1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "SensorDevice.h"
18
19 #include "android/hardware/sensors/2.0/ISensorsCallback.h"
20 #include "android/hardware/sensors/2.0/types.h"
21 #include "SensorService.h"
22
23 #include <android-base/logging.h>
24 #include <sensors/convert.h>
25 #include <cutils/atomic.h>
26 #include <utils/Errors.h>
27 #include <utils/Singleton.h>
28
29 #include <chrono>
30 #include <cinttypes>
31 #include <thread>
32
33 using namespace android::hardware::sensors;
34 using namespace android::hardware::sensors::V1_0;
35 using namespace android::hardware::sensors::V1_0::implementation;
36 using android::hardware::sensors::V2_0::ISensorsCallback;
37 using android::hardware::sensors::V2_0::EventQueueFlagBits;
38 using android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
39 using android::hardware::hidl_vec;
40 using android::hardware::Return;
41 using android::SensorDeviceUtils::HidlServiceRegistrationWaiter;
42
43 namespace android {
44 // ---------------------------------------------------------------------------
45
46 ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice)
47
48 namespace {
49
statusFromResult(Result result)50 status_t statusFromResult(Result result) {
51 switch (result) {
52 case Result::OK:
53 return OK;
54 case Result::BAD_VALUE:
55 return BAD_VALUE;
56 case Result::PERMISSION_DENIED:
57 return PERMISSION_DENIED;
58 case Result::INVALID_OPERATION:
59 return INVALID_OPERATION;
60 case Result::NO_MEMORY:
61 return NO_MEMORY;
62 }
63 }
64
65 template<typename EnumType>
asBaseType(EnumType value)66 constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
67 return static_cast<typename std::underlying_type<EnumType>::type>(value);
68 }
69
70 // Used internally by the framework to wake the Event FMQ. These values must start after
71 // the last value of EventQueueFlagBits
72 enum EventQueueFlagBitsInternal : uint32_t {
73 INTERNAL_WAKE = 1 << 16,
74 };
75
76 } // anonymous namespace
77
serviceDied(uint64_t,const wp<::android::hidl::base::V1_0::IBase> &)78 void SensorsHalDeathReceivier::serviceDied(
79 uint64_t /* cookie */,
80 const wp<::android::hidl::base::V1_0::IBase>& /* service */) {
81 ALOGW("Sensors HAL died, attempting to reconnect.");
82 SensorDevice::getInstance().prepareForReconnect();
83 }
84
85 struct SensorsCallback : public ISensorsCallback {
86 using Result = ::android::hardware::sensors::V1_0::Result;
onDynamicSensorsConnectedandroid::SensorsCallback87 Return<void> onDynamicSensorsConnected(
88 const hidl_vec<SensorInfo> &dynamicSensorsAdded) override {
89 return SensorDevice::getInstance().onDynamicSensorsConnected(dynamicSensorsAdded);
90 }
91
onDynamicSensorsDisconnectedandroid::SensorsCallback92 Return<void> onDynamicSensorsDisconnected(
93 const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) override {
94 return SensorDevice::getInstance().onDynamicSensorsDisconnected(
95 dynamicSensorHandlesRemoved);
96 }
97 };
98
SensorDevice()99 SensorDevice::SensorDevice()
100 : mHidlTransportErrors(20),
101 mRestartWaiter(new HidlServiceRegistrationWaiter()),
102 mEventQueueFlag(nullptr),
103 mWakeLockQueueFlag(nullptr),
104 mReconnecting(false) {
105 if (!connectHidlService()) {
106 return;
107 }
108
109 initializeSensorList();
110
111 mIsDirectReportSupported =
112 (checkReturnAndGetStatus(mSensors->unregisterDirectChannel(-1)) != INVALID_OPERATION);
113 }
114
initializeSensorList()115 void SensorDevice::initializeSensorList() {
116 float minPowerMa = 0.001; // 1 microAmp
117
118 checkReturn(mSensors->getSensorsList(
119 [&](const auto &list) {
120 const size_t count = list.size();
121
122 mActivationCount.setCapacity(count);
123 Info model;
124 for (size_t i=0 ; i < count; i++) {
125 sensor_t sensor;
126 convertToSensor(list[i], &sensor);
127 // Sanity check and clamp power if it is 0 (or close)
128 if (sensor.power < minPowerMa) {
129 ALOGI("Reported power %f not deemed sane, clamping to %f",
130 sensor.power, minPowerMa);
131 sensor.power = minPowerMa;
132 }
133 mSensorList.push_back(sensor);
134
135 mActivationCount.add(list[i].sensorHandle, model);
136
137 checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */));
138 }
139 }));
140 }
141
~SensorDevice()142 SensorDevice::~SensorDevice() {
143 if (mEventQueueFlag != nullptr) {
144 hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
145 mEventQueueFlag = nullptr;
146 }
147
148 if (mWakeLockQueueFlag != nullptr) {
149 hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
150 mWakeLockQueueFlag = nullptr;
151 }
152 }
153
connectHidlService()154 bool SensorDevice::connectHidlService() {
155 HalConnectionStatus status = connectHidlServiceV2_0();
156 if (status == HalConnectionStatus::DOES_NOT_EXIST) {
157 status = connectHidlServiceV1_0();
158 }
159 return (status == HalConnectionStatus::CONNECTED);
160 }
161
connectHidlServiceV1_0()162 SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV1_0() {
163 // SensorDevice will wait for HAL service to start if HAL is declared in device manifest.
164 size_t retry = 10;
165 HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
166
167 while (retry-- > 0) {
168 sp<V1_0::ISensors> sensors = V1_0::ISensors::getService();
169 if (sensors == nullptr) {
170 // no sensor hidl service found
171 connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
172 break;
173 }
174
175 mSensors = new SensorServiceUtil::SensorsWrapperV1_0(sensors);
176 mRestartWaiter->reset();
177 // Poke ISensor service. If it has lingering connection from previous generation of
178 // system server, it will kill itself. There is no intention to handle the poll result,
179 // which will be done since the size is 0.
180 if(mSensors->poll(0, [](auto, const auto &, const auto &) {}).isOk()) {
181 // ok to continue
182 connectionStatus = HalConnectionStatus::CONNECTED;
183 break;
184 }
185
186 // hidl service is restarting, pointer is invalid.
187 mSensors = nullptr;
188 connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
189 ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry);
190 mRestartWaiter->wait();
191 }
192
193 return connectionStatus;
194 }
195
connectHidlServiceV2_0()196 SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV2_0() {
197 HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
198 sp<V2_0::ISensors> sensors = V2_0::ISensors::getService();
199
200 if (sensors == nullptr) {
201 connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
202 } else {
203 mSensors = new SensorServiceUtil::SensorsWrapperV2_0(sensors);
204
205 mEventQueue = std::make_unique<EventMessageQueue>(
206 SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
207 true /* configureEventFlagWord */);
208
209 mWakeLockQueue = std::make_unique<WakeLockQueue>(
210 SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
211 true /* configureEventFlagWord */);
212
213 hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
214 hardware::EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
215
216 hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
217 hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(),
218 &mWakeLockQueueFlag);
219
220 CHECK(mSensors != nullptr && mEventQueue != nullptr &&
221 mWakeLockQueue != nullptr && mEventQueueFlag != nullptr &&
222 mWakeLockQueueFlag != nullptr);
223
224 status_t status = checkReturnAndGetStatus(mSensors->initialize(
225 *mEventQueue->getDesc(),
226 *mWakeLockQueue->getDesc(),
227 new SensorsCallback()));
228
229 if (status != NO_ERROR) {
230 connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
231 ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status));
232 } else {
233 connectionStatus = HalConnectionStatus::CONNECTED;
234 mSensorsHalDeathReceiver = new SensorsHalDeathReceivier();
235 sensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */);
236 }
237 }
238
239 return connectionStatus;
240 }
241
prepareForReconnect()242 void SensorDevice::prepareForReconnect() {
243 mReconnecting = true;
244
245 // Wake up the polling thread so it returns and allows the SensorService to initiate
246 // a reconnect.
247 mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
248 }
249
reconnect()250 void SensorDevice::reconnect() {
251 Mutex::Autolock _l(mLock);
252 mSensors = nullptr;
253
254 auto previousActivations = mActivationCount;
255 auto previousSensorList = mSensorList;
256
257 mActivationCount.clear();
258 mSensorList.clear();
259
260 if (connectHidlServiceV2_0() == HalConnectionStatus::CONNECTED) {
261 initializeSensorList();
262
263 if (sensorHandlesChanged(previousSensorList, mSensorList)) {
264 LOG_ALWAYS_FATAL("Sensor handles changed, cannot re-enable sensors.");
265 } else {
266 reactivateSensors(previousActivations);
267 }
268 }
269 mReconnecting = false;
270 }
271
sensorHandlesChanged(const Vector<sensor_t> & oldSensorList,const Vector<sensor_t> & newSensorList)272 bool SensorDevice::sensorHandlesChanged(const Vector<sensor_t>& oldSensorList,
273 const Vector<sensor_t>& newSensorList) {
274 bool didChange = false;
275
276 if (oldSensorList.size() != newSensorList.size()) {
277 ALOGI("Sensor list size changed from %zu to %zu", oldSensorList.size(),
278 newSensorList.size());
279 didChange = true;
280 }
281
282 for (size_t i = 0; i < newSensorList.size() && !didChange; i++) {
283 bool found = false;
284 const sensor_t& newSensor = newSensorList[i];
285 for (size_t j = 0; j < oldSensorList.size() && !found; j++) {
286 const sensor_t& prevSensor = oldSensorList[j];
287 if (prevSensor.handle == newSensor.handle) {
288 found = true;
289 if (!sensorIsEquivalent(prevSensor, newSensor)) {
290 ALOGI("Sensor %s not equivalent to previous version", newSensor.name);
291 didChange = true;
292 }
293 }
294 }
295
296 if (!found) {
297 // Could not find the new sensor in the old list of sensors, the lists must
298 // have changed.
299 ALOGI("Sensor %s (handle %d) did not exist before", newSensor.name, newSensor.handle);
300 didChange = true;
301 }
302 }
303 return didChange;
304 }
305
sensorIsEquivalent(const sensor_t & prevSensor,const sensor_t & newSensor)306 bool SensorDevice::sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor) {
307 bool equivalent = true;
308 if (prevSensor.handle != newSensor.handle ||
309 (strcmp(prevSensor.vendor, newSensor.vendor) != 0) ||
310 (strcmp(prevSensor.stringType, newSensor.stringType) != 0) ||
311 (strcmp(prevSensor.requiredPermission, newSensor.requiredPermission) != 0) ||
312 (prevSensor.version != newSensor.version) ||
313 (prevSensor.type != newSensor.type) ||
314 (std::abs(prevSensor.maxRange - newSensor.maxRange) > 0.001f) ||
315 (std::abs(prevSensor.resolution - newSensor.resolution) > 0.001f) ||
316 (std::abs(prevSensor.power - newSensor.power) > 0.001f) ||
317 (prevSensor.minDelay != newSensor.minDelay) ||
318 (prevSensor.fifoReservedEventCount != newSensor.fifoReservedEventCount) ||
319 (prevSensor.fifoMaxEventCount != newSensor.fifoMaxEventCount) ||
320 (prevSensor.maxDelay != newSensor.maxDelay) ||
321 (prevSensor.flags != newSensor.flags)) {
322 equivalent = false;
323 }
324 return equivalent;
325 }
326
reactivateSensors(const DefaultKeyedVector<int,Info> & previousActivations)327 void SensorDevice::reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations) {
328 for (size_t i = 0; i < mSensorList.size(); i++) {
329 int handle = mSensorList[i].handle;
330 ssize_t activationIndex = previousActivations.indexOfKey(handle);
331 if (activationIndex < 0 || previousActivations[activationIndex].numActiveClients() <= 0) {
332 continue;
333 }
334
335 const Info& info = previousActivations[activationIndex];
336 for (size_t j = 0; j < info.batchParams.size(); j++) {
337 const BatchParams& batchParams = info.batchParams[j];
338 status_t res = batchLocked(info.batchParams.keyAt(j), handle, 0 /* flags */,
339 batchParams.mTSample, batchParams.mTBatch);
340
341 if (res == NO_ERROR) {
342 activateLocked(info.batchParams.keyAt(j), handle, true /* enabled */);
343 }
344 }
345 }
346 }
347
handleDynamicSensorConnection(int handle,bool connected)348 void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) {
349 // not need to check mSensors because this is is only called after successful poll()
350 if (connected) {
351 Info model;
352 mActivationCount.add(handle, model);
353 checkReturn(mSensors->activate(handle, 0 /* enabled */));
354 } else {
355 mActivationCount.removeItem(handle);
356 }
357 }
358
dump() const359 std::string SensorDevice::dump() const {
360 if (mSensors == nullptr) return "HAL not initialized\n";
361
362 String8 result;
363 result.appendFormat("Total %zu h/w sensors, %zu running:\n",
364 mSensorList.size(), mActivationCount.size());
365
366 Mutex::Autolock _l(mLock);
367 for (const auto & s : mSensorList) {
368 int32_t handle = s.handle;
369 const Info& info = mActivationCount.valueFor(handle);
370 if (info.numActiveClients() == 0) continue;
371
372 result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size());
373
374 result.append("sampling_period(ms) = {");
375 for (size_t j = 0; j < info.batchParams.size(); j++) {
376 const BatchParams& params = info.batchParams[j];
377 result.appendFormat("%.1f%s", params.mTSample / 1e6f,
378 j < info.batchParams.size() - 1 ? ", " : "");
379 }
380 result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f);
381
382 result.append("batching_period(ms) = {");
383 for (size_t j = 0; j < info.batchParams.size(); j++) {
384 const BatchParams& params = info.batchParams[j];
385 result.appendFormat("%.1f%s", params.mTBatch / 1e6f,
386 j < info.batchParams.size() - 1 ? ", " : "");
387 }
388 result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f);
389 }
390
391 return result.string();
392 }
393
getSensorList(sensor_t const ** list)394 ssize_t SensorDevice::getSensorList(sensor_t const** list) {
395 *list = &mSensorList[0];
396
397 return mSensorList.size();
398 }
399
initCheck() const400 status_t SensorDevice::initCheck() const {
401 return mSensors != nullptr ? NO_ERROR : NO_INIT;
402 }
403
poll(sensors_event_t * buffer,size_t count)404 ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
405 if (mSensors == nullptr) return NO_INIT;
406
407 ssize_t eventsRead = 0;
408 if (mSensors->supportsMessageQueues()) {
409 eventsRead = pollFmq(buffer, count);
410 } else if (mSensors->supportsPolling()) {
411 eventsRead = pollHal(buffer, count);
412 } else {
413 ALOGE("Must support polling or FMQ");
414 eventsRead = -1;
415 }
416 return eventsRead;
417 }
418
pollHal(sensors_event_t * buffer,size_t count)419 ssize_t SensorDevice::pollHal(sensors_event_t* buffer, size_t count) {
420 ssize_t err;
421 int numHidlTransportErrors = 0;
422 bool hidlTransportError = false;
423
424 do {
425 auto ret = mSensors->poll(
426 count,
427 [&](auto result,
428 const auto &events,
429 const auto &dynamicSensorsAdded) {
430 if (result == Result::OK) {
431 convertToSensorEvents(events, dynamicSensorsAdded, buffer);
432 err = (ssize_t)events.size();
433 } else {
434 err = statusFromResult(result);
435 }
436 });
437
438 if (ret.isOk()) {
439 hidlTransportError = false;
440 } else {
441 hidlTransportError = true;
442 numHidlTransportErrors++;
443 if (numHidlTransportErrors > 50) {
444 // Log error and bail
445 ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
446 handleHidlDeath(ret.description());
447 } else {
448 std::this_thread::sleep_for(std::chrono::milliseconds(10));
449 }
450 }
451 } while (hidlTransportError);
452
453 if(numHidlTransportErrors > 0) {
454 ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
455 HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors);
456 mHidlTransportErrors.add(errLog);
457 mTotalHidlTransportErrors++;
458 }
459
460 return err;
461 }
462
pollFmq(sensors_event_t * buffer,size_t maxNumEventsToRead)463 ssize_t SensorDevice::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) {
464 ssize_t eventsRead = 0;
465 size_t availableEvents = mEventQueue->availableToRead();
466
467 if (availableEvents == 0) {
468 uint32_t eventFlagState = 0;
469
470 // Wait for events to become available. This is necessary so that the Event FMQ's read() is
471 // able to be called with the correct number of events to read. If the specified number of
472 // events is not available, then read() would return no events, possibly introducing
473 // additional latency in delivering events to applications.
474 mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) |
475 asBaseType(INTERNAL_WAKE), &eventFlagState);
476 availableEvents = mEventQueue->availableToRead();
477
478 if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
479 ALOGD("Event FMQ internal wake, returning from poll with no events");
480 return DEAD_OBJECT;
481 }
482 }
483
484 size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
485 if (eventsToRead > 0) {
486 if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
487 // Notify the Sensors HAL that sensor events have been read. This is required to support
488 // the use of writeBlocking by the Sensors HAL.
489 mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ));
490
491 for (size_t i = 0; i < eventsToRead; i++) {
492 convertToSensorEvent(mEventBuffer[i], &buffer[i]);
493 }
494 eventsRead = eventsToRead;
495 } else {
496 ALOGW("Failed to read %zu events, currently %zu events available",
497 eventsToRead, availableEvents);
498 }
499 }
500
501 return eventsRead;
502 }
503
onDynamicSensorsConnected(const hidl_vec<SensorInfo> & dynamicSensorsAdded)504 Return<void> SensorDevice::onDynamicSensorsConnected(
505 const hidl_vec<SensorInfo> &dynamicSensorsAdded) {
506 // Allocate a sensor_t structure for each dynamic sensor added and insert
507 // it into the dictionary of connected dynamic sensors keyed by handle.
508 for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) {
509 const SensorInfo &info = dynamicSensorsAdded[i];
510
511 auto it = mConnectedDynamicSensors.find(info.sensorHandle);
512 CHECK(it == mConnectedDynamicSensors.end());
513
514 sensor_t *sensor = new sensor_t();
515 convertToSensor(info, sensor);
516
517 mConnectedDynamicSensors.insert(
518 std::make_pair(sensor->handle, sensor));
519 }
520
521 return Return<void>();
522 }
523
onDynamicSensorsDisconnected(const hidl_vec<int32_t> & dynamicSensorHandlesRemoved)524 Return<void> SensorDevice::onDynamicSensorsDisconnected(
525 const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) {
526 (void) dynamicSensorHandlesRemoved;
527 // TODO: Currently dynamic sensors do not seem to be removed
528 return Return<void>();
529 }
530
writeWakeLockHandled(uint32_t count)531 void SensorDevice::writeWakeLockHandled(uint32_t count) {
532 if (mSensors != nullptr && mSensors->supportsMessageQueues()) {
533 if (mWakeLockQueue->write(&count)) {
534 mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN));
535 } else {
536 ALOGW("Failed to write wake lock handled");
537 }
538 }
539 }
540
autoDisable(void * ident,int handle)541 void SensorDevice::autoDisable(void *ident, int handle) {
542 Mutex::Autolock _l(mLock);
543 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
544 if (activationIndex < 0) {
545 ALOGW("Handle %d cannot be found in activation record", handle);
546 return;
547 }
548 Info& info(mActivationCount.editValueAt(activationIndex));
549 info.removeBatchParamsForIdent(ident);
550 if (info.numActiveClients() == 0) {
551 info.isActive = false;
552 }
553 }
554
activate(void * ident,int handle,int enabled)555 status_t SensorDevice::activate(void* ident, int handle, int enabled) {
556 if (mSensors == nullptr) return NO_INIT;
557
558 Mutex::Autolock _l(mLock);
559 return activateLocked(ident, handle, enabled);
560 }
561
activateLocked(void * ident,int handle,int enabled)562 status_t SensorDevice::activateLocked(void* ident, int handle, int enabled) {
563 bool actuateHardware = false;
564
565 status_t err(NO_ERROR);
566
567 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
568 if (activationIndex < 0) {
569 ALOGW("Handle %d cannot be found in activation record", handle);
570 return BAD_VALUE;
571 }
572 Info& info(mActivationCount.editValueAt(activationIndex));
573
574 ALOGD_IF(DEBUG_CONNECTIONS,
575 "SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu",
576 ident, handle, enabled, info.batchParams.size());
577
578 if (enabled) {
579 ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident));
580
581 if (isClientDisabledLocked(ident)) {
582 ALOGE("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d",
583 ident, handle);
584 return INVALID_OPERATION;
585 }
586
587 if (info.batchParams.indexOfKey(ident) >= 0) {
588 if (info.numActiveClients() > 0 && !info.isActive) {
589 actuateHardware = true;
590 }
591 } else {
592 // Log error. Every activate call should be preceded by a batch() call.
593 ALOGE("\t >>>ERROR: activate called without batch");
594 }
595 } else {
596 ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident));
597
598 // If a connected dynamic sensor is deactivated, remove it from the
599 // dictionary.
600 auto it = mConnectedDynamicSensors.find(handle);
601 if (it != mConnectedDynamicSensors.end()) {
602 delete it->second;
603 mConnectedDynamicSensors.erase(it);
604 }
605
606 if (info.removeBatchParamsForIdent(ident) >= 0) {
607 if (info.numActiveClients() == 0) {
608 // This is the last connection, we need to de-activate the underlying h/w sensor.
609 actuateHardware = true;
610 } else {
611 // Call batch for this sensor with the previously calculated best effort
612 // batch_rate and timeout. One of the apps has unregistered for sensor
613 // events, and the best effort batch parameters might have changed.
614 ALOGD_IF(DEBUG_CONNECTIONS,
615 "\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64, handle,
616 info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
617 checkReturn(mSensors->batch(
618 handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
619 }
620 } else {
621 // sensor wasn't enabled for this ident
622 }
623
624 if (isClientDisabledLocked(ident)) {
625 return NO_ERROR;
626 }
627 }
628
629 if (actuateHardware) {
630 ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle,
631 enabled);
632 err = checkReturnAndGetStatus(mSensors->activate(handle, enabled));
633 ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle,
634 strerror(-err));
635
636 if (err != NO_ERROR && enabled) {
637 // Failure when enabling the sensor. Clean up on failure.
638 info.removeBatchParamsForIdent(ident);
639 } else {
640 // Update the isActive flag if there is no error. If there is an error when disabling a
641 // sensor, still set the flag to false since the batch parameters have already been
642 // removed. This ensures that everything remains in-sync.
643 info.isActive = enabled;
644 }
645 }
646
647 return err;
648 }
649
batch(void * ident,int handle,int flags,int64_t samplingPeriodNs,int64_t maxBatchReportLatencyNs)650 status_t SensorDevice::batch(
651 void* ident,
652 int handle,
653 int flags,
654 int64_t samplingPeriodNs,
655 int64_t maxBatchReportLatencyNs) {
656 if (mSensors == nullptr) return NO_INIT;
657
658 if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) {
659 samplingPeriodNs = MINIMUM_EVENTS_PERIOD;
660 }
661 if (maxBatchReportLatencyNs < 0) {
662 maxBatchReportLatencyNs = 0;
663 }
664
665 ALOGD_IF(DEBUG_CONNECTIONS,
666 "SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64 " timeout=%" PRId64,
667 ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
668
669 Mutex::Autolock _l(mLock);
670 return batchLocked(ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
671 }
672
batchLocked(void * ident,int handle,int flags,int64_t samplingPeriodNs,int64_t maxBatchReportLatencyNs)673 status_t SensorDevice::batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs,
674 int64_t maxBatchReportLatencyNs) {
675 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
676 if (activationIndex < 0) {
677 ALOGW("Handle %d cannot be found in activation record", handle);
678 return BAD_VALUE;
679 }
680 Info& info(mActivationCount.editValueAt(activationIndex));
681
682 if (info.batchParams.indexOfKey(ident) < 0) {
683 BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs);
684 info.batchParams.add(ident, params);
685 } else {
686 // A batch has already been called with this ident. Update the batch parameters.
687 info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs);
688 }
689
690 BatchParams prevBestBatchParams = info.bestBatchParams;
691 // Find the minimum of all timeouts and batch_rates for this sensor.
692 info.selectBatchParams();
693
694 ALOGD_IF(DEBUG_CONNECTIONS,
695 "\t>>> curr_period=%" PRId64 " min_period=%" PRId64
696 " curr_timeout=%" PRId64 " min_timeout=%" PRId64,
697 prevBestBatchParams.mTSample, info.bestBatchParams.mTSample,
698 prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch);
699
700 status_t err(NO_ERROR);
701 // If the min period or min timeout has changed since the last batch call, call batch.
702 if (prevBestBatchParams != info.bestBatchParams) {
703 ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle,
704 info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
705 err = checkReturnAndGetStatus(mSensors->batch(
706 handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
707 if (err != NO_ERROR) {
708 ALOGE("sensor batch failed %p 0x%08x %" PRId64 " %" PRId64 " err=%s",
709 mSensors.get(), handle, info.bestBatchParams.mTSample,
710 info.bestBatchParams.mTBatch, strerror(-err));
711 info.removeBatchParamsForIdent(ident);
712 }
713 }
714 return err;
715 }
716
setDelay(void * ident,int handle,int64_t samplingPeriodNs)717 status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) {
718 return batch(ident, handle, 0, samplingPeriodNs, 0);
719 }
720
getHalDeviceVersion() const721 int SensorDevice::getHalDeviceVersion() const {
722 if (mSensors == nullptr) return -1;
723 return SENSORS_DEVICE_API_VERSION_1_4;
724 }
725
flush(void * ident,int handle)726 status_t SensorDevice::flush(void* ident, int handle) {
727 if (mSensors == nullptr) return NO_INIT;
728 if (isClientDisabled(ident)) return INVALID_OPERATION;
729 ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle);
730 return checkReturnAndGetStatus(mSensors->flush(handle));
731 }
732
isClientDisabled(void * ident)733 bool SensorDevice::isClientDisabled(void* ident) {
734 Mutex::Autolock _l(mLock);
735 return isClientDisabledLocked(ident);
736 }
737
isClientDisabledLocked(void * ident)738 bool SensorDevice::isClientDisabledLocked(void* ident) {
739 return mDisabledClients.indexOf(ident) >= 0;
740 }
741
isSensorActive(int handle) const742 bool SensorDevice::isSensorActive(int handle) const {
743 Mutex::Autolock _l(mLock);
744 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
745 if (activationIndex < 0) {
746 return false;
747 }
748 return mActivationCount.valueAt(activationIndex).numActiveClients() > 0;
749 }
750
enableAllSensors()751 void SensorDevice::enableAllSensors() {
752 if (mSensors == nullptr) return;
753 Mutex::Autolock _l(mLock);
754 mDisabledClients.clear();
755 ALOGI("cleared mDisabledClients");
756 for (size_t i = 0; i< mActivationCount.size(); ++i) {
757 Info& info = mActivationCount.editValueAt(i);
758 if (info.batchParams.isEmpty()) continue;
759 info.selectBatchParams();
760 const int sensor_handle = mActivationCount.keyAt(i);
761 ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ",
762 sensor_handle);
763 status_t err = checkReturnAndGetStatus(mSensors->batch(
764 sensor_handle,
765 info.bestBatchParams.mTSample,
766 info.bestBatchParams.mTBatch));
767 ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err));
768
769 if (err == NO_ERROR) {
770 err = checkReturnAndGetStatus(mSensors->activate(sensor_handle, 1 /* enabled */));
771 ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err));
772 }
773
774 if (err == NO_ERROR) {
775 info.isActive = true;
776 }
777 }
778 }
779
disableAllSensors()780 void SensorDevice::disableAllSensors() {
781 if (mSensors == nullptr) return;
782 Mutex::Autolock _l(mLock);
783 for (size_t i = 0; i< mActivationCount.size(); ++i) {
784 Info& info = mActivationCount.editValueAt(i);
785 // Check if this sensor has been activated previously and disable it.
786 if (info.batchParams.size() > 0) {
787 const int sensor_handle = mActivationCount.keyAt(i);
788 ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ",
789 sensor_handle);
790 checkReturn(mSensors->activate(sensor_handle, 0 /* enabled */));
791
792 // Add all the connections that were registered for this sensor to the disabled
793 // clients list.
794 for (size_t j = 0; j < info.batchParams.size(); ++j) {
795 mDisabledClients.add(info.batchParams.keyAt(j));
796 ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j));
797 }
798
799 info.isActive = false;
800 }
801 }
802 }
803
injectSensorData(const sensors_event_t * injected_sensor_event)804 status_t SensorDevice::injectSensorData(
805 const sensors_event_t *injected_sensor_event) {
806 if (mSensors == nullptr) return NO_INIT;
807 ALOGD_IF(DEBUG_CONNECTIONS,
808 "sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f",
809 injected_sensor_event->sensor,
810 injected_sensor_event->timestamp, injected_sensor_event->data[0],
811 injected_sensor_event->data[1], injected_sensor_event->data[2],
812 injected_sensor_event->data[3], injected_sensor_event->data[4],
813 injected_sensor_event->data[5]);
814
815 Event ev;
816 convertFromSensorEvent(*injected_sensor_event, &ev);
817
818 return checkReturnAndGetStatus(mSensors->injectSensorData(ev));
819 }
820
setMode(uint32_t mode)821 status_t SensorDevice::setMode(uint32_t mode) {
822 if (mSensors == nullptr) return NO_INIT;
823 return checkReturnAndGetStatus(mSensors->setOperationMode(
824 static_cast<hardware::sensors::V1_0::OperationMode>(mode)));
825 }
826
registerDirectChannel(const sensors_direct_mem_t * memory)827 int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) {
828 if (mSensors == nullptr) return NO_INIT;
829 Mutex::Autolock _l(mLock);
830
831 SharedMemType type;
832 switch (memory->type) {
833 case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
834 type = SharedMemType::ASHMEM;
835 break;
836 case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
837 type = SharedMemType::GRALLOC;
838 break;
839 default:
840 return BAD_VALUE;
841 }
842
843 SharedMemFormat format;
844 if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
845 return BAD_VALUE;
846 }
847 format = SharedMemFormat::SENSORS_EVENT;
848
849 SharedMemInfo mem = {
850 .type = type,
851 .format = format,
852 .size = static_cast<uint32_t>(memory->size),
853 .memoryHandle = memory->handle,
854 };
855
856 int32_t ret;
857 checkReturn(mSensors->registerDirectChannel(mem,
858 [&ret](auto result, auto channelHandle) {
859 if (result == Result::OK) {
860 ret = channelHandle;
861 } else {
862 ret = statusFromResult(result);
863 }
864 }));
865 return ret;
866 }
867
unregisterDirectChannel(int32_t channelHandle)868 void SensorDevice::unregisterDirectChannel(int32_t channelHandle) {
869 if (mSensors == nullptr) return;
870 Mutex::Autolock _l(mLock);
871 checkReturn(mSensors->unregisterDirectChannel(channelHandle));
872 }
873
configureDirectChannel(int32_t sensorHandle,int32_t channelHandle,const struct sensors_direct_cfg_t * config)874 int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle,
875 int32_t channelHandle, const struct sensors_direct_cfg_t *config) {
876 if (mSensors == nullptr) return NO_INIT;
877 Mutex::Autolock _l(mLock);
878
879 RateLevel rate;
880 switch(config->rate_level) {
881 case SENSOR_DIRECT_RATE_STOP:
882 rate = RateLevel::STOP;
883 break;
884 case SENSOR_DIRECT_RATE_NORMAL:
885 rate = RateLevel::NORMAL;
886 break;
887 case SENSOR_DIRECT_RATE_FAST:
888 rate = RateLevel::FAST;
889 break;
890 case SENSOR_DIRECT_RATE_VERY_FAST:
891 rate = RateLevel::VERY_FAST;
892 break;
893 default:
894 return BAD_VALUE;
895 }
896
897 int32_t ret;
898 checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
899 [&ret, rate] (auto result, auto token) {
900 if (rate == RateLevel::STOP) {
901 ret = statusFromResult(result);
902 } else {
903 if (result == Result::OK) {
904 ret = token;
905 } else {
906 ret = statusFromResult(result);
907 }
908 }
909 }));
910
911 return ret;
912 }
913
914 // ---------------------------------------------------------------------------
915
numActiveClients() const916 int SensorDevice::Info::numActiveClients() const {
917 SensorDevice& device(SensorDevice::getInstance());
918 int num = 0;
919 for (size_t i = 0; i < batchParams.size(); ++i) {
920 if (!device.isClientDisabledLocked(batchParams.keyAt(i))) {
921 ++num;
922 }
923 }
924 return num;
925 }
926
setBatchParamsForIdent(void * ident,int,int64_t samplingPeriodNs,int64_t maxBatchReportLatencyNs)927 status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int,
928 int64_t samplingPeriodNs,
929 int64_t maxBatchReportLatencyNs) {
930 ssize_t index = batchParams.indexOfKey(ident);
931 if (index < 0) {
932 ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64
933 " timeout=%" PRId64 ") failed (%s)",
934 ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index));
935 return BAD_INDEX;
936 }
937 BatchParams& params = batchParams.editValueAt(index);
938 params.mTSample = samplingPeriodNs;
939 params.mTBatch = maxBatchReportLatencyNs;
940 return NO_ERROR;
941 }
942
selectBatchParams()943 void SensorDevice::Info::selectBatchParams() {
944 BatchParams bestParams; // default to max Tsample and max Tbatch
945 SensorDevice& device(SensorDevice::getInstance());
946
947 for (size_t i = 0; i < batchParams.size(); ++i) {
948 if (device.isClientDisabledLocked(batchParams.keyAt(i))) {
949 continue;
950 }
951 bestParams.merge(batchParams[i]);
952 }
953 // if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly.
954 if (bestParams.mTBatch <= bestParams.mTSample) {
955 bestParams.mTBatch = 0;
956 }
957 bestBatchParams = bestParams;
958 }
959
removeBatchParamsForIdent(void * ident)960 ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) {
961 ssize_t idx = batchParams.removeItem(ident);
962 if (idx >= 0) {
963 selectBatchParams();
964 }
965 return idx;
966 }
967
notifyConnectionDestroyed(void * ident)968 void SensorDevice::notifyConnectionDestroyed(void* ident) {
969 Mutex::Autolock _l(mLock);
970 mDisabledClients.remove(ident);
971 }
972
isDirectReportSupported() const973 bool SensorDevice::isDirectReportSupported() const {
974 return mIsDirectReportSupported;
975 }
976
convertToSensorEvent(const Event & src,sensors_event_t * dst)977 void SensorDevice::convertToSensorEvent(
978 const Event &src, sensors_event_t *dst) {
979 ::android::hardware::sensors::V1_0::implementation::convertToSensorEvent(
980 src, dst);
981
982 if (src.sensorType == SensorType::DYNAMIC_SENSOR_META) {
983 const DynamicSensorInfo &dyn = src.u.dynamic;
984
985 dst->dynamic_sensor_meta.connected = dyn.connected;
986 dst->dynamic_sensor_meta.handle = dyn.sensorHandle;
987 if (dyn.connected) {
988 auto it = mConnectedDynamicSensors.find(dyn.sensorHandle);
989 CHECK(it != mConnectedDynamicSensors.end());
990
991 dst->dynamic_sensor_meta.sensor = it->second;
992
993 memcpy(dst->dynamic_sensor_meta.uuid,
994 dyn.uuid.data(),
995 sizeof(dst->dynamic_sensor_meta.uuid));
996 }
997 }
998 }
999
convertToSensorEvents(const hidl_vec<Event> & src,const hidl_vec<SensorInfo> & dynamicSensorsAdded,sensors_event_t * dst)1000 void SensorDevice::convertToSensorEvents(
1001 const hidl_vec<Event> &src,
1002 const hidl_vec<SensorInfo> &dynamicSensorsAdded,
1003 sensors_event_t *dst) {
1004
1005 if (dynamicSensorsAdded.size() > 0) {
1006 onDynamicSensorsConnected(dynamicSensorsAdded);
1007 }
1008
1009 for (size_t i = 0; i < src.size(); ++i) {
1010 convertToSensorEvent(src[i], &dst[i]);
1011 }
1012 }
1013
handleHidlDeath(const std::string & detail)1014 void SensorDevice::handleHidlDeath(const std::string & detail) {
1015 if (!mSensors->supportsMessageQueues()) {
1016 // restart is the only option at present.
1017 LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
1018 } else {
1019 ALOGD("ISensors HAL died, death recipient will attempt reconnect");
1020 }
1021 }
1022
checkReturnAndGetStatus(const Return<Result> & ret)1023 status_t SensorDevice::checkReturnAndGetStatus(const Return<Result>& ret) {
1024 checkReturn(ret);
1025 return (!ret.isOk()) ? DEAD_OBJECT : statusFromResult(ret);
1026 }
1027
1028 // ---------------------------------------------------------------------------
1029 }; // namespace android
1030