of methods or blocks, and using inline assignments on first 650 * encounter. Array bounds-checks are usually performed by 651 * masking with array.length-1, which relies on the invariant that 652 * these arrays are created with positive lengths, which is itself 653 * paranoically checked. Nearly all explicit checks lead to 654 * bypass/return, not exception throws, because they may 655 * legitimately arise due to cancellation/revocation during 656 * shutdown. 657 * 658 * There is a lot of representation-level coupling among classes 659 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The 660 * fields of WorkQueue maintain data structures managed by 661 * ForkJoinPool, so are directly accessed. There is little point 662 * trying to reduce this, since any associated future changes in 663 * representations will need to be accompanied by algorithmic 664 * changes anyway. Several methods intrinsically sprawl because 665 * they must accumulate sets of consistent reads of fields held in 666 * local variables. There are also other coding oddities 667 * (including several unnecessary-looking hoisted null checks) 668 * that help some methods perform reasonably even when interpreted 669 * (not compiled). 670 * 671 * The order of declarations in this file is (with a few exceptions): 672 * (1) Static utility functions 673 * (2) Nested (static) classes 674 * (3) Static fields 675 * (4) Fields, along with constants used when unpacking some of them 676 * (5) Internal control methods 677 * (6) Callbacks and other support for ForkJoinTask methods 678 * (7) Exported methods 679 * (8) Static block initializing statics in minimally dependent order 680 */ 681 682 // Static utilities 683 684 /** 685 * If there is a security manager, makes sure caller has 686 * permission to modify threads. 687 */ checkPermission()688 private static void checkPermission() { 689 SecurityManager security = System.getSecurityManager(); 690 if (security != null) 691 security.checkPermission(modifyThreadPermission); 692 } 693 694 // Nested classes 695 696 /** 697 * Factory for creating new {@link ForkJoinWorkerThread}s. 698 * A {@code ForkJoinWorkerThreadFactory} must be defined and used 699 * for {@code ForkJoinWorkerThread} subclasses that extend base 700 * functionality or initialize threads with different contexts. 701 */ 702 public static interface ForkJoinWorkerThreadFactory { 703 /** 704 * Returns a new worker thread operating in the given pool. 705 * 706 * @param pool the pool this thread works in 707 * @return the new worker thread, or {@code null} if the request 708 * to create a thread is rejected 709 * @throws NullPointerException if the pool is null 710 */ newThread(ForkJoinPool pool)711 public ForkJoinWorkerThread newThread(ForkJoinPool pool); 712 } 713 714 /** 715 * Default ForkJoinWorkerThreadFactory implementation; creates a 716 * new ForkJoinWorkerThread. 717 */ 718 private static final class DefaultForkJoinWorkerThreadFactory 719 implements ForkJoinWorkerThreadFactory { newThread(ForkJoinPool pool)720 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) { 721 return new ForkJoinWorkerThread(pool); 722 } 723 } 724 725 /** 726 * Class for artificial tasks that are used to replace the target 727 * of local joins if they are removed from an interior queue slot 728 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to 729 * actually do anything beyond having a unique identity. 730 */ 731 private static final class EmptyTask extends ForkJoinTask<Void> { 732 private static final long serialVersionUID = -7721805057305804111L; EmptyTask()733 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done getRawResult()734 public final Void getRawResult() { return null; } setRawResult(Void x)735 public final void setRawResult(Void x) {} exec()736 public final boolean exec() { return true; } 737 } 738 739 /** 740 * Additional fields and lock created upon initialization. 741 */ 742 private static final class AuxState extends ReentrantLock { 743 private static final long serialVersionUID = -6001602636862214147L; 744 volatile long stealCount; // cumulative steal count 745 long indexSeed; // index bits for registerWorker AuxState()746 AuxState() {} 747 } 748 749 // Constants shared across ForkJoinPool and WorkQueue 750 751 // Bounds 752 static final int SMASK = 0xffff; // short bits == max index 753 static final int MAX_CAP = 0x7fff; // max #workers - 1 754 static final int EVENMASK = 0xfffe; // even short bits 755 static final int SQMASK = 0x007e; // max 64 (even) slots 756 757 // Masks and units for WorkQueue.scanState and ctl sp subfield 758 static final int UNSIGNALLED = 1 << 31; // must be negative 759 static final int SS_SEQ = 1 << 16; // version count 760 761 // Mode bits for ForkJoinPool.config and WorkQueue.config 762 static final int MODE_MASK = 0xffff << 16; // top half of int 763 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation 764 static final int UNREGISTERED = 1 << 18; // to skip some of deregister 765 static final int FIFO_QUEUE = 1 << 31; // must be negative 766 static final int LIFO_QUEUE = 0; // for clarity 767 static final int IS_OWNED = 1; // low bit 0 if shared 768 769 /** 770 * The maximum number of task executions from the same queue 771 * before checking other queues, bounding unfairness and impact of 772 * infinite user task recursion. Must be a power of two minus 1. 773 */ 774 static final int POLL_LIMIT = (1 << 10) - 1; 775 776 /** 777 * Queues supporting work-stealing as well as external task 778 * submission. See above for descriptions and algorithms. 779 * Performance on most platforms is very sensitive to placement of 780 * instances of both WorkQueues and their arrays -- we absolutely 781 * do not want multiple WorkQueue instances or multiple queue 782 * arrays sharing cache lines. The @Contended annotation alerts 783 * JVMs to try to keep instances apart. 784 */ 785 // Android-removed: @Contended, this hint is not used by the Android runtime. 786 //@jdk.internal.vm.annotation.Contended 787 static final class WorkQueue { 788 789 /** 790 * Capacity of work-stealing queue array upon initialization. 791 * Must be a power of two; at least 4, but should be larger to 792 * reduce or eliminate cacheline sharing among queues. 793 * Currently, it is much larger, as a partial workaround for 794 * the fact that JVMs often place arrays in locations that 795 * share GC bookkeeping (especially cardmarks) such that 796 * per-write accesses encounter serious memory contention. 797 */ 798 static final int INITIAL_QUEUE_CAPACITY = 1 << 13; 799 800 /** 801 * Maximum size for queue arrays. Must be a power of two less 802 * than or equal to 1 << (31 - width of array entry) to ensure 803 * lack of wraparound of index calculations, but defined to a 804 * value a bit less than this to help users trap runaway 805 * programs before saturating systems. 806 */ 807 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M 808 809 // Instance fields 810 811 volatile int scanState; // versioned, negative if inactive 812 int stackPred; // pool stack (ctl) predecessor 813 int nsteals; // number of steals 814 int hint; // randomization and stealer index hint 815 int config; // pool index and mode 816 volatile int qlock; // 1: locked, < 0: terminate; else 0 817 volatile int base; // index of next slot for poll 818 int top; // index of next slot for push 819 ForkJoinTask<?>[] array; // the elements (initially unallocated) 820 final ForkJoinPool pool; // the containing pool (may be null) 821 final ForkJoinWorkerThread owner; // owning thread or null if shared 822 volatile Thread parker; // == owner during call to park; else null 823 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin 824 825 // Android-removed: @Contended, this hint is not used by the Android runtime. 826 // @jdk.internal.vm.annotation.Contended("group2") // segregate 827 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task 828 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner)829 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) { 830 this.pool = pool; 831 this.owner = owner; 832 // Place indices in the center of array (that is not yet allocated) 833 base = top = INITIAL_QUEUE_CAPACITY >>> 1; 834 } 835 836 /** 837 * Returns an exportable index (used by ForkJoinWorkerThread). 838 */ getPoolIndex()839 final int getPoolIndex() { 840 return (config & 0xffff) >>> 1; // ignore odd/even tag bit 841 } 842 843 /** 844 * Returns the approximate number of tasks in the queue. 845 */ queueSize()846 final int queueSize() { 847 int n = base - top; // read base first 848 return (n >= 0) ? 0 : -n; // ignore transient negative 849 } 850 851 /** 852 * Provides a more accurate estimate of whether this queue has 853 * any tasks than does queueSize, by checking whether a 854 * near-empty queue has at least one unclaimed task. 855 */ isEmpty()856 final boolean isEmpty() { 857 ForkJoinTask<?>[] a; int n, al, s; 858 return ((n = base - (s = top)) >= 0 || // possibly one task 859 (n == -1 && ((a = array) == null || 860 (al = a.length) == 0 || 861 a[(al - 1) & (s - 1)] == null))); 862 } 863 864 /** 865 * Pushes a task. Call only by owner in unshared queues. 866 * 867 * @param task the task. Caller must ensure non-null. 868 * @throws RejectedExecutionException if array cannot be resized 869 */ push(ForkJoinTask<?> task)870 final void push(ForkJoinTask<?> task) { 871 U.storeFence(); // ensure safe publication 872 int s = top, al, d; ForkJoinTask<?>[] a; 873 if ((a = array) != null && (al = a.length) > 0) { 874 a[(al - 1) & s] = task; // relaxed writes OK 875 top = s + 1; 876 ForkJoinPool p = pool; 877 if ((d = base - s) == 0 && p != null) { 878 U.fullFence(); 879 p.signalWork(); 880 } 881 else if (al + d == 1) 882 growArray(); 883 } 884 } 885 886 /** 887 * Initializes or doubles the capacity of array. Call either 888 * by owner or with lock held -- it is OK for base, but not 889 * top, to move while resizings are in progress. 890 */ growArray()891 final ForkJoinTask<?>[] growArray() { 892 ForkJoinTask<?>[] oldA = array; 893 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY; 894 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY) 895 throw new RejectedExecutionException("Queue capacity exceeded"); 896 int oldMask, t, b; 897 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size]; 898 if (oldA != null && (oldMask = oldA.length - 1) > 0 && 899 (t = top) - (b = base) > 0) { 900 int mask = size - 1; 901 do { // emulate poll from old array, push to new array 902 int index = b & oldMask; 903 long offset = ((long)index << ASHIFT) + ABASE; 904 ForkJoinTask<?> x = (ForkJoinTask<?>) 905 U.getObjectVolatile(oldA, offset); 906 if (x != null && 907 U.compareAndSwapObject(oldA, offset, x, null)) 908 a[b & mask] = x; 909 } while (++b != t); 910 U.storeFence(); 911 } 912 return a; 913 } 914 915 /** 916 * Takes next task, if one exists, in LIFO order. Call only 917 * by owner in unshared queues. 918 */ pop()919 final ForkJoinTask<?> pop() { 920 int b = base, s = top, al, i; ForkJoinTask<?>[] a; 921 if ((a = array) != null && b != s && (al = a.length) > 0) { 922 int index = (al - 1) & --s; 923 long offset = ((long)index << ASHIFT) + ABASE; 924 ForkJoinTask<?> t = (ForkJoinTask<?>) 925 U.getObject(a, offset); 926 if (t != null && 927 U.compareAndSwapObject(a, offset, t, null)) { 928 top = s; 929 return t; 930 } 931 } 932 return null; 933 } 934 935 /** 936 * Takes a task in FIFO order if b is base of queue and a task 937 * can be claimed without contention. Specialized versions 938 * appear in ForkJoinPool methods scan and helpStealer. 939 */ pollAt(int b)940 final ForkJoinTask<?> pollAt(int b) { 941 ForkJoinTask<?>[] a; int al; 942 if ((a = array) != null && (al = a.length) > 0) { 943 int index = (al - 1) & b; 944 long offset = ((long)index << ASHIFT) + ABASE; 945 ForkJoinTask<?> t = (ForkJoinTask<?>) 946 U.getObjectVolatile(a, offset); 947 if (t != null && b++ == base && 948 U.compareAndSwapObject(a, offset, t, null)) { 949 base = b; 950 return t; 951 } 952 } 953 return null; 954 } 955 956 /** 957 * Takes next task, if one exists, in FIFO order. 958 */ poll()959 final ForkJoinTask<?> poll() { 960 for (;;) { 961 int b = base, s = top, d, al; ForkJoinTask<?>[] a; 962 if ((a = array) != null && (d = b - s) < 0 && 963 (al = a.length) > 0) { 964 int index = (al - 1) & b; 965 long offset = ((long)index << ASHIFT) + ABASE; 966 ForkJoinTask<?> t = (ForkJoinTask<?>) 967 U.getObjectVolatile(a, offset); 968 if (b++ == base) { 969 if (t != null) { 970 if (U.compareAndSwapObject(a, offset, t, null)) { 971 base = b; 972 return t; 973 } 974 } 975 else if (d == -1) 976 break; // now empty 977 } 978 } 979 else 980 break; 981 } 982 return null; 983 } 984 985 /** 986 * Takes next task, if one exists, in order specified by mode. 987 */ nextLocalTask()988 final ForkJoinTask<?> nextLocalTask() { 989 return (config < 0) ? poll() : pop(); 990 } 991 992 /** 993 * Returns next task, if one exists, in order specified by mode. 994 */ peek()995 final ForkJoinTask<?> peek() { 996 int al; ForkJoinTask<?>[] a; 997 return ((a = array) != null && (al = a.length) > 0) ? 998 a[(al - 1) & (config < 0 ? base : top - 1)] : null; 999 } 1000 1001 /** 1002 * Pops the given task only if it is at the current top. 1003 */ tryUnpush(ForkJoinTask<?> task)1004 final boolean tryUnpush(ForkJoinTask<?> task) { 1005 int b = base, s = top, al; ForkJoinTask<?>[] a; 1006 if ((a = array) != null && b != s && (al = a.length) > 0) { 1007 int index = (al - 1) & --s; 1008 long offset = ((long)index << ASHIFT) + ABASE; 1009 if (U.compareAndSwapObject(a, offset, task, null)) { 1010 top = s; 1011 return true; 1012 } 1013 } 1014 return false; 1015 } 1016 1017 /** 1018 * Shared version of push. Fails if already locked. 1019 * 1020 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty 1021 */ sharedPush(ForkJoinTask<?> task)1022 final int sharedPush(ForkJoinTask<?> task) { 1023 int stat; 1024 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) { 1025 int b = base, s = top, al, d; ForkJoinTask<?>[] a; 1026 if ((a = array) != null && (al = a.length) > 0 && 1027 al - 1 + (d = b - s) > 0) { 1028 a[(al - 1) & s] = task; 1029 top = s + 1; // relaxed writes OK here 1030 qlock = 0; 1031 stat = (d < 0 && b == base) ? d : 0; 1032 } 1033 else { 1034 growAndSharedPush(task); 1035 stat = 0; 1036 } 1037 } 1038 else 1039 stat = 1; 1040 return stat; 1041 } 1042 1043 /** 1044 * Helper for sharedPush; called only when locked and resize 1045 * needed. 1046 */ growAndSharedPush(ForkJoinTask<?> task)1047 private void growAndSharedPush(ForkJoinTask<?> task) { 1048 try { 1049 growArray(); 1050 int s = top, al; ForkJoinTask<?>[] a; 1051 if ((a = array) != null && (al = a.length) > 0) { 1052 a[(al - 1) & s] = task; 1053 top = s + 1; 1054 } 1055 } finally { 1056 qlock = 0; 1057 } 1058 } 1059 1060 /** 1061 * Shared version of tryUnpush. 1062 */ trySharedUnpush(ForkJoinTask<?> task)1063 final boolean trySharedUnpush(ForkJoinTask<?> task) { 1064 boolean popped = false; 1065 int s = top - 1, al; ForkJoinTask<?>[] a; 1066 if ((a = array) != null && (al = a.length) > 0) { 1067 int index = (al - 1) & s; 1068 long offset = ((long)index << ASHIFT) + ABASE; 1069 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset); 1070 if (t == task && 1071 U.compareAndSwapInt(this, QLOCK, 0, 1)) { 1072 if (top == s + 1 && array == a && 1073 U.compareAndSwapObject(a, offset, task, null)) { 1074 popped = true; 1075 top = s; 1076 } 1077 U.putOrderedInt(this, QLOCK, 0); 1078 } 1079 } 1080 return popped; 1081 } 1082 1083 /** 1084 * Removes and cancels all known tasks, ignoring any exceptions. 1085 */ cancelAll()1086 final void cancelAll() { 1087 ForkJoinTask<?> t; 1088 if ((t = currentJoin) != null) { 1089 currentJoin = null; 1090 ForkJoinTask.cancelIgnoringExceptions(t); 1091 } 1092 if ((t = currentSteal) != null) { 1093 currentSteal = null; 1094 ForkJoinTask.cancelIgnoringExceptions(t); 1095 } 1096 while ((t = poll()) != null) 1097 ForkJoinTask.cancelIgnoringExceptions(t); 1098 } 1099 1100 // Specialized execution methods 1101 1102 /** 1103 * Pops and executes up to POLL_LIMIT tasks or until empty. 1104 */ localPopAndExec()1105 final void localPopAndExec() { 1106 for (int nexec = 0;;) { 1107 int b = base, s = top, al; ForkJoinTask<?>[] a; 1108 if ((a = array) != null && b != s && (al = a.length) > 0) { 1109 int index = (al - 1) & --s; 1110 long offset = ((long)index << ASHIFT) + ABASE; 1111 ForkJoinTask<?> t = (ForkJoinTask<?>) 1112 U.getAndSetObject(a, offset, null); 1113 if (t != null) { 1114 top = s; 1115 (currentSteal = t).doExec(); 1116 if (++nexec > POLL_LIMIT) 1117 break; 1118 } 1119 else 1120 break; 1121 } 1122 else 1123 break; 1124 } 1125 } 1126 1127 /** 1128 * Polls and executes up to POLL_LIMIT tasks or until empty. 1129 */ localPollAndExec()1130 final void localPollAndExec() { 1131 for (int nexec = 0;;) { 1132 int b = base, s = top, al; ForkJoinTask<?>[] a; 1133 if ((a = array) != null && b != s && (al = a.length) > 0) { 1134 int index = (al - 1) & b++; 1135 long offset = ((long)index << ASHIFT) + ABASE; 1136 ForkJoinTask<?> t = (ForkJoinTask<?>) 1137 U.getAndSetObject(a, offset, null); 1138 if (t != null) { 1139 base = b; 1140 t.doExec(); 1141 if (++nexec > POLL_LIMIT) 1142 break; 1143 } 1144 } 1145 else 1146 break; 1147 } 1148 } 1149 1150 /** 1151 * Executes the given task and (some) remaining local tasks. 1152 */ runTask(ForkJoinTask<?> task)1153 final void runTask(ForkJoinTask<?> task) { 1154 if (task != null) { 1155 task.doExec(); 1156 if (config < 0) 1157 localPollAndExec(); 1158 else 1159 localPopAndExec(); 1160 int ns = ++nsteals; 1161 ForkJoinWorkerThread thread = owner; 1162 currentSteal = null; 1163 if (ns < 0) // collect on overflow 1164 transferStealCount(pool); 1165 if (thread != null) 1166 thread.afterTopLevelExec(); 1167 } 1168 } 1169 1170 /** 1171 * Adds steal count to pool steal count if it exists, and resets. 1172 */ transferStealCount(ForkJoinPool p)1173 final void transferStealCount(ForkJoinPool p) { 1174 AuxState aux; 1175 if (p != null && (aux = p.auxState) != null) { 1176 long s = nsteals; 1177 nsteals = 0; // if negative, correct for overflow 1178 if (s < 0) s = Integer.MAX_VALUE; 1179 aux.lock(); 1180 try { 1181 aux.stealCount += s; 1182 } finally { 1183 aux.unlock(); 1184 } 1185 } 1186 } 1187 1188 /** 1189 * If present, removes from queue and executes the given task, 1190 * or any other cancelled task. Used only by awaitJoin. 1191 * 1192 * @return true if queue empty and task not known to be done 1193 */ tryRemoveAndExec(ForkJoinTask<?> task)1194 final boolean tryRemoveAndExec(ForkJoinTask<?> task) { 1195 if (task != null && task.status >= 0) { 1196 int b, s, d, al; ForkJoinTask<?>[] a; 1197 while ((d = (b = base) - (s = top)) < 0 && 1198 (a = array) != null && (al = a.length) > 0) { 1199 for (;;) { // traverse from s to b 1200 int index = --s & (al - 1); 1201 long offset = (index << ASHIFT) + ABASE; 1202 ForkJoinTask<?> t = (ForkJoinTask<?>) 1203 U.getObjectVolatile(a, offset); 1204 if (t == null) 1205 break; // restart 1206 else if (t == task) { 1207 boolean removed = false; 1208 if (s + 1 == top) { // pop 1209 if (U.compareAndSwapObject(a, offset, t, null)) { 1210 top = s; 1211 removed = true; 1212 } 1213 } 1214 else if (base == b) // replace with proxy 1215 removed = U.compareAndSwapObject(a, offset, t, 1216 new EmptyTask()); 1217 if (removed) { 1218 ForkJoinTask<?> ps = currentSteal; 1219 (currentSteal = task).doExec(); 1220 currentSteal = ps; 1221 } 1222 break; 1223 } 1224 else if (t.status < 0 && s + 1 == top) { 1225 if (U.compareAndSwapObject(a, offset, t, null)) { 1226 top = s; 1227 } 1228 break; // was cancelled 1229 } 1230 else if (++d == 0) { 1231 if (base != b) // rescan 1232 break; 1233 return false; 1234 } 1235 } 1236 if (task.status < 0) 1237 return false; 1238 } 1239 } 1240 return true; 1241 } 1242 1243 /** 1244 * Pops task if in the same CC computation as the given task, 1245 * in either shared or owned mode. Used only by helpComplete. 1246 */ popCC(CountedCompleter<?> task, int mode)1247 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) { 1248 int b = base, s = top, al; ForkJoinTask<?>[] a; 1249 if ((a = array) != null && b != s && (al = a.length) > 0) { 1250 int index = (al - 1) & (s - 1); 1251 long offset = ((long)index << ASHIFT) + ABASE; 1252 ForkJoinTask<?> o = (ForkJoinTask<?>) 1253 U.getObjectVolatile(a, offset); 1254 if (o instanceof CountedCompleter) { 1255 CountedCompleter<?> t = (CountedCompleter<?>)o; 1256 for (CountedCompleter<?> r = t;;) { 1257 if (r == task) { 1258 if ((mode & IS_OWNED) == 0) { 1259 boolean popped = false; 1260 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) { 1261 if (top == s && array == a && 1262 U.compareAndSwapObject(a, offset, 1263 t, null)) { 1264 popped = true; 1265 top = s - 1; 1266 } 1267 U.putOrderedInt(this, QLOCK, 0); 1268 if (popped) 1269 return t; 1270 } 1271 } 1272 else if (U.compareAndSwapObject(a, offset, 1273 t, null)) { 1274 top = s - 1; 1275 return t; 1276 } 1277 break; 1278 } 1279 else if ((r = r.completer) == null) // try parent 1280 break; 1281 } 1282 } 1283 } 1284 return null; 1285 } 1286 1287 /** 1288 * Steals and runs a task in the same CC computation as the 1289 * given task if one exists and can be taken without 1290 * contention. Otherwise returns a checksum/control value for 1291 * use by method helpComplete. 1292 * 1293 * @return 1 if successful, 2 if retryable (lost to another 1294 * stealer), -1 if non-empty but no matching task found, else 1295 * the base index, forced negative. 1296 */ pollAndExecCC(CountedCompleter<?> task)1297 final int pollAndExecCC(CountedCompleter<?> task) { 1298 ForkJoinTask<?>[] a; 1299 int b = base, s = top, al, h; 1300 if ((a = array) != null && b != s && (al = a.length) > 0) { 1301 int index = (al - 1) & b; 1302 long offset = ((long)index << ASHIFT) + ABASE; 1303 ForkJoinTask<?> o = (ForkJoinTask<?>) 1304 U.getObjectVolatile(a, offset); 1305 if (o == null) 1306 h = 2; // retryable 1307 else if (!(o instanceof CountedCompleter)) 1308 h = -1; // unmatchable 1309 else { 1310 CountedCompleter<?> t = (CountedCompleter<?>)o; 1311 for (CountedCompleter<?> r = t;;) { 1312 if (r == task) { 1313 if (b++ == base && 1314 U.compareAndSwapObject(a, offset, t, null)) { 1315 base = b; 1316 t.doExec(); 1317 h = 1; // success 1318 } 1319 else 1320 h = 2; // lost CAS 1321 break; 1322 } 1323 else if ((r = r.completer) == null) { 1324 h = -1; // unmatched 1325 break; 1326 } 1327 } 1328 } 1329 } 1330 else 1331 h = b | Integer.MIN_VALUE; // to sense movement on re-poll 1332 return h; 1333 } 1334 1335 /** 1336 * Returns true if owned and not known to be blocked. 1337 */ isApparentlyUnblocked()1338 final boolean isApparentlyUnblocked() { 1339 Thread wt; Thread.State s; 1340 return (scanState >= 0 && 1341 (wt = owner) != null && 1342 (s = wt.getState()) != Thread.State.BLOCKED && 1343 s != Thread.State.WAITING && 1344 s != Thread.State.TIMED_WAITING); 1345 } 1346 1347 // Unsafe mechanics. Note that some are (and must be) the same as in FJP 1348 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 1349 private static final long QLOCK; 1350 private static final int ABASE; 1351 private static final int ASHIFT; 1352 static { 1353 try { 1354 QLOCK = U.objectFieldOffset 1355 (WorkQueue.class.getDeclaredField("qlock")); 1356 ABASE = U.arrayBaseOffset(ForkJoinTask[].class); 1357 int scale = U.arrayIndexScale(ForkJoinTask[].class); 1358 if ((scale & (scale - 1)) != 0) 1359 throw new Error("array index scale not a power of two"); 1360 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); 1361 } catch (ReflectiveOperationException e) { 1362 throw new Error(e); 1363 } 1364 } 1365 } 1366 1367 // static fields (initialized in static initializer below) 1368 1369 /** 1370 * Creates a new ForkJoinWorkerThread. This factory is used unless 1371 * overridden in ForkJoinPool constructors. 1372 */ 1373 public static final ForkJoinWorkerThreadFactory 1374 defaultForkJoinWorkerThreadFactory; 1375 1376 /** 1377 * Permission required for callers of methods that may start or 1378 * kill threads. Also used as a static lock in tryInitialize. 1379 */ 1380 static final RuntimePermission modifyThreadPermission; 1381 1382 /** 1383 * Common (static) pool. Non-null for public use unless a static 1384 * construction exception, but internal usages null-check on use 1385 * to paranoically avoid potential initialization circularities 1386 * as well as to simplify generated code. 1387 */ 1388 static final ForkJoinPool common; 1389 1390 /** 1391 * Common pool parallelism. To allow simpler use and management 1392 * when common pool threads are disabled, we allow the underlying 1393 * common.parallelism field to be zero, but in that case still report 1394 * parallelism as 1 to reflect resulting caller-runs mechanics. 1395 */ 1396 static final int COMMON_PARALLELISM; 1397 1398 /** 1399 * Limit on spare thread construction in tryCompensate. 1400 */ 1401 private static final int COMMON_MAX_SPARES; 1402 1403 /** 1404 * Sequence number for creating workerNamePrefix. 1405 */ 1406 private static int poolNumberSequence; 1407 1408 /** 1409 * Returns the next sequence number. We don't expect this to 1410 * ever contend, so use simple builtin sync. 1411 */ nextPoolId()1412 private static final synchronized int nextPoolId() { 1413 return ++poolNumberSequence; 1414 } 1415 1416 // static configuration constants 1417 1418 /** 1419 * Initial timeout value (in milliseconds) for the thread 1420 * triggering quiescence to park waiting for new work. On timeout, 1421 * the thread will instead try to shrink the number of workers. 1422 * The value should be large enough to avoid overly aggressive 1423 * shrinkage during most transient stalls (long GCs etc). 1424 */ 1425 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec 1426 1427 /** 1428 * Tolerance for idle timeouts, to cope with timer undershoots. 1429 */ 1430 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms 1431 1432 /** 1433 * The default value for COMMON_MAX_SPARES. Overridable using the 1434 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system 1435 * property. The default value is far in excess of normal 1436 * requirements, but also far short of MAX_CAP and typical OS 1437 * thread limits, so allows JVMs to catch misuse/abuse before 1438 * running out of resources needed to do so. 1439 */ 1440 private static final int DEFAULT_COMMON_MAX_SPARES = 256; 1441 1442 /** 1443 * Increment for seed generators. See class ThreadLocal for 1444 * explanation. 1445 */ 1446 private static final int SEED_INCREMENT = 0x9e3779b9; 1447 1448 /* 1449 * Bits and masks for field ctl, packed with 4 16 bit subfields: 1450 * AC: Number of active running workers minus target parallelism 1451 * TC: Number of total workers minus target parallelism 1452 * SS: version count and status of top waiting thread 1453 * ID: poolIndex of top of Treiber stack of waiters 1454 * 1455 * When convenient, we can extract the lower 32 stack top bits 1456 * (including version bits) as sp=(int)ctl. The offsets of counts 1457 * by the target parallelism and the positionings of fields makes 1458 * it possible to perform the most common checks via sign tests of 1459 * fields: When ac is negative, there are not enough active 1460 * workers, when tc is negative, there are not enough total 1461 * workers. When sp is non-zero, there are waiting workers. To 1462 * deal with possibly negative fields, we use casts in and out of 1463 * "short" and/or signed shifts to maintain signedness. 1464 * 1465 * Because it occupies uppermost bits, we can add one active count 1466 * using getAndAddLong of AC_UNIT, rather than CAS, when returning 1467 * from a blocked join. Other updates entail multiple subfields 1468 * and masking, requiring CAS. 1469 */ 1470 1471 // Lower and upper word masks 1472 private static final long SP_MASK = 0xffffffffL; 1473 private static final long UC_MASK = ~SP_MASK; 1474 1475 // Active counts 1476 private static final int AC_SHIFT = 48; 1477 private static final long AC_UNIT = 0x0001L << AC_SHIFT; 1478 private static final long AC_MASK = 0xffffL << AC_SHIFT; 1479 1480 // Total counts 1481 private static final int TC_SHIFT = 32; 1482 private static final long TC_UNIT = 0x0001L << TC_SHIFT; 1483 private static final long TC_MASK = 0xffffL << TC_SHIFT; 1484 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign 1485 1486 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two 1487 private static final int STARTED = 1; 1488 private static final int STOP = 1 << 1; 1489 private static final int TERMINATED = 1 << 2; 1490 private static final int SHUTDOWN = 1 << 31; 1491 1492 // Instance fields 1493 volatile long ctl; // main pool control 1494 volatile int runState; 1495 final int config; // parallelism, mode 1496 AuxState auxState; // lock, steal counts 1497 volatile WorkQueue[] workQueues; // main registry 1498 final String workerNamePrefix; // to create worker name string 1499 final ForkJoinWorkerThreadFactory factory; 1500 final UncaughtExceptionHandler ueh; // per-worker UEH 1501 1502 /** 1503 * Instantiates fields upon first submission, or upon shutdown if 1504 * no submissions. If checkTermination true, also responds to 1505 * termination by external calls submitting tasks. 1506 */ tryInitialize(boolean checkTermination)1507 private void tryInitialize(boolean checkTermination) { 1508 if (runState == 0) { // bootstrap by locking static field 1509 int p = config & SMASK; 1510 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots 1511 n |= n >>> 1; // create workQueues array with size a power of two 1512 n |= n >>> 2; 1513 n |= n >>> 4; 1514 n |= n >>> 8; 1515 n |= n >>> 16; 1516 n = ((n + 1) << 1) & SMASK; 1517 AuxState aux = new AuxState(); 1518 WorkQueue[] ws = new WorkQueue[n]; 1519 synchronized (modifyThreadPermission) { // double-check 1520 if (runState == 0) { 1521 workQueues = ws; 1522 auxState = aux; 1523 runState = STARTED; 1524 } 1525 } 1526 } 1527 if (checkTermination && runState < 0) { 1528 tryTerminate(false, false); // help terminate 1529 throw new RejectedExecutionException(); 1530 } 1531 } 1532 1533 // Creating, registering and deregistering workers 1534 1535 /** 1536 * Tries to construct and start one worker. Assumes that total 1537 * count has already been incremented as a reservation. Invokes 1538 * deregisterWorker on any failure. 1539 * 1540 * @param isSpare true if this is a spare thread 1541 * @return true if successful 1542 */ createWorker(boolean isSpare)1543 private boolean createWorker(boolean isSpare) { 1544 ForkJoinWorkerThreadFactory fac = factory; 1545 Throwable ex = null; 1546 ForkJoinWorkerThread wt = null; 1547 WorkQueue q; 1548 try { 1549 if (fac != null && (wt = fac.newThread(this)) != null) { 1550 if (isSpare && (q = wt.workQueue) != null) 1551 q.config |= SPARE_WORKER; 1552 wt.start(); 1553 return true; 1554 } 1555 } catch (Throwable rex) { 1556 ex = rex; 1557 } 1558 deregisterWorker(wt, ex); 1559 return false; 1560 } 1561 1562 /** 1563 * Tries to add one worker, incrementing ctl counts before doing 1564 * so, relying on createWorker to back out on failure. 1565 * 1566 * @param c incoming ctl value, with total count negative and no 1567 * idle workers. On CAS failure, c is refreshed and retried if 1568 * this holds (otherwise, a new worker is not needed). 1569 */ tryAddWorker(long c)1570 private void tryAddWorker(long c) { 1571 do { 1572 long nc = ((AC_MASK & (c + AC_UNIT)) | 1573 (TC_MASK & (c + TC_UNIT))); 1574 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) { 1575 createWorker(false); 1576 break; 1577 } 1578 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0); 1579 } 1580 1581 /** 1582 * Callback from ForkJoinWorkerThread constructor to establish and 1583 * record its WorkQueue. 1584 * 1585 * @param wt the worker thread 1586 * @return the worker's queue 1587 */ registerWorker(ForkJoinWorkerThread wt)1588 final WorkQueue registerWorker(ForkJoinWorkerThread wt) { 1589 UncaughtExceptionHandler handler; 1590 AuxState aux; 1591 wt.setDaemon(true); // configure thread 1592 if ((handler = ueh) != null) 1593 wt.setUncaughtExceptionHandler(handler); 1594 WorkQueue w = new WorkQueue(this, wt); 1595 int i = 0; // assign a pool index 1596 int mode = config & MODE_MASK; 1597 if ((aux = auxState) != null) { 1598 aux.lock(); 1599 try { 1600 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m; 1601 WorkQueue[] ws = workQueues; 1602 if (ws != null && (n = ws.length) > 0) { 1603 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices 1604 if (ws[i] != null) { // collision 1605 int probes = 0; // step by approx half n 1606 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2; 1607 while (ws[i = (i + step) & m] != null) { 1608 if (++probes >= n) { 1609 workQueues = ws = Arrays.copyOf(ws, n <<= 1); 1610 m = n - 1; 1611 probes = 0; 1612 } 1613 } 1614 } 1615 w.hint = s; // use as random seed 1616 w.config = i | mode; 1617 w.scanState = i | (s & 0x7fff0000); // random seq bits 1618 ws[i] = w; 1619 } 1620 } finally { 1621 aux.unlock(); 1622 } 1623 } 1624 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1))); 1625 return w; 1626 } 1627 1628 /** 1629 * Final callback from terminating worker, as well as upon failure 1630 * to construct or start a worker. Removes record of worker from 1631 * array, and adjusts counts. If pool is shutting down, tries to 1632 * complete termination. 1633 * 1634 * @param wt the worker thread, or null if construction failed 1635 * @param ex the exception causing failure, or null if none 1636 */ deregisterWorker(ForkJoinWorkerThread wt, Throwable ex)1637 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) { 1638 WorkQueue w = null; 1639 if (wt != null && (w = wt.workQueue) != null) { 1640 AuxState aux; WorkQueue[] ws; // remove index from array 1641 int idx = w.config & SMASK; 1642 int ns = w.nsteals; 1643 if ((aux = auxState) != null) { 1644 aux.lock(); 1645 try { 1646 if ((ws = workQueues) != null && ws.length > idx && 1647 ws[idx] == w) 1648 ws[idx] = null; 1649 aux.stealCount += ns; 1650 } finally { 1651 aux.unlock(); 1652 } 1653 } 1654 } 1655 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted 1656 long c; // decrement counts 1657 do {} while (!U.compareAndSwapLong 1658 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) | 1659 (TC_MASK & (c - TC_UNIT)) | 1660 (SP_MASK & c)))); 1661 } 1662 if (w != null) { 1663 w.currentSteal = null; 1664 w.qlock = -1; // ensure set 1665 w.cancelAll(); // cancel remaining tasks 1666 } 1667 while (tryTerminate(false, false) >= 0) { // possibly replace 1668 WorkQueue[] ws; int wl, sp; long c; 1669 if (w == null || w.array == null || 1670 (ws = workQueues) == null || (wl = ws.length) <= 0) 1671 break; 1672 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement 1673 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT)) 1674 break; 1675 } 1676 else if (ex != null && (c & ADD_WORKER) != 0L) { 1677 tryAddWorker(c); // create replacement 1678 break; 1679 } 1680 else // don't need replacement 1681 break; 1682 } 1683 if (ex == null) // help clean on way out 1684 ForkJoinTask.helpExpungeStaleExceptions(); 1685 else // rethrow 1686 ForkJoinTask.rethrow(ex); 1687 } 1688 1689 // Signalling 1690 1691 /** 1692 * Tries to create or activate a worker if too few are active. 1693 */ signalWork()1694 final void signalWork() { 1695 for (;;) { 1696 long c; int sp, i; WorkQueue v; WorkQueue[] ws; 1697 if ((c = ctl) >= 0L) // enough workers 1698 break; 1699 else if ((sp = (int)c) == 0) { // no idle workers 1700 if ((c & ADD_WORKER) != 0L) // too few workers 1701 tryAddWorker(c); 1702 break; 1703 } 1704 else if ((ws = workQueues) == null) 1705 break; // unstarted/terminated 1706 else if (ws.length <= (i = sp & SMASK)) 1707 break; // terminated 1708 else if ((v = ws[i]) == null) 1709 break; // terminating 1710 else { 1711 int ns = sp & ~UNSIGNALLED; 1712 int vs = v.scanState; 1713 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT)); 1714 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) { 1715 v.scanState = ns; 1716 LockSupport.unpark(v.parker); 1717 break; 1718 } 1719 } 1720 } 1721 } 1722 1723 /** 1724 * Signals and releases worker v if it is top of idle worker 1725 * stack. This performs a one-shot version of signalWork only if 1726 * there is (apparently) at least one idle worker. 1727 * 1728 * @param c incoming ctl value 1729 * @param v if non-null, a worker 1730 * @param inc the increment to active count (zero when compensating) 1731 * @return true if successful 1732 */ tryRelease(long c, WorkQueue v, long inc)1733 private boolean tryRelease(long c, WorkQueue v, long inc) { 1734 int sp = (int)c, ns = sp & ~UNSIGNALLED; 1735 if (v != null) { 1736 int vs = v.scanState; 1737 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc)); 1738 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) { 1739 v.scanState = ns; 1740 LockSupport.unpark(v.parker); 1741 return true; 1742 } 1743 } 1744 return false; 1745 } 1746 1747 /** 1748 * With approx probability of a missed signal, tries (once) to 1749 * reactivate worker w (or some other worker), failing if stale or 1750 * known to be already active. 1751 * 1752 * @param w the worker 1753 * @param ws the workQueue array to use 1754 * @param r random seed 1755 */ tryReactivate(WorkQueue w, WorkQueue[] ws, int r)1756 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) { 1757 long c; int sp, wl; WorkQueue v; 1758 if ((sp = (int)(c = ctl)) != 0 && w != null && 1759 ws != null && (wl = ws.length) > 0 && 1760 ((sp ^ r) & SS_SEQ) == 0 && 1761 (v = ws[(wl - 1) & sp]) != null) { 1762 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT)); 1763 int ns = sp & ~UNSIGNALLED; 1764 if (w.scanState < 0 && 1765 v.scanState == sp && 1766 U.compareAndSwapLong(this, CTL, c, nc)) { 1767 v.scanState = ns; 1768 LockSupport.unpark(v.parker); 1769 } 1770 } 1771 } 1772 1773 /** 1774 * If worker w exists and is active, enqueues and sets status to inactive. 1775 * 1776 * @param w the worker 1777 * @param ss current (non-negative) scanState 1778 */ inactivate(WorkQueue w, int ss)1779 private void inactivate(WorkQueue w, int ss) { 1780 int ns = (ss + SS_SEQ) | UNSIGNALLED; 1781 long lc = ns & SP_MASK, nc, c; 1782 if (w != null) { 1783 w.scanState = ns; 1784 do { 1785 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT)); 1786 w.stackPred = (int)c; 1787 } while (!U.compareAndSwapLong(this, CTL, c, nc)); 1788 } 1789 } 1790 1791 /** 1792 * Possibly blocks worker w waiting for signal, or returns 1793 * negative status if the worker should terminate. May return 1794 * without status change if multiple stale unparks and/or 1795 * interrupts occur. 1796 * 1797 * @param w the calling worker 1798 * @return negative if w should terminate 1799 */ awaitWork(WorkQueue w)1800 private int awaitWork(WorkQueue w) { 1801 int stat = 0; 1802 if (w != null && w.scanState < 0) { 1803 long c = ctl; 1804 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0) 1805 stat = timedAwaitWork(w, c); // possibly quiescent 1806 else if ((runState & STOP) != 0) 1807 stat = w.qlock = -1; // pool terminating 1808 else if (w.scanState < 0) { 1809 w.parker = Thread.currentThread(); 1810 if (w.scanState < 0) // recheck after write 1811 LockSupport.park(this); 1812 w.parker = null; 1813 if ((runState & STOP) != 0) 1814 stat = w.qlock = -1; // recheck 1815 else if (w.scanState < 0) 1816 Thread.interrupted(); // clear status 1817 } 1818 } 1819 return stat; 1820 } 1821 1822 /** 1823 * Possibly triggers shutdown and tries (once) to block worker 1824 * when pool is (or may be) quiescent. Waits up to a duration 1825 * determined by number of workers. On timeout, if ctl has not 1826 * changed, terminates the worker, which will in turn wake up 1827 * another worker to possibly repeat this process. 1828 * 1829 * @param w the calling worker 1830 * @return negative if w should terminate 1831 */ timedAwaitWork(WorkQueue w, long c)1832 private int timedAwaitWork(WorkQueue w, long c) { 1833 int stat = 0; 1834 int scale = 1 - (short)(c >>> TC_SHIFT); 1835 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS + 1836 System.currentTimeMillis()); 1837 if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) && 1838 w != null && w.scanState < 0) { 1839 int ss; AuxState aux; 1840 w.parker = Thread.currentThread(); 1841 if (w.scanState < 0) 1842 LockSupport.parkUntil(this, deadline); 1843 w.parker = null; 1844 if ((runState & STOP) != 0) 1845 stat = w.qlock = -1; // pool terminating 1846 else if ((ss = w.scanState) < 0 && !Thread.interrupted() && 1847 (int)c == ss && (aux = auxState) != null && ctl == c && 1848 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) { 1849 aux.lock(); 1850 try { // pre-deregister 1851 WorkQueue[] ws; 1852 int cfg = w.config, idx = cfg & SMASK; 1853 long nc = ((UC_MASK & (c - TC_UNIT)) | 1854 (SP_MASK & w.stackPred)); 1855 if ((runState & STOP) == 0 && 1856 (ws = workQueues) != null && 1857 idx < ws.length && idx >= 0 && ws[idx] == w && 1858 U.compareAndSwapLong(this, CTL, c, nc)) { 1859 ws[idx] = null; 1860 w.config = cfg | UNREGISTERED; 1861 stat = w.qlock = -1; 1862 } 1863 } finally { 1864 aux.unlock(); 1865 } 1866 } 1867 } 1868 return stat; 1869 } 1870 1871 /** 1872 * If the given worker is a spare with no queued tasks, and there 1873 * are enough existing workers, drops it from ctl counts and sets 1874 * its state to terminated. 1875 * 1876 * @param w the calling worker -- must be a spare 1877 * @return true if dropped (in which case it must not process more tasks) 1878 */ tryDropSpare(WorkQueue w)1879 private boolean tryDropSpare(WorkQueue w) { 1880 if (w != null && w.isEmpty()) { // no local tasks 1881 long c; int sp, wl; WorkQueue[] ws; WorkQueue v; 1882 while ((short)((c = ctl) >> TC_SHIFT) > 0 && 1883 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) && 1884 (ws = workQueues) != null && (wl = ws.length) > 0) { 1885 boolean dropped, canDrop; 1886 if (sp == 0) { // no queued workers 1887 long nc = ((AC_MASK & (c - AC_UNIT)) | 1888 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c)); 1889 dropped = U.compareAndSwapLong(this, CTL, c, nc); 1890 } 1891 else if ( 1892 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp) 1893 dropped = false; // stale; retry 1894 else { 1895 long nc = v.stackPred & SP_MASK; 1896 if (w == v || w.scanState >= 0) { 1897 canDrop = true; // w unqueued or topmost 1898 nc |= ((AC_MASK & c) | // ensure replacement 1899 (TC_MASK & (c - TC_UNIT))); 1900 } 1901 else { // w may be queued 1902 canDrop = false; // help uncover 1903 nc |= ((AC_MASK & (c + AC_UNIT)) | 1904 (TC_MASK & c)); 1905 } 1906 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1907 v.scanState = sp & ~UNSIGNALLED; 1908 LockSupport.unpark(v.parker); 1909 dropped = canDrop; 1910 } 1911 else 1912 dropped = false; 1913 } 1914 if (dropped) { // pre-deregister 1915 int cfg = w.config, idx = cfg & SMASK; 1916 if (idx >= 0 && idx < ws.length && ws[idx] == w) 1917 ws[idx] = null; 1918 w.config = cfg | UNREGISTERED; 1919 w.qlock = -1; 1920 return true; 1921 } 1922 } 1923 } 1924 return false; 1925 } 1926 1927 /** 1928 * Top-level runloop for workers, called by ForkJoinWorkerThread.run. 1929 */ runWorker(WorkQueue w)1930 final void runWorker(WorkQueue w) { 1931 w.growArray(); // allocate queue 1932 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT; 1933 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed 1934 if ((runState & STOP) == 0) { 1935 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero 1936 if (bound == 0 && tryDropSpare(w)) 1937 break; 1938 // high bits of prev seed for step; current low bits for idx 1939 int step = (int)(r >>> 48) | 1; 1940 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift 1941 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0) 1942 break; 1943 } 1944 } 1945 } 1946 1947 // Scanning for tasks 1948 1949 /** 1950 * Repeatedly scans for and tries to steal and execute (via 1951 * workQueue.runTask) a queued task. Each scan traverses queues in 1952 * pseudorandom permutation. Upon finding a non-empty queue, makes 1953 * at most the given bound attempts to re-poll (fewer if 1954 * contended) on the same queue before returning (impossible 1955 * scanState value) 0 to restart scan. Else returns after at least 1956 * 1 and at most 32 full scans. 1957 * 1958 * @param w the worker (via its WorkQueue) 1959 * @param bound repoll bound as bitmask (0 if spare) 1960 * @param step (circular) index increment per iteration (must be odd) 1961 * @param r a random seed for origin index 1962 * @return negative if should await signal 1963 */ scan(WorkQueue w, int bound, int step, int r)1964 private int scan(WorkQueue w, int bound, int step, int r) { 1965 int stat = 0, wl; WorkQueue[] ws; 1966 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) { 1967 for (int m = wl - 1, 1968 origin = m & r, idx = origin, 1969 npolls = 0, 1970 ss = w.scanState;;) { // negative if inactive 1971 WorkQueue q; ForkJoinTask<?>[] a; int b, al; 1972 if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 && 1973 (a = q.array) != null && (al = a.length) > 0) { 1974 int index = (al - 1) & b; 1975 long offset = ((long)index << ASHIFT) + ABASE; 1976 ForkJoinTask<?> t = (ForkJoinTask<?>) 1977 U.getObjectVolatile(a, offset); 1978 if (t == null) 1979 break; // empty or busy 1980 else if (b++ != q.base) 1981 break; // busy 1982 else if (ss < 0) { 1983 tryReactivate(w, ws, r); 1984 break; // retry upon rescan 1985 } 1986 else if (!U.compareAndSwapObject(a, offset, t, null)) 1987 break; // contended 1988 else { 1989 q.base = b; 1990 w.currentSteal = t; 1991 if (b != q.top) // propagate signal 1992 signalWork(); 1993 w.runTask(t); 1994 if (++npolls > bound) 1995 break; 1996 } 1997 } 1998 else if (npolls != 0) // rescan 1999 break; 2000 else if ((idx = (idx + step) & m) == origin) { 2001 if (ss < 0) { // await signal 2002 stat = ss; 2003 break; 2004 } 2005 else if (r >= 0) { 2006 inactivate(w, ss); 2007 break; 2008 } 2009 else 2010 r <<= 1; // at most 31 rescans 2011 } 2012 } 2013 } 2014 return stat; 2015 } 2016 2017 // Joining tasks 2018 2019 /** 2020 * Tries to steal and run tasks within the target's computation. 2021 * Uses a variant of the top-level algorithm, restricted to tasks 2022 * with the given task as ancestor: It prefers taking and running 2023 * eligible tasks popped from the worker's own queue (via 2024 * popCC). Otherwise it scans others, randomly moving on 2025 * contention or execution, deciding to give up based on a 2026 * checksum (via return codes from pollAndExecCC). The maxTasks 2027 * argument supports external usages; internal calls use zero, 2028 * allowing unbounded steps (external calls trap non-positive 2029 * values). 2030 * 2031 * @param w caller 2032 * @param maxTasks if non-zero, the maximum number of other tasks to run 2033 * @return task status on exit 2034 */ helpComplete(WorkQueue w, CountedCompleter<?> task, int maxTasks)2035 final int helpComplete(WorkQueue w, CountedCompleter<?> task, 2036 int maxTasks) { 2037 WorkQueue[] ws; int s = 0, wl; 2038 if ((ws = workQueues) != null && (wl = ws.length) > 1 && 2039 task != null && w != null) { 2040 for (int m = wl - 1, 2041 mode = w.config, 2042 r = ~mode, // scanning seed 2043 origin = r & m, k = origin, // first queue to scan 2044 step = 3, // first scan step 2045 h = 1, // 1:ran, >1:contended, <0:hash 2046 oldSum = 0, checkSum = 0;;) { 2047 CountedCompleter<?> p; WorkQueue q; int i; 2048 if ((s = task.status) < 0) 2049 break; 2050 if (h == 1 && (p = w.popCC(task, mode)) != null) { 2051 p.doExec(); // run local task 2052 if (maxTasks != 0 && --maxTasks == 0) 2053 break; 2054 origin = k; // reset 2055 oldSum = checkSum = 0; 2056 } 2057 else { // poll other worker queues 2058 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null) 2059 h = 0; 2060 else if ((h = q.pollAndExecCC(task)) < 0) 2061 checkSum += h; 2062 if (h > 0) { 2063 if (h == 1 && maxTasks != 0 && --maxTasks == 0) 2064 break; 2065 step = (r >>> 16) | 3; 2066 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift 2067 k = origin = r & m; // move and restart 2068 oldSum = checkSum = 0; 2069 } 2070 else if ((k = (k + step) & m) == origin) { 2071 if (oldSum == (oldSum = checkSum)) 2072 break; 2073 checkSum = 0; 2074 } 2075 } 2076 } 2077 } 2078 return s; 2079 } 2080 2081 /** 2082 * Tries to locate and execute tasks for a stealer of the given 2083 * task, or in turn one of its stealers. Traces currentSteal -> 2084 * currentJoin links looking for a thread working on a descendant 2085 * of the given task and with a non-empty queue to steal back and 2086 * execute tasks from. The first call to this method upon a 2087 * waiting join will often entail scanning/search, (which is OK 2088 * because the joiner has nothing better to do), but this method 2089 * leaves hints in workers to speed up subsequent calls. 2090 * 2091 * @param w caller 2092 * @param task the task to join 2093 */ helpStealer(WorkQueue w, ForkJoinTask<?> task)2094 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) { 2095 if (task != null && w != null) { 2096 ForkJoinTask<?> ps = w.currentSteal; 2097 WorkQueue[] ws; int wl, oldSum = 0; 2098 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 && 2099 (ws = workQueues) != null && (wl = ws.length) > 0) { 2100 ForkJoinTask<?> subtask; 2101 int m = wl - 1, checkSum = 0; // for stability check 2102 WorkQueue j = w, v; // v is subtask stealer 2103 descent: for (subtask = task; subtask.status >= 0; ) { 2104 for (int h = j.hint | 1, k = 0, i;;) { 2105 if ((v = ws[i = (h + (k << 1)) & m]) != null) { 2106 if (v.currentSteal == subtask) { 2107 j.hint = i; 2108 break; 2109 } 2110 checkSum += v.base; 2111 } 2112 if (++k > m) // can't find stealer 2113 break outer; 2114 } 2115 2116 for (;;) { // help v or descend 2117 ForkJoinTask<?>[] a; int b, al; 2118 if (subtask.status < 0) // too late to help 2119 break descent; 2120 checkSum += (b = v.base); 2121 ForkJoinTask<?> next = v.currentJoin; 2122 ForkJoinTask<?> t = null; 2123 if ((a = v.array) != null && (al = a.length) > 0) { 2124 int index = (al - 1) & b; 2125 long offset = ((long)index << ASHIFT) + ABASE; 2126 t = (ForkJoinTask<?>) 2127 U.getObjectVolatile(a, offset); 2128 if (t != null && b++ == v.base) { 2129 if (j.currentJoin != subtask || 2130 v.currentSteal != subtask || 2131 subtask.status < 0) 2132 break descent; // stale 2133 if (U.compareAndSwapObject(a, offset, t, null)) { 2134 v.base = b; 2135 w.currentSteal = t; 2136 for (int top = w.top;;) { 2137 t.doExec(); // help 2138 w.currentSteal = ps; 2139 if (task.status < 0) 2140 break outer; 2141 if (w.top == top) 2142 break; // run local tasks 2143 if ((t = w.pop()) == null) 2144 break descent; 2145 w.currentSteal = t; 2146 } 2147 } 2148 } 2149 } 2150 if (t == null && b == v.base && b - v.top >= 0) { 2151 if ((subtask = next) == null) { // try to descend 2152 if (next == v.currentJoin && 2153 oldSum == (oldSum = checkSum)) 2154 break outer; 2155 break descent; 2156 } 2157 j = v; 2158 break; 2159 } 2160 } 2161 } 2162 } 2163 } 2164 } 2165 2166 /** 2167 * Tries to decrement active count (sometimes implicitly) and 2168 * possibly release or create a compensating worker in preparation 2169 * for blocking. Returns false (retryable by caller), on 2170 * contention, detected staleness, instability, or termination. 2171 * 2172 * @param w caller 2173 */ tryCompensate(WorkQueue w)2174 private boolean tryCompensate(WorkQueue w) { 2175 boolean canBlock; int wl; 2176 long c = ctl; 2177 WorkQueue[] ws = workQueues; 2178 int pc = config & SMASK; 2179 int ac = pc + (int)(c >> AC_SHIFT); 2180 int tc = pc + (short)(c >> TC_SHIFT); 2181 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled 2182 ws == null || (wl = ws.length) <= 0) 2183 canBlock = false; 2184 else { 2185 int m = wl - 1, sp; 2186 boolean busy = true; // validate ac 2187 for (int i = 0; i <= m; ++i) { 2188 int k; WorkQueue v; 2189 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null && 2190 v.scanState >= 0 && v.currentSteal == null) { 2191 busy = false; 2192 break; 2193 } 2194 } 2195 if (!busy || ctl != c) 2196 canBlock = false; // unstable or stale 2197 else if ((sp = (int)c) != 0) // release idle worker 2198 canBlock = tryRelease(c, ws[m & sp], 0L); 2199 else if (tc >= pc && ac > 1 && w.isEmpty()) { 2200 long nc = ((AC_MASK & (c - AC_UNIT)) | 2201 (~AC_MASK & c)); // uncompensated 2202 canBlock = U.compareAndSwapLong(this, CTL, c, nc); 2203 } 2204 else if (tc >= MAX_CAP || 2205 (this == common && tc >= pc + COMMON_MAX_SPARES)) 2206 throw new RejectedExecutionException( 2207 "Thread limit exceeded replacing blocked worker"); 2208 else { // similar to tryAddWorker 2209 boolean isSpare = (tc >= pc); 2210 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT)); 2211 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) && 2212 createWorker(isSpare)); // throws on exception 2213 } 2214 } 2215 return canBlock; 2216 } 2217 2218 /** 2219 * Helps and/or blocks until the given task is done or timeout. 2220 * 2221 * @param w caller 2222 * @param task the task 2223 * @param deadline for timed waits, if nonzero 2224 * @return task status on exit 2225 */ awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline)2226 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) { 2227 int s = 0; 2228 if (w != null) { 2229 ForkJoinTask<?> prevJoin = w.currentJoin; 2230 if (task != null && (s = task.status) >= 0) { 2231 w.currentJoin = task; 2232 CountedCompleter<?> cc = (task instanceof CountedCompleter) ? 2233 (CountedCompleter<?>)task : null; 2234 for (;;) { 2235 if (cc != null) 2236 helpComplete(w, cc, 0); 2237 else 2238 helpStealer(w, task); 2239 if ((s = task.status) < 0) 2240 break; 2241 long ms, ns; 2242 if (deadline == 0L) 2243 ms = 0L; 2244 else if ((ns = deadline - System.nanoTime()) <= 0L) 2245 break; 2246 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L) 2247 ms = 1L; 2248 if (tryCompensate(w)) { 2249 task.internalWait(ms); 2250 U.getAndAddLong(this, CTL, AC_UNIT); 2251 } 2252 if ((s = task.status) < 0) 2253 break; 2254 } 2255 w.currentJoin = prevJoin; 2256 } 2257 } 2258 return s; 2259 } 2260 2261 // Specialized scanning 2262 2263 /** 2264 * Returns a (probably) non-empty steal queue, if one is found 2265 * during a scan, else null. This method must be retried by 2266 * caller if, by the time it tries to use the queue, it is empty. 2267 */ findNonEmptyStealQueue()2268 private WorkQueue findNonEmptyStealQueue() { 2269 WorkQueue[] ws; int wl; // one-shot version of scan loop 2270 int r = ThreadLocalRandom.nextSecondarySeed(); 2271 if ((ws = workQueues) != null && (wl = ws.length) > 0) { 2272 int m = wl - 1, origin = r & m; 2273 for (int k = origin, oldSum = 0, checkSum = 0;;) { 2274 WorkQueue q; int b; 2275 if ((q = ws[k]) != null) { 2276 if ((b = q.base) - q.top < 0) 2277 return q; 2278 checkSum += b; 2279 } 2280 if ((k = (k + 1) & m) == origin) { 2281 if (oldSum == (oldSum = checkSum)) 2282 break; 2283 checkSum = 0; 2284 } 2285 } 2286 } 2287 return null; 2288 } 2289 2290 /** 2291 * Runs tasks until {@code isQuiescent()}. We piggyback on 2292 * active count ctl maintenance, but rather than blocking 2293 * when tasks cannot be found, we rescan until all others cannot 2294 * find tasks either. 2295 */ helpQuiescePool(WorkQueue w)2296 final void helpQuiescePool(WorkQueue w) { 2297 ForkJoinTask<?> ps = w.currentSteal; // save context 2298 int wc = w.config; 2299 for (boolean active = true;;) { 2300 long c; WorkQueue q; ForkJoinTask<?> t; 2301 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO 2302 (w.currentSteal = t).doExec(); 2303 w.currentSteal = ps; 2304 } 2305 else if ((q = findNonEmptyStealQueue()) != null) { 2306 if (!active) { // re-establish active count 2307 active = true; 2308 U.getAndAddLong(this, CTL, AC_UNIT); 2309 } 2310 if ((t = q.pollAt(q.base)) != null) { 2311 (w.currentSteal = t).doExec(); 2312 w.currentSteal = ps; 2313 if (++w.nsteals < 0) 2314 w.transferStealCount(this); 2315 } 2316 } 2317 else if (active) { // decrement active count without queuing 2318 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c); 2319 if (U.compareAndSwapLong(this, CTL, c, nc)) 2320 active = false; 2321 } 2322 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 && 2323 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT)) 2324 break; 2325 } 2326 } 2327 2328 /** 2329 * Gets and removes a local or stolen task for the given worker. 2330 * 2331 * @return a task, if available 2332 */ nextTaskFor(WorkQueue w)2333 final ForkJoinTask<?> nextTaskFor(WorkQueue w) { 2334 for (ForkJoinTask<?> t;;) { 2335 WorkQueue q; 2336 if ((t = w.nextLocalTask()) != null) 2337 return t; 2338 if ((q = findNonEmptyStealQueue()) == null) 2339 return null; 2340 if ((t = q.pollAt(q.base)) != null) 2341 return t; 2342 } 2343 } 2344 2345 /** 2346 * Returns a cheap heuristic guide for task partitioning when 2347 * programmers, frameworks, tools, or languages have little or no 2348 * idea about task granularity. In essence, by offering this 2349 * method, we ask users only about tradeoffs in overhead vs 2350 * expected throughput and its variance, rather than how finely to 2351 * partition tasks. 2352 * 2353 * In a steady state strict (tree-structured) computation, each 2354 * thread makes available for stealing enough tasks for other 2355 * threads to remain active. Inductively, if all threads play by 2356 * the same rules, each thread should make available only a 2357 * constant number of tasks. 2358 * 2359 * The minimum useful constant is just 1. But using a value of 1 2360 * would require immediate replenishment upon each steal to 2361 * maintain enough tasks, which is infeasible. Further, 2362 * partitionings/granularities of offered tasks should minimize 2363 * steal rates, which in general means that threads nearer the top 2364 * of computation tree should generate more than those nearer the 2365 * bottom. In perfect steady state, each thread is at 2366 * approximately the same level of computation tree. However, 2367 * producing extra tasks amortizes the uncertainty of progress and 2368 * diffusion assumptions. 2369 * 2370 * So, users will want to use values larger (but not much larger) 2371 * than 1 to both smooth over transient shortages and hedge 2372 * against uneven progress; as traded off against the cost of 2373 * extra task overhead. We leave the user to pick a threshold 2374 * value to compare with the results of this call to guide 2375 * decisions, but recommend values such as 3. 2376 * 2377 * When all threads are active, it is on average OK to estimate 2378 * surplus strictly locally. In steady-state, if one thread is 2379 * maintaining say 2 surplus tasks, then so are others. So we can 2380 * just use estimated queue length. However, this strategy alone 2381 * leads to serious mis-estimates in some non-steady-state 2382 * conditions (ramp-up, ramp-down, other stalls). We can detect 2383 * many of these by further considering the number of "idle" 2384 * threads, that are known to have zero queued tasks, so 2385 * compensate by a factor of (#idle/#active) threads. 2386 */ getSurplusQueuedTaskCount()2387 static int getSurplusQueuedTaskCount() { 2388 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q; 2389 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) { 2390 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK; 2391 int n = (q = wt.workQueue).top - q.base; 2392 int a = (int)(pool.ctl >> AC_SHIFT) + p; 2393 return n - (a > (p >>>= 1) ? 0 : 2394 a > (p >>>= 1) ? 1 : 2395 a > (p >>>= 1) ? 2 : 2396 a > (p >>>= 1) ? 4 : 2397 8); 2398 } 2399 return 0; 2400 } 2401 2402 // Termination 2403 2404 /** 2405 * Possibly initiates and/or completes termination. 2406 * 2407 * @param now if true, unconditionally terminate, else only 2408 * if no work and no active workers 2409 * @param enable if true, terminate when next possible 2410 * @return -1: terminating/terminated, 0: retry if internal caller, else 1 2411 */ tryTerminate(boolean now, boolean enable)2412 private int tryTerminate(boolean now, boolean enable) { 2413 int rs; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED 2414 2415 while ((rs = runState) >= 0) { 2416 if (!enable || this == common) // cannot shutdown 2417 return 1; 2418 else if (rs == 0) 2419 tryInitialize(false); // ensure initialized 2420 else 2421 U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN); 2422 } 2423 2424 if ((rs & STOP) == 0) { // try to initiate termination 2425 if (!now) { // check quiescence 2426 for (long oldSum = 0L;;) { // repeat until stable 2427 WorkQueue[] ws; WorkQueue w; int b; 2428 long checkSum = ctl; 2429 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0) 2430 return 0; // still active workers 2431 if ((ws = workQueues) != null) { 2432 for (int i = 0; i < ws.length; ++i) { 2433 if ((w = ws[i]) != null) { 2434 checkSum += (b = w.base); 2435 if (w.currentSteal != null || b != w.top) 2436 return 0; // retry if internal caller 2437 } 2438 } 2439 } 2440 if (oldSum == (oldSum = checkSum)) 2441 break; 2442 } 2443 } 2444 do {} while (!U.compareAndSwapInt(this, RUNSTATE, 2445 rs = runState, rs | STOP)); 2446 } 2447 2448 for (long oldSum = 0L;;) { // repeat until stable 2449 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; 2450 long checkSum = ctl; 2451 if ((ws = workQueues) != null) { // help terminate others 2452 for (int i = 0; i < ws.length; ++i) { 2453 if ((w = ws[i]) != null) { 2454 w.cancelAll(); // clear queues 2455 checkSum += w.base; 2456 if (w.qlock >= 0) { 2457 w.qlock = -1; // racy set OK 2458 if ((wt = w.owner) != null) { 2459 try { // unblock join or park 2460 wt.interrupt(); 2461 } catch (Throwable ignore) { 2462 } 2463 } 2464 } 2465 } 2466 } 2467 } 2468 if (oldSum == (oldSum = checkSum)) 2469 break; 2470 } 2471 2472 if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) { 2473 runState = (STARTED | SHUTDOWN | STOP | TERMINATED); // final write 2474 synchronized (this) { 2475 notifyAll(); // for awaitTermination 2476 } 2477 } 2478 2479 return -1; 2480 } 2481 2482 // External operations 2483 2484 /** 2485 * Constructs and tries to install a new external queue, 2486 * failing if the workQueues array already has a queue at 2487 * the given index. 2488 * 2489 * @param index the index of the new queue 2490 */ tryCreateExternalQueue(int index)2491 private void tryCreateExternalQueue(int index) { 2492 AuxState aux; 2493 if ((aux = auxState) != null && index >= 0) { 2494 WorkQueue q = new WorkQueue(this, null); 2495 q.config = index; 2496 q.scanState = ~UNSIGNALLED; 2497 q.qlock = 1; // lock queue 2498 boolean installed = false; 2499 aux.lock(); 2500 try { // lock pool to install 2501 WorkQueue[] ws; 2502 if ((ws = workQueues) != null && index < ws.length && 2503 ws[index] == null) { 2504 ws[index] = q; // else throw away 2505 installed = true; 2506 } 2507 } finally { 2508 aux.unlock(); 2509 } 2510 if (installed) { 2511 try { 2512 q.growArray(); 2513 } finally { 2514 q.qlock = 0; 2515 } 2516 } 2517 } 2518 } 2519 2520 /** 2521 * Adds the given task to a submission queue at submitter's 2522 * current queue. Also performs secondary initialization upon the 2523 * first submission of the first task to the pool, and detects 2524 * first submission by an external thread and creates a new shared 2525 * queue if the one at index if empty or contended. 2526 * 2527 * @param task the task. Caller must ensure non-null. 2528 */ externalPush(ForkJoinTask<?> task)2529 final void externalPush(ForkJoinTask<?> task) { 2530 int r; // initialize caller's probe 2531 if ((r = ThreadLocalRandom.getProbe()) == 0) { 2532 ThreadLocalRandom.localInit(); 2533 r = ThreadLocalRandom.getProbe(); 2534 } 2535 for (;;) { 2536 WorkQueue q; int wl, k, stat; 2537 int rs = runState; 2538 WorkQueue[] ws = workQueues; 2539 if (rs <= 0 || ws == null || (wl = ws.length) <= 0) 2540 tryInitialize(true); 2541 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null) 2542 tryCreateExternalQueue(k); 2543 else if ((stat = q.sharedPush(task)) < 0) 2544 break; 2545 else if (stat == 0) { 2546 signalWork(); 2547 break; 2548 } 2549 else // move if busy 2550 r = ThreadLocalRandom.advanceProbe(r); 2551 } 2552 } 2553 2554 /** 2555 * Pushes a possibly-external submission. 2556 */ externalSubmit(ForkJoinTask<T> task)2557 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) { 2558 Thread t; ForkJoinWorkerThread w; WorkQueue q; 2559 if (task == null) 2560 throw new NullPointerException(); 2561 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) && 2562 (w = (ForkJoinWorkerThread)t).pool == this && 2563 (q = w.workQueue) != null) 2564 q.push(task); 2565 else 2566 externalPush(task); 2567 return task; 2568 } 2569 2570 /** 2571 * Returns common pool queue for an external thread. 2572 */ commonSubmitterQueue()2573 static WorkQueue commonSubmitterQueue() { 2574 ForkJoinPool p = common; 2575 int r = ThreadLocalRandom.getProbe(); 2576 WorkQueue[] ws; int wl; 2577 return (p != null && (ws = p.workQueues) != null && 2578 (wl = ws.length) > 0) ? 2579 ws[(wl - 1) & r & SQMASK] : null; 2580 } 2581 2582 /** 2583 * Performs tryUnpush for an external submitter. 2584 */ tryExternalUnpush(ForkJoinTask<?> task)2585 final boolean tryExternalUnpush(ForkJoinTask<?> task) { 2586 int r = ThreadLocalRandom.getProbe(); 2587 WorkQueue[] ws; WorkQueue w; int wl; 2588 return ((ws = workQueues) != null && 2589 (wl = ws.length) > 0 && 2590 (w = ws[(wl - 1) & r & SQMASK]) != null && 2591 w.trySharedUnpush(task)); 2592 } 2593 2594 /** 2595 * Performs helpComplete for an external submitter. 2596 */ externalHelpComplete(CountedCompleter<?> task, int maxTasks)2597 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) { 2598 WorkQueue[] ws; int wl; 2599 int r = ThreadLocalRandom.getProbe(); 2600 return ((ws = workQueues) != null && (wl = ws.length) > 0) ? 2601 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0; 2602 } 2603 2604 // Exported methods 2605 2606 // Constructors 2607 2608 /** 2609 * Creates a {@code ForkJoinPool} with parallelism equal to {@link 2610 * java.lang.Runtime#availableProcessors}, using the {@linkplain 2611 * #defaultForkJoinWorkerThreadFactory default thread factory}, 2612 * no UncaughtExceptionHandler, and non-async LIFO processing mode. 2613 * 2614 * @throws SecurityException if a security manager exists and 2615 * the caller is not permitted to modify threads 2616 * because it does not hold {@link 2617 * java.lang.RuntimePermission}{@code ("modifyThread")} 2618 */ ForkJoinPool()2619 public ForkJoinPool() { 2620 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()), 2621 defaultForkJoinWorkerThreadFactory, null, false); 2622 } 2623 2624 /** 2625 * Creates a {@code ForkJoinPool} with the indicated parallelism 2626 * level, the {@linkplain 2627 * #defaultForkJoinWorkerThreadFactory default thread factory}, 2628 * no UncaughtExceptionHandler, and non-async LIFO processing mode. 2629 * 2630 * @param parallelism the parallelism level 2631 * @throws IllegalArgumentException if parallelism less than or 2632 * equal to zero, or greater than implementation limit 2633 * @throws SecurityException if a security manager exists and 2634 * the caller is not permitted to modify threads 2635 * because it does not hold {@link 2636 * java.lang.RuntimePermission}{@code ("modifyThread")} 2637 */ ForkJoinPool(int parallelism)2638 public ForkJoinPool(int parallelism) { 2639 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false); 2640 } 2641 2642 /** 2643 * Creates a {@code ForkJoinPool} with the given parameters. 2644 * 2645 * @param parallelism the parallelism level. For default value, 2646 * use {@link java.lang.Runtime#availableProcessors}. 2647 * @param factory the factory for creating new threads. For default value, 2648 * use {@link #defaultForkJoinWorkerThreadFactory}. 2649 * @param handler the handler for internal worker threads that 2650 * terminate due to unrecoverable errors encountered while executing 2651 * tasks. For default value, use {@code null}. 2652 * @param asyncMode if true, 2653 * establishes local first-in-first-out scheduling mode for forked 2654 * tasks that are never joined. This mode may be more appropriate 2655 * than default locally stack-based mode in applications in which 2656 * worker threads only process event-style asynchronous tasks. 2657 * For default value, use {@code false}. 2658 * @throws IllegalArgumentException if parallelism less than or 2659 * equal to zero, or greater than implementation limit 2660 * @throws NullPointerException if the factory is null 2661 * @throws SecurityException if a security manager exists and 2662 * the caller is not permitted to modify threads 2663 * because it does not hold {@link 2664 * java.lang.RuntimePermission}{@code ("modifyThread")} 2665 */ ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, boolean asyncMode)2666 public ForkJoinPool(int parallelism, 2667 ForkJoinWorkerThreadFactory factory, 2668 UncaughtExceptionHandler handler, 2669 boolean asyncMode) { 2670 this(checkParallelism(parallelism), 2671 checkFactory(factory), 2672 handler, 2673 asyncMode ? FIFO_QUEUE : LIFO_QUEUE, 2674 "ForkJoinPool-" + nextPoolId() + "-worker-"); 2675 checkPermission(); 2676 } 2677 checkParallelism(int parallelism)2678 private static int checkParallelism(int parallelism) { 2679 if (parallelism <= 0 || parallelism > MAX_CAP) 2680 throw new IllegalArgumentException(); 2681 return parallelism; 2682 } 2683 checkFactory(ForkJoinWorkerThreadFactory factory)2684 private static ForkJoinWorkerThreadFactory checkFactory 2685 (ForkJoinWorkerThreadFactory factory) { 2686 if (factory == null) 2687 throw new NullPointerException(); 2688 return factory; 2689 } 2690 2691 /** 2692 * Creates a {@code ForkJoinPool} with the given parameters, without 2693 * any security checks or parameter validation. Invoked directly by 2694 * makeCommonPool. 2695 */ ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, int mode, String workerNamePrefix)2696 private ForkJoinPool(int parallelism, 2697 ForkJoinWorkerThreadFactory factory, 2698 UncaughtExceptionHandler handler, 2699 int mode, 2700 String workerNamePrefix) { 2701 this.workerNamePrefix = workerNamePrefix; 2702 this.factory = factory; 2703 this.ueh = handler; 2704 this.config = (parallelism & SMASK) | mode; 2705 long np = (long)(-parallelism); // offset ctl counts 2706 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); 2707 } 2708 2709 /** 2710 * Returns the common pool instance. This pool is statically 2711 * constructed; its run state is unaffected by attempts to {@link 2712 * #shutdown} or {@link #shutdownNow}. However this pool and any 2713 * ongoing processing are automatically terminated upon program 2714 * {@link System#exit}. Any program that relies on asynchronous 2715 * task processing to complete before program termination should 2716 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence}, 2717 * before exit. 2718 * 2719 * @return the common pool instance 2720 * @since 1.8 2721 */ commonPool()2722 public static ForkJoinPool commonPool() { 2723 // assert common != null : "static init error"; 2724 return common; 2725 } 2726 2727 // Execution methods 2728 2729 /** 2730 * Performs the given task, returning its result upon completion. 2731 * If the computation encounters an unchecked Exception or Error, 2732 * it is rethrown as the outcome of this invocation. Rethrown 2733 * exceptions behave in the same way as regular exceptions, but, 2734 * when possible, contain stack traces (as displayed for example 2735 * using {@code ex.printStackTrace()}) of both the current thread 2736 * as well as the thread actually encountering the exception; 2737 * minimally only the latter. 2738 * 2739 * @param task the task 2740 * @param <T> the type of the task's result 2741 * @return the task's result 2742 * @throws NullPointerException if the task is null 2743 * @throws RejectedExecutionException if the task cannot be 2744 * scheduled for execution 2745 */ invoke(ForkJoinTask<T> task)2746 public <T> T invoke(ForkJoinTask<T> task) { 2747 if (task == null) 2748 throw new NullPointerException(); 2749 externalSubmit(task); 2750 return task.join(); 2751 } 2752 2753 /** 2754 * Arranges for (asynchronous) execution of the given task. 2755 * 2756 * @param task the task 2757 * @throws NullPointerException if the task is null 2758 * @throws RejectedExecutionException if the task cannot be 2759 * scheduled for execution 2760 */ execute(ForkJoinTask<?> task)2761 public void execute(ForkJoinTask<?> task) { 2762 externalSubmit(task); 2763 } 2764 2765 // AbstractExecutorService methods 2766 2767 /** 2768 * @throws NullPointerException if the task is null 2769 * @throws RejectedExecutionException if the task cannot be 2770 * scheduled for execution 2771 */ execute(Runnable task)2772 public void execute(Runnable task) { 2773 if (task == null) 2774 throw new NullPointerException(); 2775 ForkJoinTask<?> job; 2776 if (task instanceof ForkJoinTask<?>) // avoid re-wrap 2777 job = (ForkJoinTask<?>) task; 2778 else 2779 job = new ForkJoinTask.RunnableExecuteAction(task); 2780 externalSubmit(job); 2781 } 2782 2783 /** 2784 * Submits a ForkJoinTask for execution. 2785 * 2786 * @param task the task to submit 2787 * @param <T> the type of the task's result 2788 * @return the task 2789 * @throws NullPointerException if the task is null 2790 * @throws RejectedExecutionException if the task cannot be 2791 * scheduled for execution 2792 */ submit(ForkJoinTask<T> task)2793 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) { 2794 return externalSubmit(task); 2795 } 2796 2797 /** 2798 * @throws NullPointerException if the task is null 2799 * @throws RejectedExecutionException if the task cannot be 2800 * scheduled for execution 2801 */ submit(Callable<T> task)2802 public <T> ForkJoinTask<T> submit(Callable<T> task) { 2803 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task)); 2804 } 2805 2806 /** 2807 * @throws NullPointerException if the task is null 2808 * @throws RejectedExecutionException if the task cannot be 2809 * scheduled for execution 2810 */ submit(Runnable task, T result)2811 public <T> ForkJoinTask<T> submit(Runnable task, T result) { 2812 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result)); 2813 } 2814 2815 /** 2816 * @throws NullPointerException if the task is null 2817 * @throws RejectedExecutionException if the task cannot be 2818 * scheduled for execution 2819 */ submit(Runnable task)2820 public ForkJoinTask<?> submit(Runnable task) { 2821 if (task == null) 2822 throw new NullPointerException(); 2823 ForkJoinTask<?> job; 2824 if (task instanceof ForkJoinTask<?>) // avoid re-wrap 2825 job = (ForkJoinTask<?>) task; 2826 else 2827 job = new ForkJoinTask.AdaptedRunnableAction(task); 2828 return externalSubmit(job); 2829 } 2830 2831 /** 2832 * @throws NullPointerException {@inheritDoc} 2833 * @throws RejectedExecutionException {@inheritDoc} 2834 */ invokeAll(Collection<? extends Callable<T>> tasks)2835 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) { 2836 // In previous versions of this class, this method constructed 2837 // a task to run ForkJoinTask.invokeAll, but now external 2838 // invocation of multiple tasks is at least as efficient. 2839 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size()); 2840 2841 try { 2842 for (Callable<T> t : tasks) { 2843 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t); 2844 futures.add(f); 2845 externalSubmit(f); 2846 } 2847 for (int i = 0, size = futures.size(); i < size; i++) 2848 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin(); 2849 return futures; 2850 } catch (Throwable t) { 2851 for (int i = 0, size = futures.size(); i < size; i++) 2852 futures.get(i).cancel(false); 2853 throw t; 2854 } 2855 } 2856 2857 /** 2858 * Returns the factory used for constructing new workers. 2859 * 2860 * @return the factory used for constructing new workers 2861 */ getFactory()2862 public ForkJoinWorkerThreadFactory getFactory() { 2863 return factory; 2864 } 2865 2866 /** 2867 * Returns the handler for internal worker threads that terminate 2868 * due to unrecoverable errors encountered while executing tasks. 2869 * 2870 * @return the handler, or {@code null} if none 2871 */ getUncaughtExceptionHandler()2872 public UncaughtExceptionHandler getUncaughtExceptionHandler() { 2873 return ueh; 2874 } 2875 2876 /** 2877 * Returns the targeted parallelism level of this pool. 2878 * 2879 * @return the targeted parallelism level of this pool 2880 */ getParallelism()2881 public int getParallelism() { 2882 int par; 2883 return ((par = config & SMASK) > 0) ? par : 1; 2884 } 2885 2886 /** 2887 * Returns the targeted parallelism level of the common pool. 2888 * 2889 * @return the targeted parallelism level of the common pool 2890 * @since 1.8 2891 */ getCommonPoolParallelism()2892 public static int getCommonPoolParallelism() { 2893 return COMMON_PARALLELISM; 2894 } 2895 2896 /** 2897 * Returns the number of worker threads that have started but not 2898 * yet terminated. The result returned by this method may differ 2899 * from {@link #getParallelism} when threads are created to 2900 * maintain parallelism when others are cooperatively blocked. 2901 * 2902 * @return the number of worker threads 2903 */ getPoolSize()2904 public int getPoolSize() { 2905 return (config & SMASK) + (short)(ctl >>> TC_SHIFT); 2906 } 2907 2908 /** 2909 * Returns {@code true} if this pool uses local first-in-first-out 2910 * scheduling mode for forked tasks that are never joined. 2911 * 2912 * @return {@code true} if this pool uses async mode 2913 */ getAsyncMode()2914 public boolean getAsyncMode() { 2915 return (config & FIFO_QUEUE) != 0; 2916 } 2917 2918 /** 2919 * Returns an estimate of the number of worker threads that are 2920 * not blocked waiting to join tasks or for other managed 2921 * synchronization. This method may overestimate the 2922 * number of running threads. 2923 * 2924 * @return the number of worker threads 2925 */ getRunningThreadCount()2926 public int getRunningThreadCount() { 2927 int rc = 0; 2928 WorkQueue[] ws; WorkQueue w; 2929 if ((ws = workQueues) != null) { 2930 for (int i = 1; i < ws.length; i += 2) { 2931 if ((w = ws[i]) != null && w.isApparentlyUnblocked()) 2932 ++rc; 2933 } 2934 } 2935 return rc; 2936 } 2937 2938 /** 2939 * Returns an estimate of the number of threads that are currently 2940 * stealing or executing tasks. This method may overestimate the 2941 * number of active threads. 2942 * 2943 * @return the number of active threads 2944 */ getActiveThreadCount()2945 public int getActiveThreadCount() { 2946 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT); 2947 return (r <= 0) ? 0 : r; // suppress momentarily negative values 2948 } 2949 2950 /** 2951 * Returns {@code true} if all worker threads are currently idle. 2952 * An idle worker is one that cannot obtain a task to execute 2953 * because none are available to steal from other threads, and 2954 * there are no pending submissions to the pool. This method is 2955 * conservative; it might not return {@code true} immediately upon 2956 * idleness of all threads, but will eventually become true if 2957 * threads remain inactive. 2958 * 2959 * @return {@code true} if all threads are currently idle 2960 */ isQuiescent()2961 public boolean isQuiescent() { 2962 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0; 2963 } 2964 2965 /** 2966 * Returns an estimate of the total number of tasks stolen from 2967 * one thread's work queue by another. The reported value 2968 * underestimates the actual total number of steals when the pool 2969 * is not quiescent. This value may be useful for monitoring and 2970 * tuning fork/join programs: in general, steal counts should be 2971 * high enough to keep threads busy, but low enough to avoid 2972 * overhead and contention across threads. 2973 * 2974 * @return the number of steals 2975 */ getStealCount()2976 public long getStealCount() { 2977 AuxState sc = auxState; 2978 long count = (sc == null) ? 0L : sc.stealCount; 2979 WorkQueue[] ws; WorkQueue w; 2980 if ((ws = workQueues) != null) { 2981 for (int i = 1; i < ws.length; i += 2) { 2982 if ((w = ws[i]) != null) 2983 count += w.nsteals; 2984 } 2985 } 2986 return count; 2987 } 2988 2989 /** 2990 * Returns an estimate of the total number of tasks currently held 2991 * in queues by worker threads (but not including tasks submitted 2992 * to the pool that have not begun executing). This value is only 2993 * an approximation, obtained by iterating across all threads in 2994 * the pool. This method may be useful for tuning task 2995 * granularities. 2996 * 2997 * @return the number of queued tasks 2998 */ getQueuedTaskCount()2999 public long getQueuedTaskCount() { 3000 long count = 0; 3001 WorkQueue[] ws; WorkQueue w; 3002 if ((ws = workQueues) != null) { 3003 for (int i = 1; i < ws.length; i += 2) { 3004 if ((w = ws[i]) != null) 3005 count += w.queueSize(); 3006 } 3007 } 3008 return count; 3009 } 3010 3011 /** 3012 * Returns an estimate of the number of tasks submitted to this 3013 * pool that have not yet begun executing. This method may take 3014 * time proportional to the number of submissions. 3015 * 3016 * @return the number of queued submissions 3017 */ getQueuedSubmissionCount()3018 public int getQueuedSubmissionCount() { 3019 int count = 0; 3020 WorkQueue[] ws; WorkQueue w; 3021 if ((ws = workQueues) != null) { 3022 for (int i = 0; i < ws.length; i += 2) { 3023 if ((w = ws[i]) != null) 3024 count += w.queueSize(); 3025 } 3026 } 3027 return count; 3028 } 3029 3030 /** 3031 * Returns {@code true} if there are any tasks submitted to this 3032 * pool that have not yet begun executing. 3033 * 3034 * @return {@code true} if there are any queued submissions 3035 */ hasQueuedSubmissions()3036 public boolean hasQueuedSubmissions() { 3037 WorkQueue[] ws; WorkQueue w; 3038 if ((ws = workQueues) != null) { 3039 for (int i = 0; i < ws.length; i += 2) { 3040 if ((w = ws[i]) != null && !w.isEmpty()) 3041 return true; 3042 } 3043 } 3044 return false; 3045 } 3046 3047 /** 3048 * Removes and returns the next unexecuted submission if one is 3049 * available. This method may be useful in extensions to this 3050 * class that re-assign work in systems with multiple pools. 3051 * 3052 * @return the next submission, or {@code null} if none 3053 */ pollSubmission()3054 protected ForkJoinTask<?> pollSubmission() { 3055 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t; 3056 int r = ThreadLocalRandom.nextSecondarySeed(); 3057 if ((ws = workQueues) != null && (wl = ws.length) > 0) { 3058 for (int m = wl - 1, i = 0; i < wl; ++i) { 3059 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null) 3060 return t; 3061 } 3062 } 3063 return null; 3064 } 3065 3066 /** 3067 * Removes all available unexecuted submitted and forked tasks 3068 * from scheduling queues and adds them to the given collection, 3069 * without altering their execution status. These may include 3070 * artificially generated or wrapped tasks. This method is 3071 * designed to be invoked only when the pool is known to be 3072 * quiescent. Invocations at other times may not remove all 3073 * tasks. A failure encountered while attempting to add elements 3074 * to collection {@code c} may result in elements being in 3075 * neither, either or both collections when the associated 3076 * exception is thrown. The behavior of this operation is 3077 * undefined if the specified collection is modified while the 3078 * operation is in progress. 3079 * 3080 * @param c the collection to transfer elements into 3081 * @return the number of elements transferred 3082 */ drainTasksTo(Collection<? super ForkJoinTask<?>> c)3083 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) { 3084 int count = 0; 3085 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t; 3086 if ((ws = workQueues) != null) { 3087 for (int i = 0; i < ws.length; ++i) { 3088 if ((w = ws[i]) != null) { 3089 while ((t = w.poll()) != null) { 3090 c.add(t); 3091 ++count; 3092 } 3093 } 3094 } 3095 } 3096 return count; 3097 } 3098 3099 /** 3100 * Returns a string identifying this pool, as well as its state, 3101 * including indications of run state, parallelism level, and 3102 * worker and task counts. 3103 * 3104 * @return a string identifying this pool, as well as its state 3105 */ toString()3106 public String toString() { 3107 // Use a single pass through workQueues to collect counts 3108 long qt = 0L, qs = 0L; int rc = 0; 3109 AuxState sc = auxState; 3110 long st = (sc == null) ? 0L : sc.stealCount; 3111 long c = ctl; 3112 WorkQueue[] ws; WorkQueue w; 3113 if ((ws = workQueues) != null) { 3114 for (int i = 0; i < ws.length; ++i) { 3115 if ((w = ws[i]) != null) { 3116 int size = w.queueSize(); 3117 if ((i & 1) == 0) 3118 qs += size; 3119 else { 3120 qt += size; 3121 st += w.nsteals; 3122 if (w.isApparentlyUnblocked()) 3123 ++rc; 3124 } 3125 } 3126 } 3127 } 3128 int pc = (config & SMASK); 3129 int tc = pc + (short)(c >>> TC_SHIFT); 3130 int ac = pc + (int)(c >> AC_SHIFT); 3131 if (ac < 0) // ignore transient negative 3132 ac = 0; 3133 int rs = runState; 3134 String level = ((rs & TERMINATED) != 0 ? "Terminated" : 3135 (rs & STOP) != 0 ? "Terminating" : 3136 (rs & SHUTDOWN) != 0 ? "Shutting down" : 3137 "Running"); 3138 return super.toString() + 3139 "[" + level + 3140 ", parallelism = " + pc + 3141 ", size = " + tc + 3142 ", active = " + ac + 3143 ", running = " + rc + 3144 ", steals = " + st + 3145 ", tasks = " + qt + 3146 ", submissions = " + qs + 3147 "]"; 3148 } 3149 3150 /** 3151 * Possibly initiates an orderly shutdown in which previously 3152 * submitted tasks are executed, but no new tasks will be 3153 * accepted. Invocation has no effect on execution state if this 3154 * is the {@link #commonPool()}, and no additional effect if 3155 * already shut down. Tasks that are in the process of being 3156 * submitted concurrently during the course of this method may or 3157 * may not be rejected. 3158 * 3159 * @throws SecurityException if a security manager exists and 3160 * the caller is not permitted to modify threads 3161 * because it does not hold {@link 3162 * java.lang.RuntimePermission}{@code ("modifyThread")} 3163 */ shutdown()3164 public void shutdown() { 3165 checkPermission(); 3166 tryTerminate(false, true); 3167 } 3168 3169 /** 3170 * Possibly attempts to cancel and/or stop all tasks, and reject 3171 * all subsequently submitted tasks. Invocation has no effect on 3172 * execution state if this is the {@link #commonPool()}, and no 3173 * additional effect if already shut down. Otherwise, tasks that 3174 * are in the process of being submitted or executed concurrently 3175 * during the course of this method may or may not be 3176 * rejected. This method cancels both existing and unexecuted 3177 * tasks, in order to permit termination in the presence of task 3178 * dependencies. So the method always returns an empty list 3179 * (unlike the case for some other Executors). 3180 * 3181 * @return an empty list 3182 * @throws SecurityException if a security manager exists and 3183 * the caller is not permitted to modify threads 3184 * because it does not hold {@link 3185 * java.lang.RuntimePermission}{@code ("modifyThread")} 3186 */ shutdownNow()3187 public List<Runnable> shutdownNow() { 3188 checkPermission(); 3189 tryTerminate(true, true); 3190 return Collections.emptyList(); 3191 } 3192 3193 /** 3194 * Returns {@code true} if all tasks have completed following shut down. 3195 * 3196 * @return {@code true} if all tasks have completed following shut down 3197 */ isTerminated()3198 public boolean isTerminated() { 3199 return (runState & TERMINATED) != 0; 3200 } 3201 3202 /** 3203 * Returns {@code true} if the process of termination has 3204 * commenced but not yet completed. This method may be useful for 3205 * debugging. A return of {@code true} reported a sufficient 3206 * period after shutdown may indicate that submitted tasks have 3207 * ignored or suppressed interruption, or are waiting for I/O, 3208 * causing this executor not to properly terminate. (See the 3209 * advisory notes for class {@link ForkJoinTask} stating that 3210 * tasks should not normally entail blocking operations. But if 3211 * they do, they must abort them on interrupt.) 3212 * 3213 * @return {@code true} if terminating but not yet terminated 3214 */ isTerminating()3215 public boolean isTerminating() { 3216 int rs = runState; 3217 return (rs & STOP) != 0 && (rs & TERMINATED) == 0; 3218 } 3219 3220 /** 3221 * Returns {@code true} if this pool has been shut down. 3222 * 3223 * @return {@code true} if this pool has been shut down 3224 */ isShutdown()3225 public boolean isShutdown() { 3226 return (runState & SHUTDOWN) != 0; 3227 } 3228 3229 /** 3230 * Blocks until all tasks have completed execution after a 3231 * shutdown request, or the timeout occurs, or the current thread 3232 * is interrupted, whichever happens first. Because the {@link 3233 * #commonPool()} never terminates until program shutdown, when 3234 * applied to the common pool, this method is equivalent to {@link 3235 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}. 3236 * 3237 * @param timeout the maximum time to wait 3238 * @param unit the time unit of the timeout argument 3239 * @return {@code true} if this executor terminated and 3240 * {@code false} if the timeout elapsed before termination 3241 * @throws InterruptedException if interrupted while waiting 3242 */ awaitTermination(long timeout, TimeUnit unit)3243 public boolean awaitTermination(long timeout, TimeUnit unit) 3244 throws InterruptedException { 3245 if (Thread.interrupted()) 3246 throw new InterruptedException(); 3247 if (this == common) { 3248 awaitQuiescence(timeout, unit); 3249 return false; 3250 } 3251 long nanos = unit.toNanos(timeout); 3252 if (isTerminated()) 3253 return true; 3254 if (nanos <= 0L) 3255 return false; 3256 long deadline = System.nanoTime() + nanos; 3257 synchronized (this) { 3258 for (;;) { 3259 if (isTerminated()) 3260 return true; 3261 if (nanos <= 0L) 3262 return false; 3263 long millis = TimeUnit.NANOSECONDS.toMillis(nanos); 3264 wait(millis > 0L ? millis : 1L); 3265 nanos = deadline - System.nanoTime(); 3266 } 3267 } 3268 } 3269 3270 /** 3271 * If called by a ForkJoinTask operating in this pool, equivalent 3272 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise, 3273 * waits and/or attempts to assist performing tasks until this 3274 * pool {@link #isQuiescent} or the indicated timeout elapses. 3275 * 3276 * @param timeout the maximum time to wait 3277 * @param unit the time unit of the timeout argument 3278 * @return {@code true} if quiescent; {@code false} if the 3279 * timeout elapsed. 3280 */ awaitQuiescence(long timeout, TimeUnit unit)3281 public boolean awaitQuiescence(long timeout, TimeUnit unit) { 3282 long nanos = unit.toNanos(timeout); 3283 ForkJoinWorkerThread wt; 3284 Thread thread = Thread.currentThread(); 3285 if ((thread instanceof ForkJoinWorkerThread) && 3286 (wt = (ForkJoinWorkerThread)thread).pool == this) { 3287 helpQuiescePool(wt.workQueue); 3288 return true; 3289 } 3290 long startTime = System.nanoTime(); 3291 WorkQueue[] ws; 3292 int r = 0, wl; 3293 boolean found = true; 3294 while (!isQuiescent() && (ws = workQueues) != null && 3295 (wl = ws.length) > 0) { 3296 if (!found) { 3297 if ((System.nanoTime() - startTime) > nanos) 3298 return false; 3299 Thread.yield(); // cannot block 3300 } 3301 found = false; 3302 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) { 3303 ForkJoinTask<?> t; WorkQueue q; int b, k; 3304 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null && 3305 (b = q.base) - q.top < 0) { 3306 found = true; 3307 if ((t = q.pollAt(b)) != null) 3308 t.doExec(); 3309 break; 3310 } 3311 } 3312 } 3313 return true; 3314 } 3315 3316 /** 3317 * Waits and/or attempts to assist performing tasks indefinitely 3318 * until the {@link #commonPool()} {@link #isQuiescent}. 3319 */ quiesceCommonPool()3320 static void quiesceCommonPool() { 3321 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS); 3322 } 3323 3324 /** 3325 * Interface for extending managed parallelism for tasks running 3326 * in {@link ForkJoinPool}s. 3327 * 3328 * <p>A {@code ManagedBlocker} provides two methods. Method 3329 * {@link #isReleasable} must return {@code true} if blocking is 3330 * not necessary. Method {@link #block} blocks the current thread 3331 * if necessary (perhaps internally invoking {@code isReleasable} 3332 * before actually blocking). These actions are performed by any 3333 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}. 3334 * The unusual methods in this API accommodate synchronizers that 3335 * may, but don't usually, block for long periods. Similarly, they 3336 * allow more efficient internal handling of cases in which 3337 * additional workers may be, but usually are not, needed to 3338 * ensure sufficient parallelism. Toward this end, 3339 * implementations of method {@code isReleasable} must be amenable 3340 * to repeated invocation. 3341 * 3342 * <p>For example, here is a ManagedBlocker based on a 3343 * ReentrantLock: 3344 * <pre> {@code 3345 * class ManagedLocker implements ManagedBlocker { 3346 * final ReentrantLock lock; 3347 * boolean hasLock = false; 3348 * ManagedLocker(ReentrantLock lock) { this.lock = lock; } 3349 * public boolean block() { 3350 * if (!hasLock) 3351 * lock.lock(); 3352 * return true; 3353 * } 3354 * public boolean isReleasable() { 3355 * return hasLock || (hasLock = lock.tryLock()); 3356 * } 3357 * }}</pre> 3358 * 3359 * <p>Here is a class that possibly blocks waiting for an 3360 * item on a given queue: 3361 * <pre> {@code 3362 * class QueueTaker<E> implements ManagedBlocker { 3363 * final BlockingQueue<E> queue; 3364 * volatile E item = null; 3365 * QueueTaker(BlockingQueue<E> q) { this.queue = q; } 3366 * public boolean block() throws InterruptedException { 3367 * if (item == null) 3368 * item = queue.take(); 3369 * return true; 3370 * } 3371 * public boolean isReleasable() { 3372 * return item != null || (item = queue.poll()) != null; 3373 * } 3374 * public E getItem() { // call after pool.managedBlock completes 3375 * return item; 3376 * } 3377 * }}</pre> 3378 */ 3379 public static interface ManagedBlocker { 3380 /** 3381 * Possibly blocks the current thread, for example waiting for 3382 * a lock or condition. 3383 * 3384 * @return {@code true} if no additional blocking is necessary 3385 * (i.e., if isReleasable would return true) 3386 * @throws InterruptedException if interrupted while waiting 3387 * (the method is not required to do so, but is allowed to) 3388 */ block()3389 boolean block() throws InterruptedException; 3390 3391 /** 3392 * Returns {@code true} if blocking is unnecessary. 3393 * @return {@code true} if blocking is unnecessary 3394 */ isReleasable()3395 boolean isReleasable(); 3396 } 3397 3398 /** 3399 * Runs the given possibly blocking task. When {@linkplain 3400 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this 3401 * method possibly arranges for a spare thread to be activated if 3402 * necessary to ensure sufficient parallelism while the current 3403 * thread is blocked in {@link ManagedBlocker#block blocker.block()}. 3404 * 3405 * <p>This method repeatedly calls {@code blocker.isReleasable()} and 3406 * {@code blocker.block()} until either method returns {@code true}. 3407 * Every call to {@code blocker.block()} is preceded by a call to 3408 * {@code blocker.isReleasable()} that returned {@code false}. 3409 * 3410 * <p>If not running in a ForkJoinPool, this method is 3411 * behaviorally equivalent to 3412 * <pre> {@code 3413 * while (!blocker.isReleasable()) 3414 * if (blocker.block()) 3415 * break;}</pre> 3416 * 3417 * If running in a ForkJoinPool, the pool may first be expanded to 3418 * ensure sufficient parallelism available during the call to 3419 * {@code blocker.block()}. 3420 * 3421 * @param blocker the blocker task 3422 * @throws InterruptedException if {@code blocker.block()} did so 3423 */ managedBlock(ManagedBlocker blocker)3424 public static void managedBlock(ManagedBlocker blocker) 3425 throws InterruptedException { 3426 ForkJoinPool p; 3427 ForkJoinWorkerThread wt; 3428 Thread t = Thread.currentThread(); 3429 if ((t instanceof ForkJoinWorkerThread) && 3430 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) { 3431 WorkQueue w = wt.workQueue; 3432 while (!blocker.isReleasable()) { 3433 if (p.tryCompensate(w)) { 3434 try { 3435 do {} while (!blocker.isReleasable() && 3436 !blocker.block()); 3437 } finally { 3438 U.getAndAddLong(p, CTL, AC_UNIT); 3439 } 3440 break; 3441 } 3442 } 3443 } 3444 else { 3445 do {} while (!blocker.isReleasable() && 3446 !blocker.block()); 3447 } 3448 } 3449 3450 // AbstractExecutorService overrides. These rely on undocumented 3451 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also 3452 // implement RunnableFuture. 3453 newTaskFor(Runnable runnable, T value)3454 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { 3455 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value); 3456 } 3457 newTaskFor(Callable<T> callable)3458 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { 3459 return new ForkJoinTask.AdaptedCallable<T>(callable); 3460 } 3461 3462 // Unsafe mechanics 3463 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 3464 private static final long CTL; 3465 private static final long RUNSTATE; 3466 private static final int ABASE; 3467 private static final int ASHIFT; 3468 3469 static { 3470 try { 3471 CTL = U.objectFieldOffset 3472 (ForkJoinPool.class.getDeclaredField("ctl")); 3473 RUNSTATE = U.objectFieldOffset 3474 (ForkJoinPool.class.getDeclaredField("runState")); 3475 ABASE = U.arrayBaseOffset(ForkJoinTask[].class); 3476 int scale = U.arrayIndexScale(ForkJoinTask[].class); 3477 if ((scale & (scale - 1)) != 0) 3478 throw new Error("array index scale not a power of two"); 3479 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); 3480 } catch (ReflectiveOperationException e) { 3481 throw new Error(e); 3482 } 3483 3484 // Reduce the risk of rare disastrous classloading in first call to 3485 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773 3486 Class<?> ensureLoaded = LockSupport.class; 3487 3488 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES; 3489 try { 3490 String p = System.getProperty 3491 ("java.util.concurrent.ForkJoinPool.common.maximumSpares"); 3492 if (p != null) 3493 commonMaxSpares = Integer.parseInt(p); 3494 } catch (Exception ignore) {} 3495 COMMON_MAX_SPARES = commonMaxSpares; 3496 3497 defaultForkJoinWorkerThreadFactory = 3498 new DefaultForkJoinWorkerThreadFactory(); 3499 modifyThreadPermission = new RuntimePermission("modifyThread"); 3500 3501 common = java.security.AccessController.doPrivileged 3502 (new java.security.PrivilegedAction<ForkJoinPool>() { 3503 public ForkJoinPool run() { return makeCommonPool(); }}); 3504 3505 // report 1 even if threads disabled 3506 COMMON_PARALLELISM = Math.max(common.config & SMASK, 1); 3507 } 3508 3509 /** 3510 * Creates and returns the common pool, respecting user settings 3511 * specified via system properties. 3512 */ makeCommonPool()3513 static ForkJoinPool makeCommonPool() { 3514 int parallelism = -1; 3515 ForkJoinWorkerThreadFactory factory = null; 3516 UncaughtExceptionHandler handler = null; 3517 try { // ignore exceptions in accessing/parsing properties 3518 String pp = System.getProperty 3519 ("java.util.concurrent.ForkJoinPool.common.parallelism"); 3520 String fp = System.getProperty 3521 ("java.util.concurrent.ForkJoinPool.common.threadFactory"); 3522 String hp = System.getProperty 3523 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler"); 3524 if (pp != null) 3525 parallelism = Integer.parseInt(pp); 3526 if (fp != null) 3527 factory = ((ForkJoinWorkerThreadFactory)ClassLoader. 3528 getSystemClassLoader().loadClass(fp).newInstance()); 3529 if (hp != null) 3530 handler = ((UncaughtExceptionHandler)ClassLoader. 3531 getSystemClassLoader().loadClass(hp).newInstance()); 3532 } catch (Exception ignore) { 3533 } 3534 if (factory == null) { 3535 if (System.getSecurityManager() == null) 3536 factory = defaultForkJoinWorkerThreadFactory; 3537 else // use security-managed default 3538 factory = new InnocuousForkJoinWorkerThreadFactory(); 3539 } 3540 if (parallelism < 0 && // default 1 less than #cores 3541 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0) 3542 parallelism = 1; 3543 if (parallelism > MAX_CAP) 3544 parallelism = MAX_CAP; 3545 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE, 3546 "ForkJoinPool.commonPool-worker-"); 3547 } 3548 3549 /** 3550 * Factory for innocuous worker threads. 3551 */ 3552 private static final class InnocuousForkJoinWorkerThreadFactory 3553 implements ForkJoinWorkerThreadFactory { 3554 3555 /** 3556 * An ACC to restrict permissions for the factory itself. 3557 * The constructed workers have no permissions set. 3558 */ 3559 private static final AccessControlContext innocuousAcc; 3560 static { 3561 Permissions innocuousPerms = new Permissions(); 3562 innocuousPerms.add(modifyThreadPermission); innocuousPerms.add(new RuntimePermission( "enableContextClassLoaderOverride"))3563 innocuousPerms.add(new RuntimePermission( 3564 "enableContextClassLoaderOverride")); innocuousPerms.add(new RuntimePermission( "modifyThreadGroup"))3565 innocuousPerms.add(new RuntimePermission( 3566 "modifyThreadGroup")); 3567 innocuousAcc = new AccessControlContext(new ProtectionDomain[] { 3568 new ProtectionDomain(null, innocuousPerms) 3569 }); 3570 } 3571 newThread(ForkJoinPool pool)3572 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) { 3573 return java.security.AccessController.doPrivileged( 3574 new java.security.PrivilegedAction<ForkJoinWorkerThread>() { 3575 public ForkJoinWorkerThread run() { 3576 return new ForkJoinWorkerThread. 3577 InnocuousForkJoinWorkerThread(pool); 3578 }}, innocuousAcc); 3579 } 3580 } 3581 3582 } 3583