1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fs_mgr.h"
18 
19 #include <ctype.h>
20 #include <dirent.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <inttypes.h>
24 #include <libgen.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <sys/ioctl.h>
29 #include <sys/mount.h>
30 #include <sys/stat.h>
31 #include <sys/swap.h>
32 #include <sys/types.h>
33 #include <sys/wait.h>
34 #include <time.h>
35 #include <unistd.h>
36 
37 #include <chrono>
38 #include <functional>
39 #include <map>
40 #include <memory>
41 #include <string>
42 #include <thread>
43 #include <utility>
44 #include <vector>
45 
46 #include <android-base/chrono_utils.h>
47 #include <android-base/file.h>
48 #include <android-base/properties.h>
49 #include <android-base/stringprintf.h>
50 #include <android-base/strings.h>
51 #include <android-base/unique_fd.h>
52 #include <cutils/android_filesystem_config.h>
53 #include <cutils/android_reboot.h>
54 #include <cutils/partition_utils.h>
55 #include <cutils/properties.h>
56 #include <ext4_utils/ext4.h>
57 #include <ext4_utils/ext4_sb.h>
58 #include <ext4_utils/ext4_utils.h>
59 #include <ext4_utils/wipe.h>
60 #include <fs_avb/fs_avb.h>
61 #include <fs_mgr/file_wait.h>
62 #include <fs_mgr_overlayfs.h>
63 #include <fscrypt/fscrypt.h>
64 #include <libdm/dm.h>
65 #include <libdm/loop_control.h>
66 #include <liblp/metadata_format.h>
67 #include <linux/fs.h>
68 #include <linux/loop.h>
69 #include <linux/magic.h>
70 #include <log/log_properties.h>
71 #include <logwrap/logwrap.h>
72 
73 #include "fs_mgr_priv.h"
74 
75 #define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
76 #define KEY_IN_FOOTER  "footer"
77 
78 #define E2FSCK_BIN      "/system/bin/e2fsck"
79 #define F2FS_FSCK_BIN   "/system/bin/fsck.f2fs"
80 #define MKSWAP_BIN      "/system/bin/mkswap"
81 #define TUNE2FS_BIN     "/system/bin/tune2fs"
82 #define RESIZE2FS_BIN "/system/bin/resize2fs"
83 
84 #define FSCK_LOG_FILE   "/dev/fscklogs/log"
85 
86 #define ZRAM_CONF_DEV   "/sys/block/zram0/disksize"
87 #define ZRAM_CONF_MCS   "/sys/block/zram0/max_comp_streams"
88 #define ZRAM_BACK_DEV   "/sys/block/zram0/backing_dev"
89 
90 #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"
91 #define SYSFS_EXT4_CASEFOLD "/sys/fs/ext4/features/casefold"
92 
93 // FIXME: this should be in system/extras
94 #define EXT4_FEATURE_COMPAT_STABLE_INODES 0x0800
95 
96 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
97 
98 using android::base::Basename;
99 using android::base::GetBoolProperty;
100 using android::base::GetUintProperty;
101 using android::base::Realpath;
102 using android::base::SetProperty;
103 using android::base::StartsWith;
104 using android::base::Timer;
105 using android::base::unique_fd;
106 using android::dm::DeviceMapper;
107 using android::dm::DmDeviceState;
108 using android::dm::DmTargetLinear;
109 using android::dm::LoopControl;
110 
111 // Realistically, this file should be part of the android::fs_mgr namespace;
112 using namespace android::fs_mgr;
113 
114 using namespace std::literals;
115 
116 // record fs stat
117 enum FsStatFlags {
118     FS_STAT_IS_EXT4 = 0x0001,
119     FS_STAT_NEW_IMAGE_VERSION = 0x0002,
120     FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
121     FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
122     FS_STAT_QUOTA_ENABLED = 0x0010,
123     FS_STAT_RO_MOUNT_FAILED = 0x0040,
124     FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
125     FS_STAT_FULL_MOUNT_FAILED = 0x0100,
126     FS_STAT_E2FSCK_FAILED = 0x0200,
127     FS_STAT_E2FSCK_FS_FIXED = 0x0400,
128     FS_STAT_INVALID_MAGIC = 0x0800,
129     FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
130     FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
131     FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
132     FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
133     FS_STAT_ENABLE_CASEFOLD_FAILED = 0x100000,
134     FS_STAT_ENABLE_METADATA_CSUM_FAILED = 0x200000,
135 };
136 
log_fs_stat(const std::string & blk_device,int fs_stat)137 static void log_fs_stat(const std::string& blk_device, int fs_stat) {
138     if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4
139     std::string msg =
140             android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
141     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC |
142                                                         O_APPEND | O_CREAT, 0664)));
143     if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
144         LWARNING << __FUNCTION__ << "() cannot log " << msg;
145     }
146 }
147 
is_extfs(const std::string & fs_type)148 static bool is_extfs(const std::string& fs_type) {
149     return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
150 }
151 
is_f2fs(const std::string & fs_type)152 static bool is_f2fs(const std::string& fs_type) {
153     return fs_type == "f2fs";
154 }
155 
realpath(const std::string & blk_device)156 static std::string realpath(const std::string& blk_device) {
157     std::string real_path;
158     if (!Realpath(blk_device, &real_path)) {
159         real_path = blk_device;
160     }
161     return real_path;
162 }
163 
should_force_check(int fs_stat)164 static bool should_force_check(int fs_stat) {
165     return fs_stat &
166            (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
167             FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
168             FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
169             FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
170 }
171 
check_fs(const std::string & blk_device,const std::string & fs_type,const std::string & target,int * fs_stat)172 static void check_fs(const std::string& blk_device, const std::string& fs_type,
173                      const std::string& target, int* fs_stat) {
174     int status;
175     int ret;
176     long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
177     auto tmpmnt_opts = "errors=remount-ro"s;
178     const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
179     const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};
180 
181     if (*fs_stat & FS_STAT_INVALID_MAGIC) {  // will fail, so do not try
182         return;
183     }
184 
185     Timer t;
186     /* Check for the types of filesystems we know how to check */
187     if (is_extfs(fs_type)) {
188         /*
189          * First try to mount and unmount the filesystem.  We do this because
190          * the kernel is more efficient than e2fsck in running the journal and
191          * processing orphaned inodes, and on at least one device with a
192          * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
193          * to do what the kernel does in about a second.
194          *
195          * After mounting and unmounting the filesystem, run e2fsck, and if an
196          * error is recorded in the filesystem superblock, e2fsck will do a full
197          * check.  Otherwise, it does nothing.  If the kernel cannot mount the
198          * filesytsem due to an error, e2fsck is still run to do a full check
199          * fix the filesystem.
200          */
201         if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) {  // already tried if full mount failed
202             errno = 0;
203             if (fs_type == "ext4") {
204                 // This option is only valid with ext4
205                 tmpmnt_opts += ",nomblk_io_submit";
206             }
207             ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
208                         tmpmnt_opts.c_str());
209             PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
210                   << ")=" << ret;
211             if (!ret) {
212                 bool umounted = false;
213                 int retry_count = 5;
214                 while (retry_count-- > 0) {
215                     umounted = umount(target.c_str()) == 0;
216                     if (umounted) {
217                         LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded";
218                         break;
219                     }
220                     PERROR << __FUNCTION__ << "(): umount(" << target << ") failed";
221                     if (retry_count) sleep(1);
222                 }
223                 if (!umounted) {
224                     // boot may fail but continue and leave it to later stage for now.
225                     PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
226                     *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
227                 }
228             } else {
229                 *fs_stat |= FS_STAT_RO_MOUNT_FAILED;
230             }
231         }
232 
233         /*
234          * Some system images do not have e2fsck for licensing reasons
235          * (e.g. recent SDK system images). Detect these and skip the check.
236          */
237         if (access(E2FSCK_BIN, X_OK)) {
238             LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
239                   << " (executable not in system image)";
240         } else {
241             LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
242             if (should_force_check(*fs_stat)) {
243                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_forced_argv), e2fsck_forced_argv,
244                                           &status, false, LOG_KLOG | LOG_FILE, false,
245                                           FSCK_LOG_FILE);
246             } else {
247                 ret = logwrap_fork_execvp(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, false,
248                                           LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
249             }
250 
251             if (ret < 0) {
252                 /* No need to check for error in fork, we can't really handle it now */
253                 LERROR << "Failed trying to run " << E2FSCK_BIN;
254                 *fs_stat |= FS_STAT_E2FSCK_FAILED;
255             } else if (status != 0) {
256                 LINFO << "e2fsck returned status 0x" << std::hex << status;
257                 *fs_stat |= FS_STAT_E2FSCK_FS_FIXED;
258             }
259         }
260     } else if (is_f2fs(fs_type)) {
261         const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN,     "-a", "-c", "10000", "--debug-cache",
262                                         blk_device.c_str()};
263         const char* f2fs_fsck_forced_argv[] = {
264                 F2FS_FSCK_BIN, "-f", "-c", "10000", "--debug-cache", blk_device.c_str()};
265 
266         if (should_force_check(*fs_stat)) {
267             LINFO << "Running " << F2FS_FSCK_BIN << " -f -c 10000 --debug-cache"
268                   << realpath(blk_device);
269             ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_forced_argv), f2fs_fsck_forced_argv,
270                                       &status, false, LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
271         } else {
272             LINFO << "Running " << F2FS_FSCK_BIN << " -a -c 10000 --debug-cache"
273                   << realpath(blk_device);
274             ret = logwrap_fork_execvp(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status, false,
275                                       LOG_KLOG | LOG_FILE, false, FSCK_LOG_FILE);
276         }
277         if (ret < 0) {
278             /* No need to check for error in fork, we can't really handle it now */
279             LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
280         }
281     }
282     android::base::SetProperty("ro.boottime.init.fsck." + Basename(target),
283                                std::to_string(t.duration().count()));
284     return;
285 }
286 
ext4_blocks_count(const struct ext4_super_block * es)287 static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
288     return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
289            le32_to_cpu(es->s_blocks_count_lo);
290 }
291 
ext4_r_blocks_count(const struct ext4_super_block * es)292 static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
293     return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
294            le32_to_cpu(es->s_r_blocks_count_lo);
295 }
296 
is_ext4_superblock_valid(const struct ext4_super_block * es)297 static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
298     if (es->s_magic != EXT4_SUPER_MAGIC) return false;
299     if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
300     if (EXT4_INODES_PER_GROUP(es) == 0) return false;
301     return true;
302 }
303 
304 static bool needs_block_encryption(const FstabEntry& entry);
305 static bool should_use_metadata_encryption(const FstabEntry& entry);
306 
307 // Read the primary superblock from an ext4 filesystem.  On failure return
308 // false.  If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
read_ext4_superblock(const std::string & blk_device,const FstabEntry & entry,struct ext4_super_block * sb,int * fs_stat)309 static bool read_ext4_superblock(const std::string& blk_device, const FstabEntry& entry,
310                                  struct ext4_super_block* sb, int* fs_stat) {
311     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
312 
313     if (fd < 0) {
314         PERROR << "Failed to open '" << blk_device << "'";
315         return false;
316     }
317 
318     if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
319         PERROR << "Can't read '" << blk_device << "' superblock";
320         return false;
321     }
322 
323     if (!is_ext4_superblock_valid(sb)) {
324         LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
325         // not a valid fs, tune2fs, fsck, and mount  will all fail.
326         *fs_stat |= FS_STAT_INVALID_MAGIC;
327 
328         bool encrypted = should_use_metadata_encryption(entry) || needs_block_encryption(entry);
329         if (entry.mount_point == "/data" &&
330             (!encrypted || android::base::StartsWith(blk_device, "/dev/block/dm-"))) {
331             // try backup superblock, if main superblock is corrupted
332             for (unsigned int blocksize = EXT4_MIN_BLOCK_SIZE; blocksize <= EXT4_MAX_BLOCK_SIZE;
333                  blocksize *= 2) {
334                 uint64_t superblock = blocksize * 8;
335                 if (blocksize == EXT4_MIN_BLOCK_SIZE) superblock++;
336 
337                 if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), superblock * blocksize)) !=
338                     sizeof(*sb)) {
339                     PERROR << "Can't read '" << blk_device << "' superblock";
340                     return false;
341                 }
342                 if (is_ext4_superblock_valid(sb) &&
343                     (1 << (10 + sb->s_log_block_size) == blocksize)) {
344                     *fs_stat &= ~FS_STAT_INVALID_MAGIC;
345                     break;
346                 }
347             }
348         }
349         if (*fs_stat & FS_STAT_INVALID_MAGIC) return false;
350     }
351     *fs_stat |= FS_STAT_IS_EXT4;
352     LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
353     if (sb->s_max_mnt_count == 0xffff) {  // -1 (int16) in ext2, but uint16 in ext4
354         *fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
355     }
356     return true;
357 }
358 
359 // exported silent version of the above that just answer the question is_ext4
fs_mgr_is_ext4(const std::string & blk_device)360 bool fs_mgr_is_ext4(const std::string& blk_device) {
361     android::base::ErrnoRestorer restore;
362     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
363     if (fd < 0) return false;
364     ext4_super_block sb;
365     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
366     if (!is_ext4_superblock_valid(&sb)) return false;
367     return true;
368 }
369 
370 // Some system images do not have tune2fs for licensing reasons.
371 // Detect these and skip running it.
tune2fs_available(void)372 static bool tune2fs_available(void) {
373     return access(TUNE2FS_BIN, X_OK) == 0;
374 }
375 
run_command(const char * argv[],int argc)376 static bool run_command(const char* argv[], int argc) {
377     int ret;
378 
379     ret = logwrap_fork_execvp(argc, argv, nullptr, false, LOG_KLOG, false, nullptr);
380     return ret == 0;
381 }
382 
383 // Enable/disable quota support on the filesystem if needed.
tune_quota(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)384 static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
385                        const struct ext4_super_block* sb, int* fs_stat) {
386     bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
387     bool want_quota = entry.fs_mgr_flags.quota;
388     bool want_projid = android::base::GetBoolProperty("external_storage.projid.enabled", false);
389 
390     if (has_quota == want_quota) {
391         return;
392     }
393 
394     if (!tune2fs_available()) {
395         LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
396                << " because " TUNE2FS_BIN " is missing";
397         return;
398     }
399 
400     const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};
401 
402     if (want_quota) {
403         LINFO << "Enabling quotas on " << blk_device;
404         argv[1] = "-Oquota";
405         // Once usr/grp unneeded, make just prjquota to save overhead
406         if (want_projid)
407             argv[2] = "-Qusrquota,grpquota,prjquota";
408         else
409             argv[2] = "-Qusrquota,grpquota";
410         *fs_stat |= FS_STAT_QUOTA_ENABLED;
411     } else {
412         LINFO << "Disabling quotas on " << blk_device;
413         argv[1] = "-O^quota";
414         argv[2] = "-Q^usrquota,^grpquota,^prjquota";
415     }
416 
417     if (!run_command(argv, ARRAY_SIZE(argv))) {
418         LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
419                << " quotas on " << blk_device;
420         *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
421     }
422 }
423 
424 // Set the number of reserved filesystem blocks if needed.
tune_reserved_size(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)425 static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
426                                const struct ext4_super_block* sb, int* fs_stat) {
427     if (entry.reserved_size == 0) {
428         return;
429     }
430 
431     // The size to reserve is given in the fstab, but we won't reserve more
432     // than 2% of the filesystem.
433     const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
434     uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);
435 
436     if (reserved_blocks > max_reserved_blocks) {
437         LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
438                  << "capping to " << max_reserved_blocks;
439         reserved_blocks = max_reserved_blocks;
440     }
441 
442     if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
443         return;
444     }
445 
446     if (!tune2fs_available()) {
447         LERROR << "Unable to set the number of reserved blocks on " << blk_device
448                << " because " TUNE2FS_BIN " is missing";
449         return;
450     }
451 
452     LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;
453 
454     auto reserved_blocks_str = std::to_string(reserved_blocks);
455     auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
456     const char* argv[] = {
457             TUNE2FS_BIN,       "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
458             blk_device.c_str()};
459     if (!run_command(argv, ARRAY_SIZE(argv))) {
460         LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
461                << blk_device;
462         *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
463     }
464 }
465 
466 // Enable file-based encryption if needed.
tune_encrypt(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)467 static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
468                          const struct ext4_super_block* sb, int* fs_stat) {
469     if (!entry.fs_mgr_flags.file_encryption) {
470         return;  // Nothing needs done.
471     }
472     std::vector<std::string> features_needed;
473     if ((sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) == 0) {
474         features_needed.emplace_back("encrypt");
475     }
476     android::fscrypt::EncryptionOptions options;
477     if (!android::fscrypt::ParseOptions(entry.encryption_options, &options)) {
478         LERROR << "Unable to parse encryption options on " << blk_device << ": "
479                << entry.encryption_options;
480         return;
481     }
482     if ((options.flags &
483          (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) != 0) {
484         // We can only use this policy on ext4 if the "stable_inodes" feature
485         // is set on the filesystem, otherwise shrinking will break encrypted files.
486         if ((sb->s_feature_compat & cpu_to_le32(EXT4_FEATURE_COMPAT_STABLE_INODES)) == 0) {
487             features_needed.emplace_back("stable_inodes");
488         }
489     }
490     if (features_needed.size() == 0) {
491         return;
492     }
493     if (!tune2fs_available()) {
494         LERROR << "Unable to enable ext4 encryption on " << blk_device
495                << " because " TUNE2FS_BIN " is missing";
496         return;
497     }
498 
499     auto flags = android::base::Join(features_needed, ',');
500     auto flag_arg = "-O"s + flags;
501     const char* argv[] = {TUNE2FS_BIN, flag_arg.c_str(), blk_device.c_str()};
502 
503     LINFO << "Enabling ext4 flags " << flags << " on " << blk_device;
504     if (!run_command(argv, ARRAY_SIZE(argv))) {
505         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
506                << "ext4 flags " << flags << " on " << blk_device;
507         *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
508     }
509 }
510 
511 // Enable fs-verity if needed.
tune_verity(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)512 static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
513                         const struct ext4_super_block* sb, int* fs_stat) {
514     bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
515     bool want_verity = entry.fs_mgr_flags.fs_verity;
516 
517     if (has_verity || !want_verity) {
518         return;
519     }
520 
521     std::string verity_support;
522     if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
523         LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
524         return;
525     }
526 
527     if (!(android::base::Trim(verity_support) == "supported")) {
528         LERROR << "Current ext4 verity not supported by kernel";
529         return;
530     }
531 
532     if (!tune2fs_available()) {
533         LERROR << "Unable to enable ext4 verity on " << blk_device
534                << " because " TUNE2FS_BIN " is missing";
535         return;
536     }
537 
538     LINFO << "Enabling ext4 verity on " << blk_device;
539 
540     const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
541     if (!run_command(argv, ARRAY_SIZE(argv))) {
542         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
543                << "ext4 verity on " << blk_device;
544         *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
545     }
546 }
547 
548 // Enable casefold if needed.
tune_casefold(const std::string & blk_device,const struct ext4_super_block * sb,int * fs_stat)549 static void tune_casefold(const std::string& blk_device, const struct ext4_super_block* sb,
550                           int* fs_stat) {
551     bool has_casefold = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_CASEFOLD)) != 0;
552     bool wants_casefold =
553             android::base::GetBoolProperty("external_storage.casefold.enabled", false);
554 
555     if (!wants_casefold || has_casefold) return;
556 
557     std::string casefold_support;
558     if (!android::base::ReadFileToString(SYSFS_EXT4_CASEFOLD, &casefold_support)) {
559         LERROR << "Failed to open " << SYSFS_EXT4_CASEFOLD;
560         return;
561     }
562 
563     if (!(android::base::Trim(casefold_support) == "supported")) {
564         LERROR << "Current ext4 casefolding not supported by kernel";
565         return;
566     }
567 
568     if (!tune2fs_available()) {
569         LERROR << "Unable to enable ext4 casefold on " << blk_device
570                << " because " TUNE2FS_BIN " is missing";
571         return;
572     }
573 
574     LINFO << "Enabling ext4 casefold on " << blk_device;
575 
576     const char* argv[] = {TUNE2FS_BIN, "-O", "casefold", "-E", "encoding=utf8", blk_device.c_str()};
577     if (!run_command(argv, ARRAY_SIZE(argv))) {
578         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
579                << "ext4 casefold on " << blk_device;
580         *fs_stat |= FS_STAT_ENABLE_CASEFOLD_FAILED;
581     }
582 }
583 
resize2fs_available(void)584 static bool resize2fs_available(void) {
585     return access(RESIZE2FS_BIN, X_OK) == 0;
586 }
587 
588 // Enable metadata_csum
tune_metadata_csum(const std::string & blk_device,const FstabEntry & entry,const struct ext4_super_block * sb,int * fs_stat)589 static void tune_metadata_csum(const std::string& blk_device, const FstabEntry& entry,
590                                const struct ext4_super_block* sb, int* fs_stat) {
591     bool has_meta_csum =
592             (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) != 0;
593     bool want_meta_csum = entry.fs_mgr_flags.ext_meta_csum;
594 
595     if (has_meta_csum || !want_meta_csum) return;
596 
597     if (!tune2fs_available()) {
598         LERROR << "Unable to enable metadata_csum on " << blk_device
599                << " because " TUNE2FS_BIN " is missing";
600         return;
601     }
602     if (!resize2fs_available()) {
603         LERROR << "Unable to enable metadata_csum on " << blk_device
604                << " because " RESIZE2FS_BIN " is missing";
605         return;
606     }
607 
608     LINFO << "Enabling ext4 metadata_csum on " << blk_device;
609 
610     // Must give `-T now` to prevent last_fsck_time from growing too large,
611     // otherwise, tune2fs won't enable metadata_csum.
612     const char* tune2fs_args[] = {TUNE2FS_BIN, "-O",        "metadata_csum,64bit,extent",
613                                   "-T",        "now", blk_device.c_str()};
614     const char* resize2fs_args[] = {RESIZE2FS_BIN, "-b", blk_device.c_str()};
615 
616     if (!run_command(tune2fs_args, ARRAY_SIZE(tune2fs_args))) {
617         LERROR << "Failed to run " TUNE2FS_BIN " to enable "
618                << "ext4 metadata_csum on " << blk_device;
619         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
620     } else if (!run_command(resize2fs_args, ARRAY_SIZE(resize2fs_args))) {
621         LERROR << "Failed to run " RESIZE2FS_BIN " to enable "
622                << "ext4 metadata_csum on " << blk_device;
623         *fs_stat |= FS_STAT_ENABLE_METADATA_CSUM_FAILED;
624     }
625 }
626 
627 // Read the primary superblock from an f2fs filesystem.  On failure return
628 // false.  If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
629 #define F2FS_BLKSIZE 4096
630 #define F2FS_SUPER_OFFSET 1024
read_f2fs_superblock(const std::string & blk_device,int * fs_stat)631 static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
632     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
633     __le32 sb1, sb2;
634 
635     if (fd < 0) {
636         PERROR << "Failed to open '" << blk_device << "'";
637         return false;
638     }
639 
640     if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
641         PERROR << "Can't read '" << blk_device << "' superblock1";
642         return false;
643     }
644     if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
645         sizeof(sb2)) {
646         PERROR << "Can't read '" << blk_device << "' superblock2";
647         return false;
648     }
649 
650     if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
651         LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
652         *fs_stat |= FS_STAT_INVALID_MAGIC;
653         return false;
654     }
655     return true;
656 }
657 
658 // exported silent version of the above that just answer the question is_f2fs
fs_mgr_is_f2fs(const std::string & blk_device)659 bool fs_mgr_is_f2fs(const std::string& blk_device) {
660     android::base::ErrnoRestorer restore;
661     android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
662     if (fd < 0) return false;
663     __le32 sb;
664     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
665         return false;
666     }
667     if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
668     if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
669         sizeof(sb)) {
670         return false;
671     }
672     return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
673 }
674 
675 //
676 // Prepare the filesystem on the given block device to be mounted.
677 //
678 // If the "check" option was given in the fstab record, or it seems that the
679 // filesystem was uncleanly shut down, we'll run fsck on the filesystem.
680 //
681 // If needed, we'll also enable (or disable) filesystem features as specified by
682 // the fstab record.
683 //
prepare_fs_for_mount(const std::string & blk_device,const FstabEntry & entry)684 static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry) {
685     int fs_stat = 0;
686 
687     if (is_extfs(entry.fs_type)) {
688         struct ext4_super_block sb;
689 
690         if (read_ext4_superblock(blk_device, entry, &sb, &fs_stat)) {
691             if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
692                 (sb.s_state & EXT4_VALID_FS) == 0) {
693                 LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
694                       << "state flags: 0x" << std::hex << sb.s_state << ", "
695                       << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
696                 fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
697             }
698 
699             // Note: quotas should be enabled before running fsck.
700             tune_quota(blk_device, entry, &sb, &fs_stat);
701         } else {
702             return fs_stat;
703         }
704     } else if (is_f2fs(entry.fs_type)) {
705         if (!read_f2fs_superblock(blk_device, &fs_stat)) {
706             return fs_stat;
707         }
708     }
709 
710     if (entry.fs_mgr_flags.check ||
711         (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
712         check_fs(blk_device, entry.fs_type, entry.mount_point, &fs_stat);
713     }
714 
715     if (is_extfs(entry.fs_type) &&
716         (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
717          entry.fs_mgr_flags.fs_verity || entry.fs_mgr_flags.ext_meta_csum)) {
718         struct ext4_super_block sb;
719 
720         if (read_ext4_superblock(blk_device, entry, &sb, &fs_stat)) {
721             tune_reserved_size(blk_device, entry, &sb, &fs_stat);
722             tune_encrypt(blk_device, entry, &sb, &fs_stat);
723             tune_verity(blk_device, entry, &sb, &fs_stat);
724             tune_casefold(blk_device, &sb, &fs_stat);
725             tune_metadata_csum(blk_device, entry, &sb, &fs_stat);
726         }
727     }
728 
729     return fs_stat;
730 }
731 
732 // Mark the given block device as read-only, using the BLKROSET ioctl.
fs_mgr_set_blk_ro(const std::string & blockdev,bool readonly)733 bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
734     unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
735     if (fd < 0) {
736         return false;
737     }
738 
739     int ON = readonly;
740     return ioctl(fd, BLKROSET, &ON) == 0;
741 }
742 
743 // Orange state means the device is unlocked, see the following link for details.
744 // https://source.android.com/security/verifiedboot/verified-boot#device_state
fs_mgr_is_device_unlocked()745 bool fs_mgr_is_device_unlocked() {
746     std::string verified_boot_state;
747     if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
748         return verified_boot_state == "orange";
749     }
750     return false;
751 }
752 
753 // __mount(): wrapper around the mount() system call which also
754 // sets the underlying block device to read-only if the mount is read-only.
755 // See "man 2 mount" for return values.
__mount(const std::string & source,const std::string & target,const FstabEntry & entry)756 static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) {
757     // We need this because sometimes we have legacy symlinks that are
758     // lingering around and need cleaning up.
759     struct stat info;
760     if (lstat(target.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
761         unlink(target.c_str());
762     }
763     mkdir(target.c_str(), 0755);
764     errno = 0;
765     unsigned long mountflags = entry.flags;
766     int ret = 0;
767     int save_errno = 0;
768     do {
769         if (save_errno == EAGAIN) {
770             PINFO << "Retrying mount (source=" << source << ",target=" << target
771                   << ",type=" << entry.fs_type << ")=" << ret << "(" << save_errno << ")";
772         }
773         ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
774                     entry.fs_options.c_str());
775         save_errno = errno;
776     } while (ret && save_errno == EAGAIN);
777     const char* target_missing = "";
778     const char* source_missing = "";
779     if (save_errno == ENOENT) {
780         if (access(target.c_str(), F_OK)) {
781             target_missing = "(missing)";
782         } else if (access(source.c_str(), F_OK)) {
783             source_missing = "(missing)";
784         }
785         errno = save_errno;
786     }
787     PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
788           << target_missing << ",type=" << entry.fs_type << ")=" << ret;
789     if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
790         fs_mgr_set_blk_ro(source);
791     }
792     errno = save_errno;
793     return ret;
794 }
795 
fs_match(const std::string & in1,const std::string & in2)796 static bool fs_match(const std::string& in1, const std::string& in2) {
797     if (in1.empty() || in2.empty()) {
798         return false;
799     }
800 
801     auto in1_end = in1.size() - 1;
802     while (in1_end > 0 && in1[in1_end] == '/') {
803         in1_end--;
804     }
805 
806     auto in2_end = in2.size() - 1;
807     while (in2_end > 0 && in2[in2_end] == '/') {
808         in2_end--;
809     }
810 
811     if (in1_end != in2_end) {
812         return false;
813     }
814 
815     for (size_t i = 0; i <= in1_end; ++i) {
816         if (in1[i] != in2[i]) {
817             return false;
818         }
819     }
820 
821     return true;
822 }
823 
824 // Tries to mount any of the consecutive fstab entries that match
825 // the mountpoint of the one given by fstab[start_idx].
826 //
827 // end_idx: On return, will be the last entry that was looked at.
828 // attempted_idx: On return, will indicate which fstab entry
829 //     succeeded. In case of failure, it will be the start_idx.
830 // Sets errno to match the 1st mount failure on failure.
mount_with_alternatives(const Fstab & fstab,int start_idx,int * end_idx,int * attempted_idx)831 static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx,
832                                     int* attempted_idx) {
833     unsigned long i;
834     int mount_errno = 0;
835     bool mounted = false;
836 
837     // Hunt down an fstab entry for the same mount point that might succeed.
838     for (i = start_idx;
839          // We required that fstab entries for the same mountpoint be consecutive.
840          i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
841         // Don't try to mount/encrypt the same mount point again.
842         // Deal with alternate entries for the same point which are required to be all following
843         // each other.
844         if (mounted) {
845             LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
846                    << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
847                    << fstab[*attempted_idx].fs_type;
848             continue;
849         }
850 
851         int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
852         if (fs_stat & FS_STAT_INVALID_MAGIC) {
853             LERROR << __FUNCTION__
854                    << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
855                    << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
856                    << "].fs_type=" << fstab[i].fs_type;
857             mount_errno = EINVAL;  // continue bootup for FDE
858             continue;
859         }
860 
861         int retry_count = 2;
862         while (retry_count-- > 0) {
863             if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) {
864                 *attempted_idx = i;
865                 mounted = true;
866                 if (i != start_idx) {
867                     LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
868                            << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
869                            << " instead of " << fstab[start_idx].fs_type;
870                 }
871                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
872                 mount_errno = 0;
873                 break;
874             } else {
875                 if (retry_count <= 0) break;  // run check_fs only once
876                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
877                 // back up the first errno for crypto decisions.
878                 if (mount_errno == 0) {
879                     mount_errno = errno;
880                 }
881                 // retry after fsck
882                 check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
883             }
884         }
885         log_fs_stat(fstab[i].blk_device, fs_stat);
886     }
887 
888     /* Adjust i for the case where it was still withing the recs[] */
889     if (i < fstab.size()) --i;
890 
891     *end_idx = i;
892     if (!mounted) {
893         *attempted_idx = start_idx;
894         errno = mount_errno;
895         return false;
896     }
897     return true;
898 }
899 
TranslateExtLabels(FstabEntry * entry)900 static bool TranslateExtLabels(FstabEntry* entry) {
901     if (!StartsWith(entry->blk_device, "LABEL=")) {
902         return true;
903     }
904 
905     std::string label = entry->blk_device.substr(6);
906     if (label.size() > 16) {
907         LERROR << "FS label is longer than allowed by filesystem";
908         return false;
909     }
910 
911     auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
912     if (!blockdir) {
913         LERROR << "couldn't open /dev/block";
914         return false;
915     }
916 
917     struct dirent* ent;
918     while ((ent = readdir(blockdir.get()))) {
919         if (ent->d_type != DT_BLK)
920             continue;
921 
922         unique_fd fd(TEMP_FAILURE_RETRY(
923                 openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
924         if (fd < 0) {
925             LERROR << "Cannot open block device /dev/block/" << ent->d_name;
926             return false;
927         }
928 
929         ext4_super_block super_block;
930         if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
931             TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
932                     sizeof(super_block)) {
933             // Probably a loopback device or something else without a readable superblock.
934             continue;
935         }
936 
937         if (super_block.s_magic != EXT4_SUPER_MAGIC) {
938             LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
939             continue;
940         }
941 
942         if (label == super_block.s_volume_name) {
943             std::string new_blk_device = "/dev/block/"s + ent->d_name;
944 
945             LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;
946 
947             entry->blk_device = new_blk_device;
948             return true;
949         }
950     }
951 
952     return false;
953 }
954 
needs_block_encryption(const FstabEntry & entry)955 static bool needs_block_encryption(const FstabEntry& entry) {
956     if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable())
957         return true;
958     if (entry.fs_mgr_flags.force_crypt) return true;
959     if (entry.fs_mgr_flags.crypt) {
960         // Check for existence of convert_fde breadcrumb file.
961         auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde";
962         if (access(convert_fde_name.c_str(), F_OK) == 0) return true;
963     }
964     if (entry.fs_mgr_flags.force_fde_or_fbe) {
965         // Check for absence of convert_fbe breadcrumb file.
966         auto convert_fbe_name = entry.mount_point + "/convert_fbe";
967         if (access(convert_fbe_name.c_str(), F_OK) != 0) return true;
968     }
969     return false;
970 }
971 
should_use_metadata_encryption(const FstabEntry & entry)972 static bool should_use_metadata_encryption(const FstabEntry& entry) {
973     return !entry.metadata_key_dir.empty() &&
974            (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe);
975 }
976 
977 // Check to see if a mountable volume has encryption requirements
handle_encryptable(const FstabEntry & entry)978 static int handle_encryptable(const FstabEntry& entry) {
979     // If this is block encryptable, need to trigger encryption.
980     if (needs_block_encryption(entry)) {
981         if (umount(entry.mount_point.c_str()) == 0) {
982             return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION;
983         } else {
984             PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted";
985             return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
986         }
987     } else if (should_use_metadata_encryption(entry)) {
988         if (umount(entry.mount_point.c_str()) == 0) {
989             return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
990         } else {
991             PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
992             return FS_MGR_MNTALL_FAIL;
993         }
994     } else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) {
995         LINFO << entry.mount_point << " is file encrypted";
996         return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
997     } else if (entry.is_encryptable()) {
998         return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
999     } else {
1000         return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1001     }
1002 }
1003 
call_vdc(const std::vector<std::string> & args,int * ret)1004 static bool call_vdc(const std::vector<std::string>& args, int* ret) {
1005     std::vector<char const*> argv;
1006     argv.emplace_back("/system/bin/vdc");
1007     for (auto& arg : args) {
1008         argv.emplace_back(arg.c_str());
1009     }
1010     LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
1011     int err = logwrap_fork_execvp(argv.size(), argv.data(), ret, false, LOG_ALOG, false, nullptr);
1012     if (err != 0) {
1013         LOG(ERROR) << "vdc call failed with error code: " << err;
1014         return false;
1015     }
1016     LOG(DEBUG) << "vdc finished successfully";
1017     if (ret != nullptr) {
1018         *ret = WEXITSTATUS(*ret);
1019     }
1020     return true;
1021 }
1022 
fs_mgr_update_logical_partition(FstabEntry * entry)1023 bool fs_mgr_update_logical_partition(FstabEntry* entry) {
1024     // Logical partitions are specified with a named partition rather than a
1025     // block device, so if the block device is a path, then it has already
1026     // been updated.
1027     if (entry->blk_device[0] == '/') {
1028         return true;
1029     }
1030 
1031     DeviceMapper& dm = DeviceMapper::Instance();
1032     std::string device_name;
1033     if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
1034         return false;
1035     }
1036 
1037     entry->blk_device = device_name;
1038     return true;
1039 }
1040 
SupportsCheckpoint(FstabEntry * entry)1041 static bool SupportsCheckpoint(FstabEntry* entry) {
1042     return entry->fs_mgr_flags.checkpoint_blk || entry->fs_mgr_flags.checkpoint_fs;
1043 }
1044 
1045 class CheckpointManager {
1046   public:
CheckpointManager(int needs_checkpoint=-1,bool metadata_encrypted=false)1047     CheckpointManager(int needs_checkpoint = -1, bool metadata_encrypted = false)
1048         : needs_checkpoint_(needs_checkpoint), metadata_encrypted_(metadata_encrypted) {}
1049 
NeedsCheckpoint()1050     bool NeedsCheckpoint() {
1051         if (needs_checkpoint_ != UNKNOWN) {
1052             return needs_checkpoint_ == YES;
1053         }
1054         if (!call_vdc({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
1055             LERROR << "Failed to find if checkpointing is needed. Assuming no.";
1056             needs_checkpoint_ = NO;
1057         }
1058         return needs_checkpoint_ == YES;
1059     }
1060 
Update(FstabEntry * entry,const std::string & block_device=std::string ())1061     bool Update(FstabEntry* entry, const std::string& block_device = std::string()) {
1062         if (!SupportsCheckpoint(entry)) {
1063             return true;
1064         }
1065 
1066         if (entry->fs_mgr_flags.checkpoint_blk && !metadata_encrypted_) {
1067             call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}, nullptr);
1068         }
1069 
1070         if (!NeedsCheckpoint()) {
1071             return true;
1072         }
1073 
1074         if (!UpdateCheckpointPartition(entry, block_device)) {
1075             LERROR << "Could not set up checkpoint partition, skipping!";
1076             return false;
1077         }
1078 
1079         return true;
1080     }
1081 
Revert(FstabEntry * entry)1082     bool Revert(FstabEntry* entry) {
1083         if (!SupportsCheckpoint(entry)) {
1084             return true;
1085         }
1086 
1087         if (device_map_.find(entry->blk_device) == device_map_.end()) {
1088             return true;
1089         }
1090 
1091         std::string bow_device = entry->blk_device;
1092         entry->blk_device = device_map_[bow_device];
1093         device_map_.erase(bow_device);
1094 
1095         DeviceMapper& dm = DeviceMapper::Instance();
1096         if (!dm.DeleteDevice("bow")) {
1097             PERROR << "Failed to remove bow device";
1098         }
1099 
1100         return true;
1101     }
1102 
1103   private:
UpdateCheckpointPartition(FstabEntry * entry,const std::string & block_device)1104     bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) {
1105         if (entry->fs_mgr_flags.checkpoint_fs) {
1106             if (is_f2fs(entry->fs_type)) {
1107                 entry->fs_options += ",checkpoint=disable";
1108             } else {
1109                 LERROR << entry->fs_type << " does not implement checkpoints.";
1110             }
1111         } else if (entry->fs_mgr_flags.checkpoint_blk) {
1112             auto actual_block_device = block_device.empty() ? entry->blk_device : block_device;
1113             if (fs_mgr_find_bow_device(actual_block_device).empty()) {
1114                 unique_fd fd(
1115                         TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
1116                 if (fd < 0) {
1117                     PERROR << "Cannot open device " << entry->blk_device;
1118                     return false;
1119                 }
1120 
1121                 uint64_t size = get_block_device_size(fd) / 512;
1122                 if (!size) {
1123                     PERROR << "Cannot get device size";
1124                     return false;
1125                 }
1126 
1127                 android::dm::DmTable table;
1128                 auto bowTarget =
1129                         std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device);
1130 
1131                 // dm-bow uses the first block as a log record, and relocates the real first block
1132                 // elsewhere. For metadata encrypted devices, dm-bow sits below dm-default-key, and
1133                 // for post Android Q devices dm-default-key uses a block size of 4096 always.
1134                 // So if dm-bow's block size, which by default is the block size of the underlying
1135                 // hardware, is less than dm-default-key's, blocks will get broken up and I/O will
1136                 // fail as it won't be data_unit_size aligned.
1137                 // However, since it is possible there is an already shipping non
1138                 // metadata-encrypted device with smaller blocks, we must not change this for
1139                 // devices shipped with Q or earlier unless they explicitly selected dm-default-key
1140                 // v2
1141                 constexpr unsigned int pre_gki_level = __ANDROID_API_Q__;
1142                 unsigned int options_format_version = android::base::GetUintProperty<unsigned int>(
1143                         "ro.crypto.dm_default_key.options_format.version",
1144                         (android::fscrypt::GetFirstApiLevel() <= pre_gki_level ? 1 : 2));
1145                 if (options_format_version > 1) {
1146                     bowTarget->SetBlockSize(4096);
1147                 }
1148 
1149                 if (!table.AddTarget(std::move(bowTarget))) {
1150                     LERROR << "Failed to add bow target";
1151                     return false;
1152                 }
1153 
1154                 DeviceMapper& dm = DeviceMapper::Instance();
1155                 if (!dm.CreateDevice("bow", table)) {
1156                     PERROR << "Failed to create bow device";
1157                     return false;
1158                 }
1159 
1160                 std::string name;
1161                 if (!dm.GetDmDevicePathByName("bow", &name)) {
1162                     PERROR << "Failed to get bow device name";
1163                     return false;
1164                 }
1165 
1166                 device_map_[name] = entry->blk_device;
1167                 entry->blk_device = name;
1168             }
1169         }
1170         return true;
1171     }
1172 
1173     enum { UNKNOWN = -1, NO = 0, YES = 1 };
1174     int needs_checkpoint_;
1175     bool metadata_encrypted_;
1176     std::map<std::string, std::string> device_map_;
1177 };
1178 
fs_mgr_find_bow_device(const std::string & block_device)1179 std::string fs_mgr_find_bow_device(const std::string& block_device) {
1180     if (block_device.substr(0, 5) != "/dev/") {
1181         LOG(ERROR) << "Expected block device, got " << block_device;
1182         return std::string();
1183     }
1184 
1185     std::string sys_dir = std::string("/sys/") + block_device.substr(5);
1186 
1187     for (;;) {
1188         std::string name;
1189         if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) {
1190             PLOG(ERROR) << block_device << " is not dm device";
1191             return std::string();
1192         }
1193 
1194         if (name == "bow\n") return sys_dir;
1195 
1196         std::string slaves = sys_dir + "/slaves";
1197         std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir);
1198         if (!directory) {
1199             PLOG(ERROR) << "Can't open slave directory " << slaves;
1200             return std::string();
1201         }
1202 
1203         int count = 0;
1204         for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) {
1205             if (entry->d_type != DT_LNK) continue;
1206 
1207             if (count == 1) {
1208                 LOG(ERROR) << "Too many slaves in " << slaves;
1209                 return std::string();
1210             }
1211 
1212             ++count;
1213             sys_dir = std::string("/sys/block/") + entry->d_name;
1214         }
1215 
1216         if (count != 1) {
1217             LOG(ERROR) << "No slave in " << slaves;
1218             return std::string();
1219         }
1220     }
1221 }
1222 
1223 static constexpr const char* kUserdataWrapperName = "userdata-wrapper";
1224 
WrapUserdata(FstabEntry * entry,dev_t dev,const std::string & block_device)1225 static void WrapUserdata(FstabEntry* entry, dev_t dev, const std::string& block_device) {
1226     DeviceMapper& dm = DeviceMapper::Instance();
1227     if (dm.GetState(kUserdataWrapperName) != DmDeviceState::INVALID) {
1228         // This will report failure for us. If we do fail to get the path,
1229         // we leave the device unwrapped.
1230         dm.GetDmDevicePathByName(kUserdataWrapperName, &entry->blk_device);
1231         return;
1232     }
1233 
1234     unique_fd fd(open(block_device.c_str(), O_RDONLY | O_CLOEXEC));
1235     if (fd < 0) {
1236         PLOG(ERROR) << "open failed: " << entry->blk_device;
1237         return;
1238     }
1239 
1240     auto dev_str = android::base::StringPrintf("%u:%u", major(dev), minor(dev));
1241     uint64_t sectors = get_block_device_size(fd) / 512;
1242 
1243     android::dm::DmTable table;
1244     table.Emplace<DmTargetLinear>(0, sectors, dev_str, 0);
1245 
1246     std::string dm_path;
1247     if (!dm.CreateDevice(kUserdataWrapperName, table, &dm_path, 20s)) {
1248         LOG(ERROR) << "Failed to create userdata wrapper device";
1249         return;
1250     }
1251     entry->blk_device = dm_path;
1252 }
1253 
1254 // When using Virtual A/B, partitions can be backed by /data and mapped with
1255 // device-mapper in first-stage init. This can happen when merging an OTA or
1256 // when using adb remount to house "scratch". In this case, /data cannot be
1257 // mounted directly off the userdata block device, and e2fsck will refuse to
1258 // scan it, because the kernel reports the block device as in-use.
1259 //
1260 // As a workaround, when mounting /data, we create a trivial dm-linear wrapper
1261 // if the underlying block device already has dependencies. Note that we make
1262 // an exception for metadata-encrypted devices, since dm-default-key is already
1263 // a wrapper.
WrapUserdataIfNeeded(FstabEntry * entry,const std::string & actual_block_device={})1264 static void WrapUserdataIfNeeded(FstabEntry* entry, const std::string& actual_block_device = {}) {
1265     const auto& block_device =
1266             actual_block_device.empty() ? entry->blk_device : actual_block_device;
1267     if (entry->mount_point != "/data" || !entry->metadata_key_dir.empty() ||
1268         android::base::StartsWith(block_device, "/dev/block/dm-")) {
1269         return;
1270     }
1271 
1272     struct stat st;
1273     if (stat(block_device.c_str(), &st) < 0) {
1274         PLOG(ERROR) << "stat failed: " << block_device;
1275         return;
1276     }
1277 
1278     std::string path = android::base::StringPrintf("/sys/dev/block/%u:%u/holders",
1279                                                    major(st.st_rdev), minor(st.st_rdev));
1280     std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(path.c_str()), closedir);
1281     if (!dir) {
1282         PLOG(ERROR) << "opendir failed: " << path;
1283         return;
1284     }
1285 
1286     struct dirent* d;
1287     bool has_holders = false;
1288     while ((d = readdir(dir.get())) != nullptr) {
1289         if (strcmp(d->d_name, ".") != 0 && strcmp(d->d_name, "..") != 0) {
1290             has_holders = true;
1291             break;
1292         }
1293     }
1294 
1295     if (has_holders) {
1296         WrapUserdata(entry, st.st_rdev, block_device);
1297     }
1298 }
1299 
IsMountPointMounted(const std::string & mount_point)1300 static bool IsMountPointMounted(const std::string& mount_point) {
1301     // Check if this is already mounted.
1302     Fstab fstab;
1303     if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
1304         return false;
1305     }
1306     return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
1307 }
1308 
1309 // When multiple fstab records share the same mount_point, it will try to mount each
1310 // one in turn, and ignore any duplicates after a first successful mount.
1311 // Returns -1 on error, and  FS_MGR_MNTALL_* otherwise.
fs_mgr_mount_all(Fstab * fstab,int mount_mode)1312 int fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
1313     int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
1314     int error_count = 0;
1315     CheckpointManager checkpoint_manager;
1316     AvbUniquePtr avb_handle(nullptr);
1317 
1318     if (fstab->empty()) {
1319         return FS_MGR_MNTALL_FAIL;
1320     }
1321 
1322     // Keep i int to prevent unsigned integer overflow from (i = top_idx - 1),
1323     // where top_idx is 0. It will give SIGABRT
1324     for (int i = 0; i < static_cast<int>(fstab->size()); i++) {
1325         auto& current_entry = (*fstab)[i];
1326 
1327         // If a filesystem should have been mounted in the first stage, we
1328         // ignore it here. With one exception, if the filesystem is
1329         // formattable, then it can only be formatted in the second stage,
1330         // so we allow it to mount here.
1331         if (current_entry.fs_mgr_flags.first_stage_mount &&
1332             (!current_entry.fs_mgr_flags.formattable ||
1333              IsMountPointMounted(current_entry.mount_point))) {
1334             continue;
1335         }
1336 
1337         // Don't mount entries that are managed by vold or not for the mount mode.
1338         if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
1339             ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
1340             ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
1341             continue;
1342         }
1343 
1344         // Skip swap and raw partition entries such as boot, recovery, etc.
1345         if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
1346             current_entry.fs_type == "mtd") {
1347             continue;
1348         }
1349 
1350         // Skip mounting the root partition, as it will already have been mounted.
1351         if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
1352             if ((current_entry.flags & MS_RDONLY) != 0) {
1353                 fs_mgr_set_blk_ro(current_entry.blk_device);
1354             }
1355             continue;
1356         }
1357 
1358         // Terrible hack to make it possible to remount /data.
1359         // TODO: refact fs_mgr_mount_all and get rid of this.
1360         if (mount_mode == MOUNT_MODE_ONLY_USERDATA && current_entry.mount_point != "/data") {
1361             continue;
1362         }
1363 
1364         // Translate LABEL= file system labels into block devices.
1365         if (is_extfs(current_entry.fs_type)) {
1366             if (!TranslateExtLabels(&current_entry)) {
1367                 LERROR << "Could not translate label to block device";
1368                 continue;
1369             }
1370         }
1371 
1372         if (current_entry.fs_mgr_flags.logical) {
1373             if (!fs_mgr_update_logical_partition(&current_entry)) {
1374                 LERROR << "Could not set up logical partition, skipping!";
1375                 continue;
1376             }
1377         }
1378 
1379         WrapUserdataIfNeeded(&current_entry);
1380 
1381         if (!checkpoint_manager.Update(&current_entry)) {
1382             continue;
1383         }
1384 
1385         if (current_entry.fs_mgr_flags.wait && !WaitForFile(current_entry.blk_device, 20s)) {
1386             LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
1387             continue;
1388         }
1389 
1390         if (current_entry.fs_mgr_flags.avb) {
1391             if (!avb_handle) {
1392                 avb_handle = AvbHandle::Open();
1393                 if (!avb_handle) {
1394                     LERROR << "Failed to open AvbHandle";
1395                     return FS_MGR_MNTALL_FAIL;
1396                 }
1397             }
1398             if (avb_handle->SetUpAvbHashtree(&current_entry, true /* wait_for_verity_dev */) ==
1399                 AvbHashtreeResult::kFail) {
1400                 LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
1401                        << ", skipping!";
1402                 // Skips mounting the device.
1403                 continue;
1404             }
1405         } else if (!current_entry.avb_keys.empty()) {
1406             if (AvbHandle::SetUpStandaloneAvbHashtree(&current_entry) == AvbHashtreeResult::kFail) {
1407                 LERROR << "Failed to set up AVB on standalone partition: "
1408                        << current_entry.mount_point << ", skipping!";
1409                 // Skips mounting the device.
1410                 continue;
1411             }
1412         } else if ((current_entry.fs_mgr_flags.verify)) {
1413             int rc = fs_mgr_setup_verity(&current_entry, true);
1414             if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
1415                 LINFO << "Verity disabled";
1416             } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
1417                 LERROR << "Could not set up verified partition, skipping!";
1418                 continue;
1419             }
1420         }
1421 
1422         int last_idx_inspected;
1423         int top_idx = i;
1424         int attempted_idx = -1;
1425 
1426         bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx);
1427         auto& attempted_entry = (*fstab)[attempted_idx];
1428         i = last_idx_inspected;
1429         int mount_errno = errno;
1430 
1431         // Handle success and deal with encryptability.
1432         if (mret) {
1433             int status = handle_encryptable(attempted_entry);
1434 
1435             if (status == FS_MGR_MNTALL_FAIL) {
1436                 // Fatal error - no point continuing.
1437                 return status;
1438             }
1439 
1440             if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1441                 if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
1442                     // Log and continue
1443                     LERROR << "Only one encryptable/encrypted partition supported";
1444                 }
1445                 encryptable = status;
1446                 if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
1447                     if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device,
1448                                    attempted_entry.mount_point},
1449                                   nullptr)) {
1450                         LERROR << "Encryption failed";
1451                         return FS_MGR_MNTALL_FAIL;
1452                     }
1453                 }
1454             }
1455 
1456             // Success!  Go get the next one.
1457             continue;
1458         }
1459 
1460         // Mounting failed, understand why and retry.
1461         bool wiped = partition_wiped(current_entry.blk_device.c_str());
1462         bool crypt_footer = false;
1463         if (mount_errno != EBUSY && mount_errno != EACCES &&
1464             current_entry.fs_mgr_flags.formattable && wiped) {
1465             // current_entry and attempted_entry point at the same partition, but sometimes
1466             // at two different lines in the fstab.  Use current_entry for formatting
1467             // as that is the preferred one.
1468             LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
1469                    << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type
1470                    << " is formattable. Format it.";
1471 
1472             checkpoint_manager.Revert(&current_entry);
1473 
1474             if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) {
1475                 unique_fd fd(TEMP_FAILURE_RETRY(
1476                         open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC)));
1477                 if (fd >= 0) {
1478                     LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc;
1479                     wipe_block_device(fd, get_file_size(fd));
1480                 } else {
1481                     PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open";
1482                 }
1483             } else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) {
1484                 crypt_footer = true;
1485             }
1486             if (fs_mgr_do_format(current_entry, crypt_footer) == 0) {
1487                 // Let's replay the mount actions.
1488                 i = top_idx - 1;
1489                 continue;
1490             } else {
1491                 LERROR << __FUNCTION__ << "(): Format failed. "
1492                        << "Suggest recovery...";
1493                 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1494                 continue;
1495             }
1496         }
1497 
1498         // mount(2) returned an error, handle the encryptable/formattable case.
1499         if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) {
1500             if (wiped) {
1501                 LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and "
1502                        << attempted_entry.mount_point << " " << attempted_entry.fs_type
1503                        << " is encryptable. Suggest recovery...";
1504                 encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
1505                 continue;
1506             } else {
1507                 // Need to mount a tmpfs at this mountpoint for now, and set
1508                 // properties that vold will query later for decrypting
1509                 LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev "
1510                        << attempted_entry.blk_device << " for mount " << attempted_entry.mount_point
1511                        << " type " << attempted_entry.fs_type;
1512                 if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) {
1513                     ++error_count;
1514                     continue;
1515                 }
1516             }
1517             encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED;
1518         } else if (mount_errno != EBUSY && mount_errno != EACCES &&
1519                    should_use_metadata_encryption(attempted_entry)) {
1520             if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device,
1521                            attempted_entry.mount_point},
1522                           nullptr)) {
1523                 ++error_count;
1524             }
1525             encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
1526             continue;
1527         } else {
1528             // fs_options might be null so we cannot use PERROR << directly.
1529             // Use StringPrintf to output "(null)" instead.
1530             if (attempted_entry.fs_mgr_flags.no_fail) {
1531                 PERROR << android::base::StringPrintf(
1532                         "Ignoring failure to mount an un-encryptable or wiped "
1533                         "partition on %s at %s options: %s",
1534                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1535                         attempted_entry.fs_options.c_str());
1536             } else {
1537                 PERROR << android::base::StringPrintf(
1538                         "Failed to mount an un-encryptable or wiped partition "
1539                         "on %s at %s options: %s",
1540                         attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
1541                         attempted_entry.fs_options.c_str());
1542                 ++error_count;
1543             }
1544             continue;
1545         }
1546     }
1547 
1548 #if ALLOW_ADBD_DISABLE_VERITY == 1  // "userdebug" build
1549     fs_mgr_overlayfs_mount_all(fstab);
1550 #endif
1551 
1552     if (error_count) {
1553         return FS_MGR_MNTALL_FAIL;
1554     } else {
1555         return encryptable;
1556     }
1557 }
1558 
fs_mgr_umount_all(android::fs_mgr::Fstab * fstab)1559 int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
1560     AvbUniquePtr avb_handle(nullptr);
1561     int ret = FsMgrUmountStatus::SUCCESS;
1562     for (auto& current_entry : *fstab) {
1563         if (!IsMountPointMounted(current_entry.mount_point)) {
1564             continue;
1565         }
1566 
1567         if (umount(current_entry.mount_point.c_str()) == -1) {
1568             PERROR << "Failed to umount " << current_entry.mount_point;
1569             ret |= FsMgrUmountStatus::ERROR_UMOUNT;
1570             continue;
1571         }
1572 
1573         if (current_entry.fs_mgr_flags.logical) {
1574             if (!fs_mgr_update_logical_partition(&current_entry)) {
1575                 LERROR << "Could not get logical partition blk_device, skipping!";
1576                 ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
1577                 continue;
1578             }
1579         }
1580 
1581         if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
1582             if (!AvbHandle::TearDownAvbHashtree(&current_entry, true /* wait */)) {
1583                 LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
1584                 ret |= FsMgrUmountStatus::ERROR_VERITY;
1585                 continue;
1586             }
1587         } else if ((current_entry.fs_mgr_flags.verify)) {
1588             if (!fs_mgr_teardown_verity(&current_entry)) {
1589                 LERROR << "Failed to tear down verified partition on mount point: "
1590                        << current_entry.mount_point;
1591                 ret |= FsMgrUmountStatus::ERROR_VERITY;
1592                 continue;
1593             }
1594         }
1595     }
1596     return ret;
1597 }
1598 
GetMillisProperty(const std::string & name,std::chrono::milliseconds default_value)1599 static std::chrono::milliseconds GetMillisProperty(const std::string& name,
1600                                                    std::chrono::milliseconds default_value) {
1601     auto value = GetUintProperty(name, static_cast<uint64_t>(default_value.count()));
1602     return std::chrono::milliseconds(std::move(value));
1603 }
1604 
fs_mgr_unmount_all_data_mounts(const std::string & data_block_device)1605 static bool fs_mgr_unmount_all_data_mounts(const std::string& data_block_device) {
1606     LINFO << __FUNCTION__ << "(): about to umount everything on top of " << data_block_device;
1607     Timer t;
1608     auto timeout = GetMillisProperty("init.userspace_reboot.userdata_remount.timeoutmillis", 5s);
1609     while (true) {
1610         bool umount_done = true;
1611         Fstab proc_mounts;
1612         if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1613             LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1614             return false;
1615         }
1616         // Now proceed with other bind mounts on top of /data.
1617         for (const auto& entry : proc_mounts) {
1618             std::string block_device;
1619             if (StartsWith(entry.blk_device, "/dev/block") &&
1620                 !Realpath(entry.blk_device, &block_device)) {
1621                 PWARNING << __FUNCTION__ << "(): failed to realpath " << entry.blk_device;
1622                 block_device = entry.blk_device;
1623             }
1624             if (data_block_device == block_device) {
1625                 if (umount2(entry.mount_point.c_str(), 0) != 0) {
1626                     PERROR << __FUNCTION__ << "(): Failed to umount " << entry.mount_point;
1627                     umount_done = false;
1628                 }
1629             }
1630         }
1631         if (umount_done) {
1632             LINFO << __FUNCTION__ << "(): Unmounting /data took " << t;
1633             return true;
1634         }
1635         if (t.duration() > timeout) {
1636             LERROR << __FUNCTION__ << "(): Timed out unmounting all mounts on "
1637                    << data_block_device;
1638             Fstab remaining_mounts;
1639             if (!ReadFstabFromFile("/proc/mounts", &remaining_mounts)) {
1640                 LERROR << __FUNCTION__ << "(): Can't read /proc/mounts";
1641             } else {
1642                 LERROR << __FUNCTION__ << "(): Following mounts remaining";
1643                 for (const auto& e : remaining_mounts) {
1644                     LERROR << __FUNCTION__ << "(): mount point: " << e.mount_point
1645                            << " block device: " << e.blk_device;
1646                 }
1647             }
1648             return false;
1649         }
1650         std::this_thread::sleep_for(50ms);
1651     }
1652 }
1653 
UnwindDmDeviceStack(const std::string & block_device,std::vector<std::string> * dm_stack)1654 static bool UnwindDmDeviceStack(const std::string& block_device,
1655                                 std::vector<std::string>* dm_stack) {
1656     if (!StartsWith(block_device, "/dev/block/")) {
1657         LWARNING << block_device << " is not a block device";
1658         return false;
1659     }
1660     std::string current = block_device;
1661     DeviceMapper& dm = DeviceMapper::Instance();
1662     while (true) {
1663         dm_stack->push_back(current);
1664         if (!dm.IsDmBlockDevice(current)) {
1665             break;
1666         }
1667         auto parent = dm.GetParentBlockDeviceByPath(current);
1668         if (!parent) {
1669             return false;
1670         }
1671         current = *parent;
1672     }
1673     return true;
1674 }
1675 
fs_mgr_get_mounted_entry_for_userdata(Fstab * fstab,const std::string & data_block_device)1676 FstabEntry* fs_mgr_get_mounted_entry_for_userdata(Fstab* fstab,
1677                                                   const std::string& data_block_device) {
1678     std::vector<std::string> dm_stack;
1679     if (!UnwindDmDeviceStack(data_block_device, &dm_stack)) {
1680         LERROR << "Failed to unwind dm-device stack for " << data_block_device;
1681         return nullptr;
1682     }
1683     for (auto& entry : *fstab) {
1684         if (entry.mount_point != "/data") {
1685             continue;
1686         }
1687         std::string block_device;
1688         if (entry.fs_mgr_flags.logical) {
1689             if (!fs_mgr_update_logical_partition(&entry)) {
1690                 LERROR << "Failed to update logic partition " << entry.blk_device;
1691                 continue;
1692             }
1693             block_device = entry.blk_device;
1694         } else if (!Realpath(entry.blk_device, &block_device)) {
1695             PWARNING << "Failed to realpath " << entry.blk_device;
1696             block_device = entry.blk_device;
1697         }
1698         if (std::find(dm_stack.begin(), dm_stack.end(), block_device) != dm_stack.end()) {
1699             return &entry;
1700         }
1701     }
1702     LERROR << "Didn't find entry that was used to mount /data onto " << data_block_device;
1703     return nullptr;
1704 }
1705 
1706 // TODO(b/143970043): return different error codes based on which step failed.
fs_mgr_remount_userdata_into_checkpointing(Fstab * fstab)1707 int fs_mgr_remount_userdata_into_checkpointing(Fstab* fstab) {
1708     Fstab proc_mounts;
1709     if (!ReadFstabFromFile("/proc/mounts", &proc_mounts)) {
1710         LERROR << "Can't read /proc/mounts";
1711         return -1;
1712     }
1713     auto mounted_entry = GetEntryForMountPoint(&proc_mounts, "/data");
1714     if (mounted_entry == nullptr) {
1715         LERROR << "/data is not mounted";
1716         return -1;
1717     }
1718     std::string block_device;
1719     if (!Realpath(mounted_entry->blk_device, &block_device)) {
1720         PERROR << "Failed to realpath " << mounted_entry->blk_device;
1721         return -1;
1722     }
1723     auto fstab_entry = fs_mgr_get_mounted_entry_for_userdata(fstab, block_device);
1724     if (fstab_entry == nullptr) {
1725         LERROR << "Can't find /data in fstab";
1726         return -1;
1727     }
1728     bool force_umount = GetBoolProperty("sys.init.userdata_remount.force_umount", false);
1729     if (force_umount) {
1730         LINFO << "Will force an umount of userdata even if it's not required";
1731     }
1732     if (!force_umount && !SupportsCheckpoint(fstab_entry)) {
1733         LINFO << "Userdata doesn't support checkpointing. Nothing to do";
1734         return 0;
1735     }
1736     CheckpointManager checkpoint_manager;
1737     if (!force_umount && !checkpoint_manager.NeedsCheckpoint()) {
1738         LINFO << "Checkpointing not needed. Don't remount";
1739         return 0;
1740     }
1741     if (!force_umount && fstab_entry->fs_mgr_flags.checkpoint_fs) {
1742         // Userdata is f2fs, simply remount it.
1743         if (!checkpoint_manager.Update(fstab_entry)) {
1744             LERROR << "Failed to remount userdata in checkpointing mode";
1745             return -1;
1746         }
1747         if (mount(block_device.c_str(), fstab_entry->mount_point.c_str(), "none",
1748                   MS_REMOUNT | fstab_entry->flags, fstab_entry->fs_options.c_str()) != 0) {
1749             PERROR << "Failed to remount userdata in checkpointing mode";
1750             return -1;
1751         }
1752     } else {
1753         LINFO << "Unmounting /data before remounting into checkpointing mode";
1754         if (!fs_mgr_unmount_all_data_mounts(block_device)) {
1755             LERROR << "Failed to umount /data";
1756             return -1;
1757         }
1758         DeviceMapper& dm = DeviceMapper::Instance();
1759         while (dm.IsDmBlockDevice(block_device)) {
1760             auto next_device = dm.GetParentBlockDeviceByPath(block_device);
1761             auto name = dm.GetDmDeviceNameByPath(block_device);
1762             if (!name) {
1763                 LERROR << "Failed to get dm-name for " << block_device;
1764                 return -1;
1765             }
1766             LINFO << "Deleting " << block_device << " named " << *name;
1767             if (!dm.DeleteDevice(*name, 3s)) {
1768                 return -1;
1769             }
1770             if (!next_device) {
1771                 LERROR << "Failed to find parent device for " << block_device;
1772             }
1773             block_device = *next_device;
1774         }
1775         LINFO << "Remounting /data";
1776         // TODO(b/143970043): remove this hack after fs_mgr_mount_all is refactored.
1777         int result = fs_mgr_mount_all(fstab, MOUNT_MODE_ONLY_USERDATA);
1778         return result == FS_MGR_MNTALL_FAIL ? -1 : 0;
1779     }
1780     return 0;
1781 }
1782 
1783 // wrapper to __mount() and expects a fully prepared fstab_rec,
1784 // unlike fs_mgr_do_mount which does more things with avb / verity etc.
fs_mgr_do_mount_one(const FstabEntry & entry,const std::string & mount_point)1785 int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& mount_point) {
1786     // First check the filesystem if requested.
1787     if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
1788         LERROR << "Skipping mounting '" << entry.blk_device << "'";
1789     }
1790 
1791     // Run fsck if needed
1792     prepare_fs_for_mount(entry.blk_device, entry);
1793 
1794     int ret =
1795             __mount(entry.blk_device, mount_point.empty() ? entry.mount_point : mount_point, entry);
1796     if (ret) {
1797       ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
1798     }
1799 
1800     return ret;
1801 }
1802 
1803 // If tmp_mount_point is non-null, mount the filesystem there.  This is for the
1804 // tmp mount we do to check the user password
1805 // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
1806 // in turn, and stop on 1st success, or no more match.
fs_mgr_do_mount_helper(Fstab * fstab,const std::string & n_name,const std::string & n_blk_device,const char * tmp_mount_point,int needs_checkpoint,bool metadata_encrypted)1807 static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name,
1808                                   const std::string& n_blk_device, const char* tmp_mount_point,
1809                                   int needs_checkpoint, bool metadata_encrypted) {
1810     int mount_errors = 0;
1811     int first_mount_errno = 0;
1812     std::string mount_point;
1813     CheckpointManager checkpoint_manager(needs_checkpoint, metadata_encrypted);
1814     AvbUniquePtr avb_handle(nullptr);
1815 
1816     if (!fstab) {
1817         return FS_MGR_DOMNT_FAILED;
1818     }
1819 
1820     for (auto& fstab_entry : *fstab) {
1821         if (!fs_match(fstab_entry.mount_point, n_name)) {
1822             continue;
1823         }
1824 
1825         // We found our match.
1826         // If this swap or a raw partition, report an error.
1827         if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
1828             fstab_entry.fs_type == "mtd") {
1829             LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
1830                    << n_blk_device;
1831             return FS_MGR_DOMNT_FAILED;
1832         }
1833 
1834         if (fstab_entry.fs_mgr_flags.logical) {
1835             if (!fs_mgr_update_logical_partition(&fstab_entry)) {
1836                 LERROR << "Could not set up logical partition, skipping!";
1837                 continue;
1838             }
1839         }
1840 
1841         WrapUserdataIfNeeded(&fstab_entry, n_blk_device);
1842 
1843         if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) {
1844             LERROR << "Could not set up checkpoint partition, skipping!";
1845             continue;
1846         }
1847 
1848         // First check the filesystem if requested.
1849         if (fstab_entry.fs_mgr_flags.wait && !WaitForFile(n_blk_device, 20s)) {
1850             LERROR << "Skipping mounting '" << n_blk_device << "'";
1851             continue;
1852         }
1853 
1854         int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry);
1855 
1856         if (fstab_entry.fs_mgr_flags.avb) {
1857             if (!avb_handle) {
1858                 avb_handle = AvbHandle::Open();
1859                 if (!avb_handle) {
1860                     LERROR << "Failed to open AvbHandle";
1861                     return FS_MGR_DOMNT_FAILED;
1862                 }
1863             }
1864             if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
1865                 AvbHashtreeResult::kFail) {
1866                 LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
1867                        << ", skipping!";
1868                 // Skips mounting the device.
1869                 continue;
1870             }
1871         } else if (!fstab_entry.avb_keys.empty()) {
1872             if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
1873                 LERROR << "Failed to set up AVB on standalone partition: "
1874                        << fstab_entry.mount_point << ", skipping!";
1875                 // Skips mounting the device.
1876                 continue;
1877             }
1878         } else if (fstab_entry.fs_mgr_flags.verify) {
1879             int rc = fs_mgr_setup_verity(&fstab_entry, true);
1880             if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
1881                 LINFO << "Verity disabled";
1882             } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
1883                 LERROR << "Could not set up verified partition, skipping!";
1884                 continue;
1885             }
1886         }
1887 
1888         // Now mount it where requested */
1889         if (tmp_mount_point) {
1890             mount_point = tmp_mount_point;
1891         } else {
1892             mount_point = fstab_entry.mount_point;
1893         }
1894         int retry_count = 2;
1895         while (retry_count-- > 0) {
1896             if (!__mount(n_blk_device, mount_point, fstab_entry)) {
1897                 fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
1898                 return FS_MGR_DOMNT_SUCCESS;
1899             } else {
1900                 if (retry_count <= 0) break;  // run check_fs only once
1901                 if (!first_mount_errno) first_mount_errno = errno;
1902                 mount_errors++;
1903                 fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
1904                 // try again after fsck
1905                 check_fs(n_blk_device, fstab_entry.fs_type, fstab_entry.mount_point, &fs_stat);
1906             }
1907         }
1908         log_fs_stat(fstab_entry.blk_device, fs_stat);
1909     }
1910 
1911     // Reach here means the mount attempt fails.
1912     if (mount_errors) {
1913         PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
1914         if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
1915     } else {
1916         // We didn't find a match, say so and return an error.
1917         LERROR << "Cannot find mount point " << n_name << " in fstab";
1918     }
1919     return FS_MGR_DOMNT_FAILED;
1920 }
1921 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point)1922 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) {
1923     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1, false);
1924 }
1925 
fs_mgr_do_mount(Fstab * fstab,const char * n_name,char * n_blk_device,char * tmp_mount_point,bool needs_checkpoint,bool metadata_encrypted)1926 int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point,
1927                     bool needs_checkpoint, bool metadata_encrypted) {
1928     return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint,
1929                                   metadata_encrypted);
1930 }
1931 
1932 /*
1933  * mount a tmpfs filesystem at the given point.
1934  * return 0 on success, non-zero on failure.
1935  */
fs_mgr_do_tmpfs_mount(const char * n_name)1936 int fs_mgr_do_tmpfs_mount(const char *n_name)
1937 {
1938     int ret;
1939 
1940     ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC,
1941                 CRYPTO_TMPFS_OPTIONS);
1942     if (ret < 0) {
1943         LERROR << "Cannot mount tmpfs filesystem at " << n_name;
1944         return -1;
1945     }
1946 
1947     /* Success */
1948     return 0;
1949 }
1950 
InstallZramDevice(const std::string & device)1951 static bool InstallZramDevice(const std::string& device) {
1952     if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
1953         PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
1954         return false;
1955     }
1956     LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
1957     return true;
1958 }
1959 
PrepareZramDevice(const std::string & loop,off64_t size,const std::string & bdev)1960 static bool PrepareZramDevice(const std::string& loop, off64_t size, const std::string& bdev) {
1961     if (loop.empty() && bdev.empty()) return true;
1962 
1963     if (bdev.length()) {
1964         return InstallZramDevice(bdev);
1965     }
1966 
1967     // Prepare target path
1968     unique_fd target_fd(TEMP_FAILURE_RETRY(open(loop.c_str(), O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
1969     if (target_fd.get() == -1) {
1970         PERROR << "Cannot open target path: " << loop;
1971         return false;
1972     }
1973     if (fallocate(target_fd.get(), 0, 0, size) < 0) {
1974         PERROR << "Cannot truncate target path: " << loop;
1975         return false;
1976     }
1977 
1978     // Allocate loop device and attach it to file_path.
1979     LoopControl loop_control;
1980     std::string device;
1981     if (!loop_control.Attach(target_fd.get(), 5s, &device)) {
1982         return false;
1983     }
1984 
1985     // set block size & direct IO
1986     unique_fd device_fd(TEMP_FAILURE_RETRY(open(device.c_str(), O_RDWR | O_CLOEXEC)));
1987     if (device_fd.get() == -1) {
1988         PERROR << "Cannot open " << device;
1989         return false;
1990     }
1991     if (!LoopControl::EnableDirectIo(device_fd.get())) {
1992         return false;
1993     }
1994 
1995     return InstallZramDevice(device);
1996 }
1997 
fs_mgr_swapon_all(const Fstab & fstab)1998 bool fs_mgr_swapon_all(const Fstab& fstab) {
1999     bool ret = true;
2000     for (const auto& entry : fstab) {
2001         // Skip non-swap entries.
2002         if (entry.fs_type != "swap") {
2003             continue;
2004         }
2005 
2006         if (!PrepareZramDevice(entry.zram_loopback_path, entry.zram_loopback_size, entry.zram_backing_dev_path)) {
2007             LERROR << "Skipping losetup for '" << entry.blk_device << "'";
2008         }
2009 
2010         if (entry.zram_size > 0) {
2011             // A zram_size was specified, so we need to configure the
2012             // device.  There is no point in having multiple zram devices
2013             // on a system (all the memory comes from the same pool) so
2014             // we can assume the device number is 0.
2015             if (entry.max_comp_streams >= 0) {
2016                 auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
2017                         fopen(ZRAM_CONF_MCS, "re"), fclose};
2018                 if (zram_mcs_fp == nullptr) {
2019                     LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
2020                     ret = false;
2021                     continue;
2022                 }
2023                 fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
2024             }
2025 
2026             auto zram_fp =
2027                     std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
2028             if (zram_fp == nullptr) {
2029                 LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
2030                 ret = false;
2031                 continue;
2032             }
2033             fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
2034         }
2035 
2036         if (entry.fs_mgr_flags.wait && !WaitForFile(entry.blk_device, 20s)) {
2037             LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
2038             ret = false;
2039             continue;
2040         }
2041 
2042         // Initialize the swap area.
2043         const char* mkswap_argv[2] = {
2044                 MKSWAP_BIN,
2045                 entry.blk_device.c_str(),
2046         };
2047         int err = logwrap_fork_execvp(ARRAY_SIZE(mkswap_argv), mkswap_argv, nullptr, false,
2048                                       LOG_KLOG, false, nullptr);
2049         if (err) {
2050             LERROR << "mkswap failed for " << entry.blk_device;
2051             ret = false;
2052             continue;
2053         }
2054 
2055         /* If -1, then no priority was specified in fstab, so don't set
2056          * SWAP_FLAG_PREFER or encode the priority */
2057         int flags = 0;
2058         if (entry.swap_prio >= 0) {
2059             flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
2060             flags |= SWAP_FLAG_PREFER;
2061         } else {
2062             flags = 0;
2063         }
2064         err = swapon(entry.blk_device.c_str(), flags);
2065         if (err) {
2066             LERROR << "swapon failed for " << entry.blk_device;
2067             ret = false;
2068         }
2069     }
2070 
2071     return ret;
2072 }
2073 
fs_mgr_is_verity_enabled(const FstabEntry & entry)2074 bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
2075     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2076         return false;
2077     }
2078 
2079     DeviceMapper& dm = DeviceMapper::Instance();
2080 
2081     std::string mount_point = GetVerityDeviceName(entry);
2082     if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
2083         return false;
2084     }
2085 
2086     const char* status;
2087     std::vector<DeviceMapper::TargetInfo> table;
2088     if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
2089         if (!entry.fs_mgr_flags.verify_at_boot) {
2090             return false;
2091         }
2092         status = "V";
2093     } else {
2094         status = table[0].data.c_str();
2095     }
2096 
2097     if (*status == 'C' || *status == 'V') {
2098         return true;
2099     }
2100 
2101     return false;
2102 }
2103 
fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry & entry)2104 bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
2105     if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
2106         return false;
2107     }
2108 
2109     DeviceMapper& dm = DeviceMapper::Instance();
2110     std::string device = GetVerityDeviceName(entry);
2111 
2112     std::vector<DeviceMapper::TargetInfo> table;
2113     if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
2114         return false;
2115     }
2116     for (const auto& target : table) {
2117         if (strcmp(target.spec.target_type, "verity") == 0 &&
2118             target.data.find("check_at_most_once") != std::string::npos) {
2119             return true;
2120         }
2121     }
2122     return false;
2123 }
2124 
fs_mgr_get_super_partition_name(int slot)2125 std::string fs_mgr_get_super_partition_name(int slot) {
2126     // Devices upgrading to dynamic partitions are allowed to specify a super
2127     // partition name. This includes cuttlefish, which is a non-A/B device.
2128     std::string super_partition;
2129     if (fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) {
2130         if (fs_mgr_get_slot_suffix().empty()) {
2131             return super_partition;
2132         }
2133         std::string suffix;
2134         if (slot == 0) {
2135             suffix = "_a";
2136         } else if (slot == 1) {
2137             suffix = "_b";
2138         } else if (slot == -1) {
2139             suffix = fs_mgr_get_slot_suffix();
2140         }
2141         return super_partition + suffix;
2142     }
2143     return LP_METADATA_DEFAULT_PARTITION_NAME;
2144 }
2145