1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License
15  */
16 
17 package com.android.internal.graphics;
18 
19 import android.annotation.ColorInt;
20 import android.annotation.FloatRange;
21 import android.annotation.IntRange;
22 import android.annotation.NonNull;
23 import android.graphics.Color;
24 
25 /**
26  * Copied from: frameworks/support/core-utils/java/android/support/v4/graphics/ColorUtils.java
27  *
28  * A set of color-related utility methods, building upon those available in {@code Color}.
29  */
30 public final class ColorUtils {
31 
32     private static final double XYZ_WHITE_REFERENCE_X = 95.047;
33     private static final double XYZ_WHITE_REFERENCE_Y = 100;
34     private static final double XYZ_WHITE_REFERENCE_Z = 108.883;
35     private static final double XYZ_EPSILON = 0.008856;
36     private static final double XYZ_KAPPA = 903.3;
37 
38     private static final int MIN_ALPHA_SEARCH_MAX_ITERATIONS = 10;
39     private static final int MIN_ALPHA_SEARCH_PRECISION = 1;
40 
41     private static final ThreadLocal<double[]> TEMP_ARRAY = new ThreadLocal<>();
42 
ColorUtils()43     private ColorUtils() {}
44 
45     /**
46      * Composite two potentially translucent colors over each other and returns the result.
47      */
compositeColors(@olorInt int foreground, @ColorInt int background)48     public static int compositeColors(@ColorInt int foreground, @ColorInt int background) {
49         int bgAlpha = Color.alpha(background);
50         int fgAlpha = Color.alpha(foreground);
51         int a = compositeAlpha(fgAlpha, bgAlpha);
52 
53         int r = compositeComponent(Color.red(foreground), fgAlpha,
54                 Color.red(background), bgAlpha, a);
55         int g = compositeComponent(Color.green(foreground), fgAlpha,
56                 Color.green(background), bgAlpha, a);
57         int b = compositeComponent(Color.blue(foreground), fgAlpha,
58                 Color.blue(background), bgAlpha, a);
59 
60         return Color.argb(a, r, g, b);
61     }
62 
compositeAlpha(int foregroundAlpha, int backgroundAlpha)63     private static int compositeAlpha(int foregroundAlpha, int backgroundAlpha) {
64         return 0xFF - (((0xFF - backgroundAlpha) * (0xFF - foregroundAlpha)) / 0xFF);
65     }
66 
compositeComponent(int fgC, int fgA, int bgC, int bgA, int a)67     private static int compositeComponent(int fgC, int fgA, int bgC, int bgA, int a) {
68         if (a == 0) return 0;
69         return ((0xFF * fgC * fgA) + (bgC * bgA * (0xFF - fgA))) / (a * 0xFF);
70     }
71 
72     /**
73      * Returns the luminance of a color as a float between {@code 0.0} and {@code 1.0}.
74      * <p>Defined as the Y component in the XYZ representation of {@code color}.</p>
75      */
76     @FloatRange(from = 0.0, to = 1.0)
calculateLuminance(@olorInt int color)77     public static double calculateLuminance(@ColorInt int color) {
78         final double[] result = getTempDouble3Array();
79         colorToXYZ(color, result);
80         // Luminance is the Y component
81         return result[1] / 100;
82     }
83 
84     /**
85      * Returns the contrast ratio between {@code foreground} and {@code background}.
86      * {@code background} must be opaque.
87      * <p>
88      * Formula defined
89      * <a href="http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef">here</a>.
90      */
calculateContrast(@olorInt int foreground, @ColorInt int background)91     public static double calculateContrast(@ColorInt int foreground, @ColorInt int background) {
92         if (Color.alpha(background) != 255) {
93             throw new IllegalArgumentException("background can not be translucent: #"
94                     + Integer.toHexString(background));
95         }
96         if (Color.alpha(foreground) < 255) {
97             // If the foreground is translucent, composite the foreground over the background
98             foreground = compositeColors(foreground, background);
99         }
100 
101         final double luminance1 = calculateLuminance(foreground) + 0.05;
102         final double luminance2 = calculateLuminance(background) + 0.05;
103 
104         // Now return the lighter luminance divided by the darker luminance
105         return Math.max(luminance1, luminance2) / Math.min(luminance1, luminance2);
106     }
107 
108     /**
109      * Calculates the minimum alpha value which can be applied to {@code background} so that would
110      * have a contrast value of at least {@code minContrastRatio} when alpha blended to
111      * {@code foreground}.
112      *
113      * @param foreground       the foreground color
114      * @param background       the background color, opacity will be ignored
115      * @param minContrastRatio the minimum contrast ratio
116      * @return the alpha value in the range 0-255, or -1 if no value could be calculated
117      */
calculateMinimumBackgroundAlpha(@olorInt int foreground, @ColorInt int background, float minContrastRatio)118     public static int calculateMinimumBackgroundAlpha(@ColorInt int foreground,
119             @ColorInt int background, float minContrastRatio) {
120         // Ignore initial alpha that the background might have since this is
121         // what we're trying to calculate.
122         background = setAlphaComponent(background, 255);
123         final int leastContrastyColor = setAlphaComponent(foreground, 255);
124         return binaryAlphaSearch(foreground, background, minContrastRatio, (fg, bg, alpha) -> {
125             int testBackground = blendARGB(leastContrastyColor, bg, alpha/255f);
126             // Float rounding might set this alpha to something other that 255,
127             // raising an exception in calculateContrast.
128             testBackground = setAlphaComponent(testBackground, 255);
129             return calculateContrast(fg, testBackground);
130         });
131     }
132 
133     /**
134      * Calculates the minimum alpha value which can be applied to {@code foreground} so that would
135      * have a contrast value of at least {@code minContrastRatio} when compared to
136      * {@code background}.
137      *
138      * @param foreground       the foreground color
139      * @param background       the opaque background color
140      * @param minContrastRatio the minimum contrast ratio
141      * @return the alpha value in the range 0-255, or -1 if no value could be calculated
142      */
calculateMinimumAlpha(@olorInt int foreground, @ColorInt int background, float minContrastRatio)143     public static int calculateMinimumAlpha(@ColorInt int foreground, @ColorInt int background,
144             float minContrastRatio) {
145         if (Color.alpha(background) != 255) {
146             throw new IllegalArgumentException("background can not be translucent: #"
147                     + Integer.toHexString(background));
148         }
149 
150         ContrastCalculator contrastCalculator = (fg, bg, alpha) -> {
151             int testForeground = setAlphaComponent(fg, alpha);
152             return calculateContrast(testForeground, bg);
153         };
154 
155         // First lets check that a fully opaque foreground has sufficient contrast
156         double testRatio = contrastCalculator.calculateContrast(foreground, background, 255);
157         if (testRatio < minContrastRatio) {
158             // Fully opaque foreground does not have sufficient contrast, return error
159             return -1;
160         }
161         foreground = setAlphaComponent(foreground, 255);
162         return binaryAlphaSearch(foreground, background, minContrastRatio, contrastCalculator);
163     }
164 
165     /**
166      * Calculates the alpha value using binary search based on a given contrast evaluation function
167      * and target contrast that needs to be satisfied.
168      *
169      * @param foreground         the foreground color
170      * @param background         the opaque background color
171      * @param minContrastRatio   the minimum contrast ratio
172      * @param calculator function that calculates contrast
173      * @return the alpha value in the range 0-255, or -1 if no value could be calculated
174      */
binaryAlphaSearch(@olorInt int foreground, @ColorInt int background, float minContrastRatio, ContrastCalculator calculator)175     private static int binaryAlphaSearch(@ColorInt int foreground, @ColorInt int background,
176             float minContrastRatio, ContrastCalculator calculator) {
177         // Binary search to find a value with the minimum value which provides sufficient contrast
178         int numIterations = 0;
179         int minAlpha = 0;
180         int maxAlpha = 255;
181 
182         while (numIterations <= MIN_ALPHA_SEARCH_MAX_ITERATIONS &&
183                 (maxAlpha - minAlpha) > MIN_ALPHA_SEARCH_PRECISION) {
184             final int testAlpha = (minAlpha + maxAlpha) / 2;
185 
186             final double testRatio = calculator.calculateContrast(foreground, background,
187                     testAlpha);
188             if (testRatio < minContrastRatio) {
189                 minAlpha = testAlpha;
190             } else {
191                 maxAlpha = testAlpha;
192             }
193 
194             numIterations++;
195         }
196 
197         // Conservatively return the max of the range of possible alphas, which is known to pass.
198         return maxAlpha;
199     }
200 
201     /**
202      * Convert RGB components to HSL (hue-saturation-lightness).
203      * <ul>
204      * <li>outHsl[0] is Hue [0 .. 360)</li>
205      * <li>outHsl[1] is Saturation [0...1]</li>
206      * <li>outHsl[2] is Lightness [0...1]</li>
207      * </ul>
208      *
209      * @param r      red component value [0..255]
210      * @param g      green component value [0..255]
211      * @param b      blue component value [0..255]
212      * @param outHsl 3-element array which holds the resulting HSL components
213      */
RGBToHSL(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull float[] outHsl)214     public static void RGBToHSL(@IntRange(from = 0x0, to = 0xFF) int r,
215             @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
216             @NonNull float[] outHsl) {
217         final float rf = r / 255f;
218         final float gf = g / 255f;
219         final float bf = b / 255f;
220 
221         final float max = Math.max(rf, Math.max(gf, bf));
222         final float min = Math.min(rf, Math.min(gf, bf));
223         final float deltaMaxMin = max - min;
224 
225         float h, s;
226         float l = (max + min) / 2f;
227 
228         if (max == min) {
229             // Monochromatic
230             h = s = 0f;
231         } else {
232             if (max == rf) {
233                 h = ((gf - bf) / deltaMaxMin) % 6f;
234             } else if (max == gf) {
235                 h = ((bf - rf) / deltaMaxMin) + 2f;
236             } else {
237                 h = ((rf - gf) / deltaMaxMin) + 4f;
238             }
239 
240             s = deltaMaxMin / (1f - Math.abs(2f * l - 1f));
241         }
242 
243         h = (h * 60f) % 360f;
244         if (h < 0) {
245             h += 360f;
246         }
247 
248         outHsl[0] = constrain(h, 0f, 360f);
249         outHsl[1] = constrain(s, 0f, 1f);
250         outHsl[2] = constrain(l, 0f, 1f);
251     }
252 
253     /**
254      * Convert the ARGB color to its HSL (hue-saturation-lightness) components.
255      * <ul>
256      * <li>outHsl[0] is Hue [0 .. 360)</li>
257      * <li>outHsl[1] is Saturation [0...1]</li>
258      * <li>outHsl[2] is Lightness [0...1]</li>
259      * </ul>
260      *
261      * @param color  the ARGB color to convert. The alpha component is ignored
262      * @param outHsl 3-element array which holds the resulting HSL components
263      */
colorToHSL(@olorInt int color, @NonNull float[] outHsl)264     public static void colorToHSL(@ColorInt int color, @NonNull float[] outHsl) {
265         RGBToHSL(Color.red(color), Color.green(color), Color.blue(color), outHsl);
266     }
267 
268     /**
269      * Convert HSL (hue-saturation-lightness) components to a RGB color.
270      * <ul>
271      * <li>hsl[0] is Hue [0 .. 360)</li>
272      * <li>hsl[1] is Saturation [0...1]</li>
273      * <li>hsl[2] is Lightness [0...1]</li>
274      * </ul>
275      * If hsv values are out of range, they are pinned.
276      *
277      * @param hsl 3-element array which holds the input HSL components
278      * @return the resulting RGB color
279      */
280     @ColorInt
HSLToColor(@onNull float[] hsl)281     public static int HSLToColor(@NonNull float[] hsl) {
282         final float h = hsl[0];
283         final float s = hsl[1];
284         final float l = hsl[2];
285 
286         final float c = (1f - Math.abs(2 * l - 1f)) * s;
287         final float m = l - 0.5f * c;
288         final float x = c * (1f - Math.abs((h / 60f % 2f) - 1f));
289 
290         final int hueSegment = (int) h / 60;
291 
292         int r = 0, g = 0, b = 0;
293 
294         switch (hueSegment) {
295             case 0:
296                 r = Math.round(255 * (c + m));
297                 g = Math.round(255 * (x + m));
298                 b = Math.round(255 * m);
299                 break;
300             case 1:
301                 r = Math.round(255 * (x + m));
302                 g = Math.round(255 * (c + m));
303                 b = Math.round(255 * m);
304                 break;
305             case 2:
306                 r = Math.round(255 * m);
307                 g = Math.round(255 * (c + m));
308                 b = Math.round(255 * (x + m));
309                 break;
310             case 3:
311                 r = Math.round(255 * m);
312                 g = Math.round(255 * (x + m));
313                 b = Math.round(255 * (c + m));
314                 break;
315             case 4:
316                 r = Math.round(255 * (x + m));
317                 g = Math.round(255 * m);
318                 b = Math.round(255 * (c + m));
319                 break;
320             case 5:
321             case 6:
322                 r = Math.round(255 * (c + m));
323                 g = Math.round(255 * m);
324                 b = Math.round(255 * (x + m));
325                 break;
326         }
327 
328         r = constrain(r, 0, 255);
329         g = constrain(g, 0, 255);
330         b = constrain(b, 0, 255);
331 
332         return Color.rgb(r, g, b);
333     }
334 
335     /**
336      * Set the alpha component of {@code color} to be {@code alpha}.
337      */
338     @ColorInt
setAlphaComponent(@olorInt int color, @IntRange(from = 0x0, to = 0xFF) int alpha)339     public static int setAlphaComponent(@ColorInt int color,
340             @IntRange(from = 0x0, to = 0xFF) int alpha) {
341         if (alpha < 0 || alpha > 255) {
342             throw new IllegalArgumentException("alpha must be between 0 and 255.");
343         }
344         return (color & 0x00ffffff) | (alpha << 24);
345     }
346 
347     /**
348      * Convert the ARGB color to its CIE Lab representative components.
349      *
350      * @param color  the ARGB color to convert. The alpha component is ignored
351      * @param outLab 3-element array which holds the resulting LAB components
352      */
colorToLAB(@olorInt int color, @NonNull double[] outLab)353     public static void colorToLAB(@ColorInt int color, @NonNull double[] outLab) {
354         RGBToLAB(Color.red(color), Color.green(color), Color.blue(color), outLab);
355     }
356 
357     /**
358      * Convert RGB components to its CIE Lab representative components.
359      *
360      * <ul>
361      * <li>outLab[0] is L [0 ...1)</li>
362      * <li>outLab[1] is a [-128...127)</li>
363      * <li>outLab[2] is b [-128...127)</li>
364      * </ul>
365      *
366      * @param r      red component value [0..255]
367      * @param g      green component value [0..255]
368      * @param b      blue component value [0..255]
369      * @param outLab 3-element array which holds the resulting LAB components
370      */
RGBToLAB(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outLab)371     public static void RGBToLAB(@IntRange(from = 0x0, to = 0xFF) int r,
372             @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
373             @NonNull double[] outLab) {
374         // First we convert RGB to XYZ
375         RGBToXYZ(r, g, b, outLab);
376         // outLab now contains XYZ
377         XYZToLAB(outLab[0], outLab[1], outLab[2], outLab);
378         // outLab now contains LAB representation
379     }
380 
381     /**
382      * Convert the ARGB color to its CIE XYZ representative components.
383      *
384      * <p>The resulting XYZ representation will use the D65 illuminant and the CIE
385      * 2° Standard Observer (1931).</p>
386      *
387      * <ul>
388      * <li>outXyz[0] is X [0 ...95.047)</li>
389      * <li>outXyz[1] is Y [0...100)</li>
390      * <li>outXyz[2] is Z [0...108.883)</li>
391      * </ul>
392      *
393      * @param color  the ARGB color to convert. The alpha component is ignored
394      * @param outXyz 3-element array which holds the resulting LAB components
395      */
colorToXYZ(@olorInt int color, @NonNull double[] outXyz)396     public static void colorToXYZ(@ColorInt int color, @NonNull double[] outXyz) {
397         RGBToXYZ(Color.red(color), Color.green(color), Color.blue(color), outXyz);
398     }
399 
400     /**
401      * Convert RGB components to its CIE XYZ representative components.
402      *
403      * <p>The resulting XYZ representation will use the D65 illuminant and the CIE
404      * 2° Standard Observer (1931).</p>
405      *
406      * <ul>
407      * <li>outXyz[0] is X [0 ...95.047)</li>
408      * <li>outXyz[1] is Y [0...100)</li>
409      * <li>outXyz[2] is Z [0...108.883)</li>
410      * </ul>
411      *
412      * @param r      red component value [0..255]
413      * @param g      green component value [0..255]
414      * @param b      blue component value [0..255]
415      * @param outXyz 3-element array which holds the resulting XYZ components
416      */
RGBToXYZ(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outXyz)417     public static void RGBToXYZ(@IntRange(from = 0x0, to = 0xFF) int r,
418             @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
419             @NonNull double[] outXyz) {
420         if (outXyz.length != 3) {
421             throw new IllegalArgumentException("outXyz must have a length of 3.");
422         }
423 
424         double sr = r / 255.0;
425         sr = sr < 0.04045 ? sr / 12.92 : Math.pow((sr + 0.055) / 1.055, 2.4);
426         double sg = g / 255.0;
427         sg = sg < 0.04045 ? sg / 12.92 : Math.pow((sg + 0.055) / 1.055, 2.4);
428         double sb = b / 255.0;
429         sb = sb < 0.04045 ? sb / 12.92 : Math.pow((sb + 0.055) / 1.055, 2.4);
430 
431         outXyz[0] = 100 * (sr * 0.4124 + sg * 0.3576 + sb * 0.1805);
432         outXyz[1] = 100 * (sr * 0.2126 + sg * 0.7152 + sb * 0.0722);
433         outXyz[2] = 100 * (sr * 0.0193 + sg * 0.1192 + sb * 0.9505);
434     }
435 
436     /**
437      * Converts a color from CIE XYZ to CIE Lab representation.
438      *
439      * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
440      * 2° Standard Observer (1931).</p>
441      *
442      * <ul>
443      * <li>outLab[0] is L [0 ...1)</li>
444      * <li>outLab[1] is a [-128...127)</li>
445      * <li>outLab[2] is b [-128...127)</li>
446      * </ul>
447      *
448      * @param x      X component value [0...95.047)
449      * @param y      Y component value [0...100)
450      * @param z      Z component value [0...108.883)
451      * @param outLab 3-element array which holds the resulting Lab components
452      */
453     public static void XYZToLAB(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
454             @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
455             @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z,
456             @NonNull double[] outLab) {
457         if (outLab.length != 3) {
458             throw new IllegalArgumentException("outLab must have a length of 3.");
459         }
460         x = pivotXyzComponent(x / XYZ_WHITE_REFERENCE_X);
461         y = pivotXyzComponent(y / XYZ_WHITE_REFERENCE_Y);
462         z = pivotXyzComponent(z / XYZ_WHITE_REFERENCE_Z);
463         outLab[0] = Math.max(0, 116 * y - 16);
464         outLab[1] = 500 * (x - y);
465         outLab[2] = 200 * (y - z);
466     }
467 
468     /**
469      * Converts a color from CIE Lab to CIE XYZ representation.
470      *
471      * <p>The resulting XYZ representation will use the D65 illuminant and the CIE
472      * 2° Standard Observer (1931).</p>
473      *
474      * <ul>
475      * <li>outXyz[0] is X [0 ...95.047)</li>
476      * <li>outXyz[1] is Y [0...100)</li>
477      * <li>outXyz[2] is Z [0...108.883)</li>
478      * </ul>
479      *
480      * @param l      L component value [0...100)
481      * @param a      A component value [-128...127)
482      * @param b      B component value [-128...127)
483      * @param outXyz 3-element array which holds the resulting XYZ components
484      */
485     public static void LABToXYZ(@FloatRange(from = 0f, to = 100) final double l,
486             @FloatRange(from = -128, to = 127) final double a,
487             @FloatRange(from = -128, to = 127) final double b,
488             @NonNull double[] outXyz) {
489         final double fy = (l + 16) / 116;
490         final double fx = a / 500 + fy;
491         final double fz = fy - b / 200;
492 
493         double tmp = Math.pow(fx, 3);
494         final double xr = tmp > XYZ_EPSILON ? tmp : (116 * fx - 16) / XYZ_KAPPA;
495         final double yr = l > XYZ_KAPPA * XYZ_EPSILON ? Math.pow(fy, 3) : l / XYZ_KAPPA;
496 
497         tmp = Math.pow(fz, 3);
498         final double zr = tmp > XYZ_EPSILON ? tmp : (116 * fz - 16) / XYZ_KAPPA;
499 
500         outXyz[0] = xr * XYZ_WHITE_REFERENCE_X;
501         outXyz[1] = yr * XYZ_WHITE_REFERENCE_Y;
502         outXyz[2] = zr * XYZ_WHITE_REFERENCE_Z;
503     }
504 
505     /**
506      * Converts a color from CIE XYZ to its RGB representation.
507      *
508      * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
509      * 2° Standard Observer (1931).</p>
510      *
511      * @param x X component value [0...95.047)
512      * @param y Y component value [0...100)
513      * @param z Z component value [0...108.883)
514      * @return int containing the RGB representation
515      */
516     @ColorInt
XYZToColor(@loatRangefrom = 0f, to = XYZ_WHITE_REFERENCE_X) double x, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z)517     public static int XYZToColor(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
518             @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
519             @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z) {
520         double r = (x * 3.2406 + y * -1.5372 + z * -0.4986) / 100;
521         double g = (x * -0.9689 + y * 1.8758 + z * 0.0415) / 100;
522         double b = (x * 0.0557 + y * -0.2040 + z * 1.0570) / 100;
523 
524         r = r > 0.0031308 ? 1.055 * Math.pow(r, 1 / 2.4) - 0.055 : 12.92 * r;
525         g = g > 0.0031308 ? 1.055 * Math.pow(g, 1 / 2.4) - 0.055 : 12.92 * g;
526         b = b > 0.0031308 ? 1.055 * Math.pow(b, 1 / 2.4) - 0.055 : 12.92 * b;
527 
528         return Color.rgb(
529                 constrain((int) Math.round(r * 255), 0, 255),
530                 constrain((int) Math.round(g * 255), 0, 255),
531                 constrain((int) Math.round(b * 255), 0, 255));
532     }
533 
534     /**
535      * Converts a color from CIE Lab to its RGB representation.
536      *
537      * @param l L component value [0...100]
538      * @param a A component value [-128...127]
539      * @param b B component value [-128...127]
540      * @return int containing the RGB representation
541      */
542     @ColorInt
LABToColor(@loatRangefrom = 0f, to = 100) final double l, @FloatRange(from = -128, to = 127) final double a, @FloatRange(from = -128, to = 127) final double b)543     public static int LABToColor(@FloatRange(from = 0f, to = 100) final double l,
544             @FloatRange(from = -128, to = 127) final double a,
545             @FloatRange(from = -128, to = 127) final double b) {
546         final double[] result = getTempDouble3Array();
547         LABToXYZ(l, a, b, result);
548         return XYZToColor(result[0], result[1], result[2]);
549     }
550 
551     /**
552      * Returns the euclidean distance between two LAB colors.
553      */
distanceEuclidean(@onNull double[] labX, @NonNull double[] labY)554     public static double distanceEuclidean(@NonNull double[] labX, @NonNull double[] labY) {
555         return Math.sqrt(Math.pow(labX[0] - labY[0], 2)
556                 + Math.pow(labX[1] - labY[1], 2)
557                 + Math.pow(labX[2] - labY[2], 2));
558     }
559 
constrain(float amount, float low, float high)560     private static float constrain(float amount, float low, float high) {
561         return amount < low ? low : (amount > high ? high : amount);
562     }
563 
constrain(int amount, int low, int high)564     private static int constrain(int amount, int low, int high) {
565         return amount < low ? low : (amount > high ? high : amount);
566     }
567 
pivotXyzComponent(double component)568     private static double pivotXyzComponent(double component) {
569         return component > XYZ_EPSILON
570                 ? Math.pow(component, 1 / 3.0)
571                 : (XYZ_KAPPA * component + 16) / 116;
572     }
573 
574     /**
575      * Blend between two ARGB colors using the given ratio.
576      *
577      * <p>A blend ratio of 0.0 will result in {@code color1}, 0.5 will give an even blend,
578      * 1.0 will result in {@code color2}.</p>
579      *
580      * @param color1 the first ARGB color
581      * @param color2 the second ARGB color
582      * @param ratio  the blend ratio of {@code color1} to {@code color2}
583      */
584     @ColorInt
blendARGB(@olorInt int color1, @ColorInt int color2, @FloatRange(from = 0.0, to = 1.0) float ratio)585     public static int blendARGB(@ColorInt int color1, @ColorInt int color2,
586             @FloatRange(from = 0.0, to = 1.0) float ratio) {
587         final float inverseRatio = 1 - ratio;
588         float a = Color.alpha(color1) * inverseRatio + Color.alpha(color2) * ratio;
589         float r = Color.red(color1) * inverseRatio + Color.red(color2) * ratio;
590         float g = Color.green(color1) * inverseRatio + Color.green(color2) * ratio;
591         float b = Color.blue(color1) * inverseRatio + Color.blue(color2) * ratio;
592         return Color.argb((int) a, (int) r, (int) g, (int) b);
593     }
594 
595     /**
596      * Blend between {@code hsl1} and {@code hsl2} using the given ratio. This will interpolate
597      * the hue using the shortest angle.
598      *
599      * <p>A blend ratio of 0.0 will result in {@code hsl1}, 0.5 will give an even blend,
600      * 1.0 will result in {@code hsl2}.</p>
601      *
602      * @param hsl1      3-element array which holds the first HSL color
603      * @param hsl2      3-element array which holds the second HSL color
604      * @param ratio     the blend ratio of {@code hsl1} to {@code hsl2}
605      * @param outResult 3-element array which holds the resulting HSL components
606      */
blendHSL(@onNull float[] hsl1, @NonNull float[] hsl2, @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult)607     public static void blendHSL(@NonNull float[] hsl1, @NonNull float[] hsl2,
608             @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult) {
609         if (outResult.length != 3) {
610             throw new IllegalArgumentException("result must have a length of 3.");
611         }
612         final float inverseRatio = 1 - ratio;
613         // Since hue is circular we will need to interpolate carefully
614         outResult[0] = circularInterpolate(hsl1[0], hsl2[0], ratio);
615         outResult[1] = hsl1[1] * inverseRatio + hsl2[1] * ratio;
616         outResult[2] = hsl1[2] * inverseRatio + hsl2[2] * ratio;
617     }
618 
619     /**
620      * Blend between two CIE-LAB colors using the given ratio.
621      *
622      * <p>A blend ratio of 0.0 will result in {@code lab1}, 0.5 will give an even blend,
623      * 1.0 will result in {@code lab2}.</p>
624      *
625      * @param lab1      3-element array which holds the first LAB color
626      * @param lab2      3-element array which holds the second LAB color
627      * @param ratio     the blend ratio of {@code lab1} to {@code lab2}
628      * @param outResult 3-element array which holds the resulting LAB components
629      */
blendLAB(@onNull double[] lab1, @NonNull double[] lab2, @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult)630     public static void blendLAB(@NonNull double[] lab1, @NonNull double[] lab2,
631             @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult) {
632         if (outResult.length != 3) {
633             throw new IllegalArgumentException("outResult must have a length of 3.");
634         }
635         final double inverseRatio = 1 - ratio;
636         outResult[0] = lab1[0] * inverseRatio + lab2[0] * ratio;
637         outResult[1] = lab1[1] * inverseRatio + lab2[1] * ratio;
638         outResult[2] = lab1[2] * inverseRatio + lab2[2] * ratio;
639     }
640 
circularInterpolate(float a, float b, float f)641     static float circularInterpolate(float a, float b, float f) {
642         if (Math.abs(b - a) > 180) {
643             if (b > a) {
644                 a += 360;
645             } else {
646                 b += 360;
647             }
648         }
649         return (a + ((b - a) * f)) % 360;
650     }
651 
getTempDouble3Array()652     private static double[] getTempDouble3Array() {
653         double[] result = TEMP_ARRAY.get();
654         if (result == null) {
655             result = new double[3];
656             TEMP_ARRAY.set(result);
657         }
658         return result;
659     }
660 
661     private interface ContrastCalculator {
calculateContrast(int foreground, int background, int alpha)662         double calculateContrast(int foreground, int background, int alpha);
663     }
664 
665 }