1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "Layer"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21 
22 #include "Layer.h"
23 
24 #include <android-base/stringprintf.h>
25 #include <compositionengine/Display.h>
26 #include <compositionengine/Layer.h>
27 #include <compositionengine/LayerFECompositionState.h>
28 #include <compositionengine/OutputLayer.h>
29 #include <compositionengine/impl/LayerCompositionState.h>
30 #include <compositionengine/impl/OutputLayerCompositionState.h>
31 #include <cutils/compiler.h>
32 #include <cutils/native_handle.h>
33 #include <cutils/properties.h>
34 #include <gui/BufferItem.h>
35 #include <gui/LayerDebugInfo.h>
36 #include <gui/Surface.h>
37 #include <math.h>
38 #include <renderengine/RenderEngine.h>
39 #include <stdint.h>
40 #include <stdlib.h>
41 #include <sys/types.h>
42 #include <ui/DebugUtils.h>
43 #include <ui/GraphicBuffer.h>
44 #include <ui/PixelFormat.h>
45 #include <utils/Errors.h>
46 #include <utils/Log.h>
47 #include <utils/NativeHandle.h>
48 #include <utils/StopWatch.h>
49 #include <utils/Trace.h>
50 
51 #include <algorithm>
52 #include <mutex>
53 #include <sstream>
54 
55 #include "BufferLayer.h"
56 #include "ColorLayer.h"
57 #include "Colorizer.h"
58 #include "DisplayDevice.h"
59 #include "DisplayHardware/HWComposer.h"
60 #include "LayerProtoHelper.h"
61 #include "LayerRejecter.h"
62 #include "MonitoredProducer.h"
63 #include "SurfaceFlinger.h"
64 #include "TimeStats/TimeStats.h"
65 
66 #define DEBUG_RESIZE 0
67 
68 namespace android {
69 
70 using base::StringAppendF;
71 
72 std::atomic<int32_t> Layer::sSequence{1};
73 
Layer(const LayerCreationArgs & args)74 Layer::Layer(const LayerCreationArgs& args)
75       : mFlinger(args.flinger),
76         mName(args.name),
77         mClientRef(args.client),
78         mWindowType(args.metadata.getInt32(METADATA_WINDOW_TYPE, 0)) {
79     mCurrentCrop.makeInvalid();
80 
81     uint32_t layerFlags = 0;
82     if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
83     if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
84     if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
85 
86     mTransactionName = String8("TX - ") + mName;
87 
88     mCurrentState.active_legacy.w = args.w;
89     mCurrentState.active_legacy.h = args.h;
90     mCurrentState.flags = layerFlags;
91     mCurrentState.active_legacy.transform.set(0, 0);
92     mCurrentState.crop_legacy.makeInvalid();
93     mCurrentState.requestedCrop_legacy = mCurrentState.crop_legacy;
94     mCurrentState.z = 0;
95     mCurrentState.color.a = 1.0f;
96     mCurrentState.layerStack = 0;
97     mCurrentState.sequence = 0;
98     mCurrentState.requested_legacy = mCurrentState.active_legacy;
99     mCurrentState.active.w = UINT32_MAX;
100     mCurrentState.active.h = UINT32_MAX;
101     mCurrentState.active.transform.set(0, 0);
102     mCurrentState.transform = 0;
103     mCurrentState.transformToDisplayInverse = false;
104     mCurrentState.crop.makeInvalid();
105     mCurrentState.acquireFence = new Fence(-1);
106     mCurrentState.dataspace = ui::Dataspace::UNKNOWN;
107     mCurrentState.hdrMetadata.validTypes = 0;
108     mCurrentState.surfaceDamageRegion.clear();
109     mCurrentState.cornerRadius = 0.0f;
110     mCurrentState.api = -1;
111     mCurrentState.hasColorTransform = false;
112     mCurrentState.colorSpaceAgnostic = false;
113     mCurrentState.metadata = args.metadata;
114 
115     // drawing state & current state are identical
116     mDrawingState = mCurrentState;
117 
118     CompositorTiming compositorTiming;
119     args.flinger->getCompositorTiming(&compositorTiming);
120     mFrameEventHistory.initializeCompositorTiming(compositorTiming);
121     mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval);
122 
123     mSchedulerLayerHandle = mFlinger->mScheduler->registerLayer(mName.c_str(), mWindowType);
124 
125     mFlinger->onLayerCreated();
126 }
127 
~Layer()128 Layer::~Layer() {
129     sp<Client> c(mClientRef.promote());
130     if (c != 0) {
131         c->detachLayer(this);
132     }
133 
134     mFrameTracker.logAndResetStats(mName);
135     mFlinger->onLayerDestroyed(this);
136 }
137 
138 // ---------------------------------------------------------------------------
139 // callbacks
140 // ---------------------------------------------------------------------------
141 
142 /*
143  * onLayerDisplayed is only meaningful for BufferLayer, but, is called through
144  * Layer.  So, the implementation is done in BufferLayer.  When called on a
145  * ColorLayer object, it's essentially a NOP.
146  */
onLayerDisplayed(const sp<Fence> &)147 void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {}
148 
removeRemoteSyncPoints()149 void Layer::removeRemoteSyncPoints() {
150     for (auto& point : mRemoteSyncPoints) {
151         point->setTransactionApplied();
152     }
153     mRemoteSyncPoints.clear();
154 
155     {
156         for (State pendingState : mPendingStates) {
157             pendingState.barrierLayer_legacy = nullptr;
158         }
159     }
160 }
161 
removeRelativeZ(const std::vector<Layer * > & layersInTree)162 void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) {
163     if (mCurrentState.zOrderRelativeOf == nullptr) {
164         return;
165     }
166 
167     sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
168     if (strongRelative == nullptr) {
169         setZOrderRelativeOf(nullptr);
170         return;
171     }
172 
173     if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
174         strongRelative->removeZOrderRelative(this);
175         mFlinger->setTransactionFlags(eTraversalNeeded);
176         setZOrderRelativeOf(nullptr);
177     }
178 }
179 
removeFromCurrentState()180 void Layer::removeFromCurrentState() {
181     mRemovedFromCurrentState = true;
182 
183     // Since we are no longer reachable from CurrentState SurfaceFlinger
184     // will no longer invoke doTransaction for us, and so we will
185     // never finish applying transactions. We signal the sync point
186     // now so that another layer will not become indefinitely
187     // blocked.
188     removeRemoteSyncPoints();
189 
190     {
191     Mutex::Autolock syncLock(mLocalSyncPointMutex);
192     for (auto& point : mLocalSyncPoints) {
193         point->setFrameAvailable();
194     }
195     mLocalSyncPoints.clear();
196     }
197 
198     mFlinger->markLayerPendingRemovalLocked(this);
199 }
200 
onRemovedFromCurrentState()201 void Layer::onRemovedFromCurrentState() {
202     auto layersInTree = getLayersInTree(LayerVector::StateSet::Current);
203     std::sort(layersInTree.begin(), layersInTree.end());
204     for (const auto& layer : layersInTree) {
205         layer->removeFromCurrentState();
206         layer->removeRelativeZ(layersInTree);
207     }
208 }
209 
addToCurrentState()210 void Layer::addToCurrentState() {
211     mRemovedFromCurrentState = false;
212 
213     for (const auto& child : mCurrentChildren) {
214         child->addToCurrentState();
215     }
216 }
217 
218 // ---------------------------------------------------------------------------
219 // set-up
220 // ---------------------------------------------------------------------------
221 
getName() const222 const String8& Layer::getName() const {
223     return mName;
224 }
225 
getPremultipledAlpha() const226 bool Layer::getPremultipledAlpha() const {
227     return mPremultipliedAlpha;
228 }
229 
getHandle()230 sp<IBinder> Layer::getHandle() {
231     Mutex::Autolock _l(mLock);
232     if (mGetHandleCalled) {
233         ALOGE("Get handle called twice" );
234         return nullptr;
235     }
236     mGetHandleCalled = true;
237     return new Handle(mFlinger, this);
238 }
239 
240 // ---------------------------------------------------------------------------
241 // h/w composer set-up
242 // ---------------------------------------------------------------------------
243 
hasHwcLayer(const sp<const DisplayDevice> & displayDevice)244 bool Layer::hasHwcLayer(const sp<const DisplayDevice>& displayDevice) {
245     auto outputLayer = findOutputLayerForDisplay(displayDevice);
246     LOG_FATAL_IF(!outputLayer);
247     return outputLayer->getState().hwc && (*outputLayer->getState().hwc).hwcLayer != nullptr;
248 }
249 
getHwcLayer(const sp<const DisplayDevice> & displayDevice)250 HWC2::Layer* Layer::getHwcLayer(const sp<const DisplayDevice>& displayDevice) {
251     auto outputLayer = findOutputLayerForDisplay(displayDevice);
252     if (!outputLayer || !outputLayer->getState().hwc) {
253         return nullptr;
254     }
255     return (*outputLayer->getState().hwc).hwcLayer.get();
256 }
257 
getContentCrop() const258 Rect Layer::getContentCrop() const {
259     // this is the crop rectangle that applies to the buffer
260     // itself (as opposed to the window)
261     Rect crop;
262     if (!mCurrentCrop.isEmpty()) {
263         // if the buffer crop is defined, we use that
264         crop = mCurrentCrop;
265     } else if (mActiveBuffer != nullptr) {
266         // otherwise we use the whole buffer
267         crop = mActiveBuffer->getBounds();
268     } else {
269         // if we don't have a buffer yet, we use an empty/invalid crop
270         crop.makeInvalid();
271     }
272     return crop;
273 }
274 
reduce(const Rect & win,const Region & exclude)275 static Rect reduce(const Rect& win, const Region& exclude) {
276     if (CC_LIKELY(exclude.isEmpty())) {
277         return win;
278     }
279     if (exclude.isRect()) {
280         return win.reduce(exclude.getBounds());
281     }
282     return Region(win).subtract(exclude).getBounds();
283 }
284 
reduce(const FloatRect & win,const Region & exclude)285 static FloatRect reduce(const FloatRect& win, const Region& exclude) {
286     if (CC_LIKELY(exclude.isEmpty())) {
287         return win;
288     }
289     // Convert through Rect (by rounding) for lack of FloatRegion
290     return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
291 }
292 
getScreenBounds(bool reduceTransparentRegion) const293 Rect Layer::getScreenBounds(bool reduceTransparentRegion) const {
294     if (!reduceTransparentRegion) {
295         return Rect{mScreenBounds};
296     }
297 
298     FloatRect bounds = getBounds();
299     ui::Transform t = getTransform();
300     // Transform to screen space.
301     bounds = t.transform(bounds);
302     return Rect{bounds};
303 }
304 
getBounds() const305 FloatRect Layer::getBounds() const {
306     const State& s(getDrawingState());
307     return getBounds(getActiveTransparentRegion(s));
308 }
309 
getBounds(const Region & activeTransparentRegion) const310 FloatRect Layer::getBounds(const Region& activeTransparentRegion) const {
311     // Subtract the transparent region and snap to the bounds.
312     return reduce(mBounds, activeTransparentRegion);
313 }
314 
getBufferScaleTransform() const315 ui::Transform Layer::getBufferScaleTransform() const {
316     // If the layer is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g.
317     // it isFixedSize) then there may be additional scaling not accounted
318     // for in the layer transform.
319     if (!isFixedSize() || !mActiveBuffer) {
320         return {};
321     }
322 
323     // If the layer is a buffer state layer, the active width and height
324     // could be infinite. In that case, return the effective transform.
325     const uint32_t activeWidth = getActiveWidth(getDrawingState());
326     const uint32_t activeHeight = getActiveHeight(getDrawingState());
327     if (activeWidth >= UINT32_MAX && activeHeight >= UINT32_MAX) {
328         return {};
329     }
330 
331     int bufferWidth = mActiveBuffer->getWidth();
332     int bufferHeight = mActiveBuffer->getHeight();
333 
334     if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
335         std::swap(bufferWidth, bufferHeight);
336     }
337 
338     float sx = activeWidth / static_cast<float>(bufferWidth);
339     float sy = activeHeight / static_cast<float>(bufferHeight);
340 
341     ui::Transform extraParentScaling;
342     extraParentScaling.set(sx, 0, 0, sy);
343     return extraParentScaling;
344 }
345 
getTransformWithScale(const ui::Transform & bufferScaleTransform) const346 ui::Transform Layer::getTransformWithScale(const ui::Transform& bufferScaleTransform) const {
347     // We need to mirror this scaling to child surfaces or we will break the contract where WM can
348     // treat child surfaces as pixels in the parent surface.
349     if (!isFixedSize() || !mActiveBuffer) {
350         return mEffectiveTransform;
351     }
352     return mEffectiveTransform * bufferScaleTransform;
353 }
354 
getBoundsPreScaling(const ui::Transform & bufferScaleTransform) const355 FloatRect Layer::getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const {
356     // We need the pre scaled layer bounds when computing child bounds to make sure the child is
357     // cropped to its parent layer after any buffer transform scaling is applied.
358     if (!isFixedSize() || !mActiveBuffer) {
359         return mBounds;
360     }
361     return bufferScaleTransform.inverse().transform(mBounds);
362 }
363 
computeBounds(FloatRect parentBounds,ui::Transform parentTransform)364 void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform) {
365     const State& s(getDrawingState());
366 
367     // Calculate effective layer transform
368     mEffectiveTransform = parentTransform * getActiveTransform(s);
369 
370     // Transform parent bounds to layer space
371     parentBounds = getActiveTransform(s).inverse().transform(parentBounds);
372 
373     // Calculate source bounds
374     mSourceBounds = computeSourceBounds(parentBounds);
375 
376     // Calculate bounds by croping diplay frame with layer crop and parent bounds
377     FloatRect bounds = mSourceBounds;
378     const Rect layerCrop = getCrop(s);
379     if (!layerCrop.isEmpty()) {
380         bounds = mSourceBounds.intersect(layerCrop.toFloatRect());
381     }
382     bounds = bounds.intersect(parentBounds);
383 
384     mBounds = bounds;
385     mScreenBounds = mEffectiveTransform.transform(mBounds);
386 
387     // Add any buffer scaling to the layer's children.
388     ui::Transform bufferScaleTransform = getBufferScaleTransform();
389     for (const sp<Layer>& child : mDrawingChildren) {
390         child->computeBounds(getBoundsPreScaling(bufferScaleTransform),
391                              getTransformWithScale(bufferScaleTransform));
392     }
393 }
394 
getCroppedBufferSize(const State & s) const395 Rect Layer::getCroppedBufferSize(const State& s) const {
396     Rect size = getBufferSize(s);
397     Rect crop = getCrop(s);
398     if (!crop.isEmpty() && size.isValid()) {
399         size.intersect(crop, &size);
400     } else if (!crop.isEmpty()) {
401         size = crop;
402     }
403     return size;
404 }
405 
setupRoundedCornersCropCoordinates(Rect win,const FloatRect & roundedCornersCrop) const406 void Layer::setupRoundedCornersCropCoordinates(Rect win,
407                                                const FloatRect& roundedCornersCrop) const {
408     // Translate win by the rounded corners rect coordinates, to have all values in
409     // layer coordinate space.
410     win.left -= roundedCornersCrop.left;
411     win.right -= roundedCornersCrop.left;
412     win.top -= roundedCornersCrop.top;
413     win.bottom -= roundedCornersCrop.top;
414 }
415 
latchGeometry(compositionengine::LayerFECompositionState & compositionState) const416 void Layer::latchGeometry(compositionengine::LayerFECompositionState& compositionState) const {
417     const auto& drawingState{getDrawingState()};
418     auto alpha = static_cast<float>(getAlpha());
419     auto blendMode = HWC2::BlendMode::None;
420     if (!isOpaque(drawingState) || alpha != 1.0f) {
421         blendMode =
422                 mPremultipliedAlpha ? HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage;
423     }
424 
425     int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
426     int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0);
427     sp<Layer> parent = mDrawingParent.promote();
428     if (parent.get()) {
429         auto& parentState = parent->getDrawingState();
430         const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
431         const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0);
432         if (parentType >= 0 || parentAppId >= 0) {
433             type = parentType;
434             appId = parentAppId;
435         }
436     }
437 
438     compositionState.geomLayerTransform = getTransform();
439     compositionState.geomInverseLayerTransform = compositionState.geomLayerTransform.inverse();
440     compositionState.geomBufferSize = getBufferSize(drawingState);
441     compositionState.geomContentCrop = getContentCrop();
442     compositionState.geomCrop = getCrop(drawingState);
443     compositionState.geomBufferTransform = mCurrentTransform;
444     compositionState.geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse();
445     compositionState.geomActiveTransparentRegion = getActiveTransparentRegion(drawingState);
446     compositionState.geomLayerBounds = mBounds;
447     compositionState.geomUsesSourceCrop = usesSourceCrop();
448     compositionState.isSecure = isSecure();
449 
450     compositionState.blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode);
451     compositionState.alpha = alpha;
452     compositionState.type = type;
453     compositionState.appId = appId;
454 }
455 
latchCompositionState(compositionengine::LayerFECompositionState & compositionState,bool includeGeometry) const456 void Layer::latchCompositionState(compositionengine::LayerFECompositionState& compositionState,
457                                   bool includeGeometry) const {
458     if (includeGeometry) {
459         latchGeometry(compositionState);
460     }
461 }
462 
getDebugName() const463 const char* Layer::getDebugName() const {
464     return mName.string();
465 }
466 
forceClientComposition(const sp<DisplayDevice> & display)467 void Layer::forceClientComposition(const sp<DisplayDevice>& display) {
468     const auto outputLayer = findOutputLayerForDisplay(display);
469     LOG_FATAL_IF(!outputLayer);
470     outputLayer->editState().forceClientComposition = true;
471 }
472 
getForceClientComposition(const sp<DisplayDevice> & display)473 bool Layer::getForceClientComposition(const sp<DisplayDevice>& display) {
474     const auto outputLayer = findOutputLayerForDisplay(display);
475     LOG_FATAL_IF(!outputLayer);
476     return outputLayer->getState().forceClientComposition;
477 }
478 
updateCursorPosition(const sp<const DisplayDevice> & display)479 void Layer::updateCursorPosition(const sp<const DisplayDevice>& display) {
480     const auto outputLayer = findOutputLayerForDisplay(display);
481     LOG_FATAL_IF(!outputLayer);
482 
483     if (!outputLayer->getState().hwc ||
484         (*outputLayer->getState().hwc).hwcCompositionType !=
485                 Hwc2::IComposerClient::Composition::CURSOR) {
486         return;
487     }
488 
489     // This gives us only the "orientation" component of the transform
490     const State& s(getDrawingState());
491 
492     // Apply the layer's transform, followed by the display's global transform
493     // Here we're guaranteed that the layer's transform preserves rects
494     Rect win = getCroppedBufferSize(s);
495     // Subtract the transparent region and snap to the bounds
496     Rect bounds = reduce(win, getActiveTransparentRegion(s));
497     Rect frame(getTransform().transform(bounds));
498     frame.intersect(display->getViewport(), &frame);
499     auto& displayTransform = display->getTransform();
500     auto position = displayTransform.transform(frame);
501 
502     auto error =
503             (*outputLayer->getState().hwc).hwcLayer->setCursorPosition(position.left, position.top);
504     ALOGE_IF(error != HWC2::Error::None,
505              "[%s] Failed to set cursor position "
506              "to (%d, %d): %s (%d)",
507              mName.string(), position.left, position.top, to_string(error).c_str(),
508              static_cast<int32_t>(error));
509 }
510 
511 // ---------------------------------------------------------------------------
512 // drawing...
513 // ---------------------------------------------------------------------------
514 
prepareClientLayer(const RenderArea & renderArea,const Region & clip,Region & clearRegion,const bool supportProtectedContent,renderengine::LayerSettings & layer)515 bool Layer::prepareClientLayer(const RenderArea& renderArea, const Region& clip,
516                                Region& clearRegion, const bool supportProtectedContent,
517                                renderengine::LayerSettings& layer) {
518     return prepareClientLayer(renderArea, clip, false, clearRegion, supportProtectedContent, layer);
519 }
520 
prepareClientLayer(const RenderArea & renderArea,bool useIdentityTransform,Region & clearRegion,const bool supportProtectedContent,renderengine::LayerSettings & layer)521 bool Layer::prepareClientLayer(const RenderArea& renderArea, bool useIdentityTransform,
522                                Region& clearRegion, const bool supportProtectedContent,
523                                renderengine::LayerSettings& layer) {
524     return prepareClientLayer(renderArea, Region(renderArea.getBounds()), useIdentityTransform,
525                               clearRegion, supportProtectedContent, layer);
526 }
527 
prepareClientLayer(const RenderArea &,const Region &,bool useIdentityTransform,Region &,const bool,renderengine::LayerSettings & layer)528 bool Layer::prepareClientLayer(const RenderArea& /*renderArea*/, const Region& /*clip*/,
529                                bool useIdentityTransform, Region& /*clearRegion*/,
530                                const bool /*supportProtectedContent*/,
531                                renderengine::LayerSettings& layer) {
532     FloatRect bounds = getBounds();
533     half alpha = getAlpha();
534     layer.geometry.boundaries = bounds;
535     if (useIdentityTransform) {
536         layer.geometry.positionTransform = mat4();
537     } else {
538         const ui::Transform transform = getTransform();
539         mat4 m;
540         m[0][0] = transform[0][0];
541         m[0][1] = transform[0][1];
542         m[0][3] = transform[0][2];
543         m[1][0] = transform[1][0];
544         m[1][1] = transform[1][1];
545         m[1][3] = transform[1][2];
546         m[3][0] = transform[2][0];
547         m[3][1] = transform[2][1];
548         m[3][3] = transform[2][2];
549         layer.geometry.positionTransform = m;
550     }
551 
552     if (hasColorTransform()) {
553         layer.colorTransform = getColorTransform();
554     }
555 
556     const auto roundedCornerState = getRoundedCornerState();
557     layer.geometry.roundedCornersRadius = roundedCornerState.radius;
558     layer.geometry.roundedCornersCrop = roundedCornerState.cropRect;
559 
560     layer.alpha = alpha;
561     layer.sourceDataspace = mCurrentDataSpace;
562     return true;
563 }
564 
setCompositionType(const sp<const DisplayDevice> & display,Hwc2::IComposerClient::Composition type)565 void Layer::setCompositionType(const sp<const DisplayDevice>& display,
566                                Hwc2::IComposerClient::Composition type) {
567     const auto outputLayer = findOutputLayerForDisplay(display);
568     LOG_FATAL_IF(!outputLayer);
569     LOG_FATAL_IF(!outputLayer->getState().hwc);
570     auto& compositionState = outputLayer->editState();
571 
572     ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", ((*compositionState.hwc).hwcLayer)->getId(),
573           toString(type).c_str(), 1);
574     if ((*compositionState.hwc).hwcCompositionType != type) {
575         ALOGV("    actually setting");
576         (*compositionState.hwc).hwcCompositionType = type;
577 
578         auto error = (*compositionState.hwc)
579                              .hwcLayer->setCompositionType(static_cast<HWC2::Composition>(type));
580         ALOGE_IF(error != HWC2::Error::None,
581                  "[%s] Failed to set "
582                  "composition type %s: %s (%d)",
583                  mName.string(), toString(type).c_str(), to_string(error).c_str(),
584                  static_cast<int32_t>(error));
585     }
586 }
587 
getCompositionType(const sp<const DisplayDevice> & display) const588 Hwc2::IComposerClient::Composition Layer::getCompositionType(
589         const sp<const DisplayDevice>& display) const {
590     const auto outputLayer = findOutputLayerForDisplay(display);
591     LOG_FATAL_IF(!outputLayer);
592     return outputLayer->getState().hwc ? (*outputLayer->getState().hwc).hwcCompositionType
593                                        : Hwc2::IComposerClient::Composition::CLIENT;
594 }
595 
getClearClientTarget(const sp<const DisplayDevice> & display) const596 bool Layer::getClearClientTarget(const sp<const DisplayDevice>& display) const {
597     const auto outputLayer = findOutputLayerForDisplay(display);
598     LOG_FATAL_IF(!outputLayer);
599     return outputLayer->getState().clearClientTarget;
600 }
601 
addSyncPoint(const std::shared_ptr<SyncPoint> & point)602 bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
603     if (point->getFrameNumber() <= mCurrentFrameNumber) {
604         // Don't bother with a SyncPoint, since we've already latched the
605         // relevant frame
606         return false;
607     }
608     if (isRemovedFromCurrentState()) {
609         return false;
610     }
611 
612     Mutex::Autolock lock(mLocalSyncPointMutex);
613     mLocalSyncPoints.push_back(point);
614     return true;
615 }
616 
617 // ----------------------------------------------------------------------------
618 // local state
619 // ----------------------------------------------------------------------------
620 
computeGeometry(const RenderArea & renderArea,renderengine::Mesh & mesh,bool useIdentityTransform) const621 void Layer::computeGeometry(const RenderArea& renderArea,
622                             renderengine::Mesh& mesh,
623                             bool useIdentityTransform) const {
624     const ui::Transform renderAreaTransform(renderArea.getTransform());
625     FloatRect win = getBounds();
626 
627     vec2 lt = vec2(win.left, win.top);
628     vec2 lb = vec2(win.left, win.bottom);
629     vec2 rb = vec2(win.right, win.bottom);
630     vec2 rt = vec2(win.right, win.top);
631 
632     ui::Transform layerTransform = getTransform();
633     if (!useIdentityTransform) {
634         lt = layerTransform.transform(lt);
635         lb = layerTransform.transform(lb);
636         rb = layerTransform.transform(rb);
637         rt = layerTransform.transform(rt);
638     }
639 
640     renderengine::Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
641     position[0] = renderAreaTransform.transform(lt);
642     position[1] = renderAreaTransform.transform(lb);
643     position[2] = renderAreaTransform.transform(rb);
644     position[3] = renderAreaTransform.transform(rt);
645 }
646 
isSecure() const647 bool Layer::isSecure() const {
648     const State& s(mDrawingState);
649     return (s.flags & layer_state_t::eLayerSecure);
650 }
651 
setVisibleRegion(const Region & visibleRegion)652 void Layer::setVisibleRegion(const Region& visibleRegion) {
653     // always called from main thread
654     this->visibleRegion = visibleRegion;
655 }
656 
setCoveredRegion(const Region & coveredRegion)657 void Layer::setCoveredRegion(const Region& coveredRegion) {
658     // always called from main thread
659     this->coveredRegion = coveredRegion;
660 }
661 
setVisibleNonTransparentRegion(const Region & setVisibleNonTransparentRegion)662 void Layer::setVisibleNonTransparentRegion(const Region& setVisibleNonTransparentRegion) {
663     // always called from main thread
664     this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
665 }
666 
clearVisibilityRegions()667 void Layer::clearVisibilityRegions() {
668     visibleRegion.clear();
669     visibleNonTransparentRegion.clear();
670     coveredRegion.clear();
671 }
672 
673 // ----------------------------------------------------------------------------
674 // transaction
675 // ----------------------------------------------------------------------------
676 
pushPendingState()677 void Layer::pushPendingState() {
678     if (!mCurrentState.modified) {
679         return;
680     }
681     ATRACE_CALL();
682 
683     // If this transaction is waiting on the receipt of a frame, generate a sync
684     // point and send it to the remote layer.
685     // We don't allow installing sync points after we are removed from the current state
686     // as we won't be able to signal our end.
687     if (mCurrentState.barrierLayer_legacy != nullptr && !isRemovedFromCurrentState()) {
688         sp<Layer> barrierLayer = mCurrentState.barrierLayer_legacy.promote();
689         if (barrierLayer == nullptr) {
690             ALOGE("[%s] Unable to promote barrier Layer.", mName.string());
691             // If we can't promote the layer we are intended to wait on,
692             // then it is expired or otherwise invalid. Allow this transaction
693             // to be applied as per normal (no synchronization).
694             mCurrentState.barrierLayer_legacy = nullptr;
695         } else {
696             auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber_legacy, this);
697             if (barrierLayer->addSyncPoint(syncPoint)) {
698                 std::stringstream ss;
699                 ss << "Adding sync point " << mCurrentState.frameNumber_legacy;
700                 ATRACE_NAME(ss.str().c_str());
701                 mRemoteSyncPoints.push_back(std::move(syncPoint));
702             } else {
703                 // We already missed the frame we're supposed to synchronize
704                 // on, so go ahead and apply the state update
705                 mCurrentState.barrierLayer_legacy = nullptr;
706             }
707         }
708 
709         // Wake us up to check if the frame has been received
710         setTransactionFlags(eTransactionNeeded);
711         mFlinger->setTransactionFlags(eTraversalNeeded);
712     }
713     mPendingStates.push_back(mCurrentState);
714     ATRACE_INT(mTransactionName.string(), mPendingStates.size());
715 }
716 
popPendingState(State * stateToCommit)717 void Layer::popPendingState(State* stateToCommit) {
718     ATRACE_CALL();
719     *stateToCommit = mPendingStates[0];
720 
721     mPendingStates.removeAt(0);
722     ATRACE_INT(mTransactionName.string(), mPendingStates.size());
723 }
724 
applyPendingStates(State * stateToCommit)725 bool Layer::applyPendingStates(State* stateToCommit) {
726     bool stateUpdateAvailable = false;
727     while (!mPendingStates.empty()) {
728         if (mPendingStates[0].barrierLayer_legacy != nullptr) {
729             if (mRemoteSyncPoints.empty()) {
730                 // If we don't have a sync point for this, apply it anyway. It
731                 // will be visually wrong, but it should keep us from getting
732                 // into too much trouble.
733                 ALOGE("[%s] No local sync point found", mName.string());
734                 popPendingState(stateToCommit);
735                 stateUpdateAvailable = true;
736                 continue;
737             }
738 
739             if (mRemoteSyncPoints.front()->getFrameNumber() !=
740                 mPendingStates[0].frameNumber_legacy) {
741                 ALOGE("[%s] Unexpected sync point frame number found", mName.string());
742 
743                 // Signal our end of the sync point and then dispose of it
744                 mRemoteSyncPoints.front()->setTransactionApplied();
745                 mRemoteSyncPoints.pop_front();
746                 continue;
747             }
748 
749             if (mRemoteSyncPoints.front()->frameIsAvailable()) {
750                 ATRACE_NAME("frameIsAvailable");
751                 // Apply the state update
752                 popPendingState(stateToCommit);
753                 stateUpdateAvailable = true;
754 
755                 // Signal our end of the sync point and then dispose of it
756                 mRemoteSyncPoints.front()->setTransactionApplied();
757                 mRemoteSyncPoints.pop_front();
758             } else {
759                 ATRACE_NAME("!frameIsAvailable");
760                 break;
761             }
762         } else {
763             popPendingState(stateToCommit);
764             stateUpdateAvailable = true;
765         }
766     }
767 
768     // If we still have pending updates, wake SurfaceFlinger back up and point
769     // it at this layer so we can process them
770     if (!mPendingStates.empty()) {
771         setTransactionFlags(eTransactionNeeded);
772         mFlinger->setTransactionFlags(eTraversalNeeded);
773     }
774 
775     mCurrentState.modified = false;
776     return stateUpdateAvailable;
777 }
778 
doTransactionResize(uint32_t flags,State * stateToCommit)779 uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) {
780     const State& s(getDrawingState());
781 
782     const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) ||
783             (stateToCommit->requested_legacy.h != s.requested_legacy.h);
784 
785     if (sizeChanged) {
786         // the size changed, we need to ask our client to request a new buffer
787         ALOGD_IF(DEBUG_RESIZE,
788                  "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
789                  "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
790                  "            requested={ wh={%4u,%4u} }}\n"
791                  "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
792                  "            requested={ wh={%4u,%4u} }}\n",
793                  this, getName().string(), mCurrentTransform, getEffectiveScalingMode(),
794                  stateToCommit->active_legacy.w, stateToCommit->active_legacy.h,
795                  stateToCommit->crop_legacy.left, stateToCommit->crop_legacy.top,
796                  stateToCommit->crop_legacy.right, stateToCommit->crop_legacy.bottom,
797                  stateToCommit->crop_legacy.getWidth(), stateToCommit->crop_legacy.getHeight(),
798                  stateToCommit->requested_legacy.w, stateToCommit->requested_legacy.h,
799                  s.active_legacy.w, s.active_legacy.h, s.crop_legacy.left, s.crop_legacy.top,
800                  s.crop_legacy.right, s.crop_legacy.bottom, s.crop_legacy.getWidth(),
801                  s.crop_legacy.getHeight(), s.requested_legacy.w, s.requested_legacy.h);
802     }
803 
804     // Don't let Layer::doTransaction update the drawing state
805     // if we have a pending resize, unless we are in fixed-size mode.
806     // the drawing state will be updated only once we receive a buffer
807     // with the correct size.
808     //
809     // In particular, we want to make sure the clip (which is part
810     // of the geometry state) is latched together with the size but is
811     // latched immediately when no resizing is involved.
812     //
813     // If a sideband stream is attached, however, we want to skip this
814     // optimization so that transactions aren't missed when a buffer
815     // never arrives
816     //
817     // In the case that we don't have a buffer we ignore other factors
818     // and avoid entering the resizePending state. At a high level the
819     // resizePending state is to avoid applying the state of the new buffer
820     // to the old buffer. However in the state where we don't have an old buffer
821     // there is no such concern but we may still be being used as a parent layer.
822     const bool resizePending =
823             ((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) ||
824              (stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) &&
825             (mActiveBuffer != nullptr);
826     if (!isFixedSize()) {
827         if (resizePending && mSidebandStream == nullptr) {
828             flags |= eDontUpdateGeometryState;
829         }
830     }
831 
832     // Here we apply various requested geometry states, depending on our
833     // latching configuration. See Layer.h for a detailed discussion of
834     // how geometry latching is controlled.
835     if (!(flags & eDontUpdateGeometryState)) {
836         State& editCurrentState(getCurrentState());
837 
838         // If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize
839         // mode, which causes attributes which normally latch regardless of scaling mode,
840         // to be delayed. We copy the requested state to the active state making sure
841         // to respect these rules (again see Layer.h for a detailed discussion).
842         //
843         // There is an awkward asymmetry in the handling of the crop states in the position
844         // states, as can be seen below. Largely this arises from position and transform
845         // being stored in the same data structure while having different latching rules.
846         // b/38182305
847         //
848         // Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to
849         // applyPendingStates in the presence of deferred transactions.
850         if (mFreezeGeometryUpdates) {
851             float tx = stateToCommit->active_legacy.transform.tx();
852             float ty = stateToCommit->active_legacy.transform.ty();
853             stateToCommit->active_legacy = stateToCommit->requested_legacy;
854             stateToCommit->active_legacy.transform.set(tx, ty);
855             editCurrentState.active_legacy = stateToCommit->active_legacy;
856         } else {
857             editCurrentState.active_legacy = editCurrentState.requested_legacy;
858             stateToCommit->active_legacy = stateToCommit->requested_legacy;
859         }
860     }
861 
862     return flags;
863 }
864 
doTransaction(uint32_t flags)865 uint32_t Layer::doTransaction(uint32_t flags) {
866     ATRACE_CALL();
867 
868     if (mLayerDetached) {
869         return flags;
870     }
871 
872     if (mChildrenChanged) {
873         flags |= eVisibleRegion;
874         mChildrenChanged = false;
875     }
876 
877     pushPendingState();
878     State c = getCurrentState();
879     if (!applyPendingStates(&c)) {
880         return flags;
881     }
882 
883     flags = doTransactionResize(flags, &c);
884 
885     const State& s(getDrawingState());
886 
887     if (getActiveGeometry(c) != getActiveGeometry(s)) {
888         // invalidate and recompute the visible regions if needed
889         flags |= Layer::eVisibleRegion;
890     }
891 
892     if (c.sequence != s.sequence) {
893         // invalidate and recompute the visible regions if needed
894         flags |= eVisibleRegion;
895         this->contentDirty = true;
896 
897         // we may use linear filtering, if the matrix scales us
898         const uint8_t type = getActiveTransform(c).getType();
899         mNeedsFiltering = (!getActiveTransform(c).preserveRects() || type >= ui::Transform::SCALE);
900     }
901 
902     if (mCurrentState.inputInfoChanged) {
903         flags |= eInputInfoChanged;
904         mCurrentState.inputInfoChanged = false;
905     }
906 
907     // Commit the transaction
908     commitTransaction(c);
909     mPendingStatesSnapshot = mPendingStates;
910     mCurrentState.callbackHandles = {};
911     return flags;
912 }
913 
commitTransaction(const State & stateToCommit)914 void Layer::commitTransaction(const State& stateToCommit) {
915     mDrawingState = stateToCommit;
916 }
917 
getTransactionFlags(uint32_t flags)918 uint32_t Layer::getTransactionFlags(uint32_t flags) {
919     return mTransactionFlags.fetch_and(~flags) & flags;
920 }
921 
setTransactionFlags(uint32_t flags)922 uint32_t Layer::setTransactionFlags(uint32_t flags) {
923     return mTransactionFlags.fetch_or(flags);
924 }
925 
setPosition(float x,float y,bool immediate)926 bool Layer::setPosition(float x, float y, bool immediate) {
927     if (mCurrentState.requested_legacy.transform.tx() == x &&
928         mCurrentState.requested_legacy.transform.ty() == y)
929         return false;
930     mCurrentState.sequence++;
931 
932     // We update the requested and active position simultaneously because
933     // we want to apply the position portion of the transform matrix immediately,
934     // but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
935     mCurrentState.requested_legacy.transform.set(x, y);
936     if (immediate && !mFreezeGeometryUpdates) {
937         // Here we directly update the active state
938         // unlike other setters, because we store it within
939         // the transform, but use different latching rules.
940         // b/38182305
941         mCurrentState.active_legacy.transform.set(x, y);
942     }
943     mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate;
944 
945     mCurrentState.modified = true;
946     setTransactionFlags(eTransactionNeeded);
947     return true;
948 }
949 
setChildLayer(const sp<Layer> & childLayer,int32_t z)950 bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
951     ssize_t idx = mCurrentChildren.indexOf(childLayer);
952     if (idx < 0) {
953         return false;
954     }
955     if (childLayer->setLayer(z)) {
956         mCurrentChildren.removeAt(idx);
957         mCurrentChildren.add(childLayer);
958         return true;
959     }
960     return false;
961 }
962 
setChildRelativeLayer(const sp<Layer> & childLayer,const sp<IBinder> & relativeToHandle,int32_t relativeZ)963 bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
964         const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
965     ssize_t idx = mCurrentChildren.indexOf(childLayer);
966     if (idx < 0) {
967         return false;
968     }
969     if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
970         mCurrentChildren.removeAt(idx);
971         mCurrentChildren.add(childLayer);
972         return true;
973     }
974     return false;
975 }
976 
setLayer(int32_t z)977 bool Layer::setLayer(int32_t z) {
978     if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
979     mCurrentState.sequence++;
980     mCurrentState.z = z;
981     mCurrentState.modified = true;
982 
983     // Discard all relative layering.
984     if (mCurrentState.zOrderRelativeOf != nullptr) {
985         sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
986         if (strongRelative != nullptr) {
987             strongRelative->removeZOrderRelative(this);
988         }
989         setZOrderRelativeOf(nullptr);
990     }
991     setTransactionFlags(eTransactionNeeded);
992     return true;
993 }
994 
removeZOrderRelative(const wp<Layer> & relative)995 void Layer::removeZOrderRelative(const wp<Layer>& relative) {
996     mCurrentState.zOrderRelatives.remove(relative);
997     mCurrentState.sequence++;
998     mCurrentState.modified = true;
999     setTransactionFlags(eTransactionNeeded);
1000 }
1001 
addZOrderRelative(const wp<Layer> & relative)1002 void Layer::addZOrderRelative(const wp<Layer>& relative) {
1003     mCurrentState.zOrderRelatives.add(relative);
1004     mCurrentState.modified = true;
1005     mCurrentState.sequence++;
1006     setTransactionFlags(eTransactionNeeded);
1007 }
1008 
setZOrderRelativeOf(const wp<Layer> & relativeOf)1009 void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) {
1010     mCurrentState.zOrderRelativeOf = relativeOf;
1011     mCurrentState.sequence++;
1012     mCurrentState.modified = true;
1013     setTransactionFlags(eTransactionNeeded);
1014 }
1015 
setRelativeLayer(const sp<IBinder> & relativeToHandle,int32_t relativeZ)1016 bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
1017     sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
1018     if (handle == nullptr) {
1019         return false;
1020     }
1021     sp<Layer> relative = handle->owner.promote();
1022     if (relative == nullptr) {
1023         return false;
1024     }
1025 
1026     if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
1027         mCurrentState.zOrderRelativeOf == relative) {
1028         return false;
1029     }
1030 
1031     mCurrentState.sequence++;
1032     mCurrentState.modified = true;
1033     mCurrentState.z = relativeZ;
1034 
1035     auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote();
1036     if (oldZOrderRelativeOf != nullptr) {
1037         oldZOrderRelativeOf->removeZOrderRelative(this);
1038     }
1039     setZOrderRelativeOf(relative);
1040     relative->addZOrderRelative(this);
1041 
1042     setTransactionFlags(eTransactionNeeded);
1043 
1044     return true;
1045 }
1046 
setSize(uint32_t w,uint32_t h)1047 bool Layer::setSize(uint32_t w, uint32_t h) {
1048     if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h)
1049         return false;
1050     mCurrentState.requested_legacy.w = w;
1051     mCurrentState.requested_legacy.h = h;
1052     mCurrentState.modified = true;
1053     setTransactionFlags(eTransactionNeeded);
1054 
1055     // record the new size, from this point on, when the client request
1056     // a buffer, it'll get the new size.
1057     setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h);
1058     return true;
1059 }
setAlpha(float alpha)1060 bool Layer::setAlpha(float alpha) {
1061     if (mCurrentState.color.a == alpha) return false;
1062     mCurrentState.sequence++;
1063     mCurrentState.color.a = alpha;
1064     mCurrentState.modified = true;
1065     setTransactionFlags(eTransactionNeeded);
1066     return true;
1067 }
1068 
setBackgroundColor(const half3 & color,float alpha,ui::Dataspace dataspace)1069 bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) {
1070     if (!mCurrentState.bgColorLayer && alpha == 0) {
1071         return false;
1072     }
1073     mCurrentState.sequence++;
1074     mCurrentState.modified = true;
1075     setTransactionFlags(eTransactionNeeded);
1076 
1077     if (!mCurrentState.bgColorLayer && alpha != 0) {
1078         // create background color layer if one does not yet exist
1079         uint32_t flags = ISurfaceComposerClient::eFXSurfaceColor;
1080         const String8& name = mName + "BackgroundColorLayer";
1081         mCurrentState.bgColorLayer = new ColorLayer(
1082                 LayerCreationArgs(mFlinger.get(), nullptr, name, 0, 0, flags, LayerMetadata()));
1083 
1084         // add to child list
1085         addChild(mCurrentState.bgColorLayer);
1086         mFlinger->mLayersAdded = true;
1087         // set up SF to handle added color layer
1088         if (isRemovedFromCurrentState()) {
1089             mCurrentState.bgColorLayer->onRemovedFromCurrentState();
1090         }
1091         mFlinger->setTransactionFlags(eTransactionNeeded);
1092     } else if (mCurrentState.bgColorLayer && alpha == 0) {
1093         mCurrentState.bgColorLayer->reparent(nullptr);
1094         mCurrentState.bgColorLayer = nullptr;
1095         return true;
1096     }
1097 
1098     mCurrentState.bgColorLayer->setColor(color);
1099     mCurrentState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min());
1100     mCurrentState.bgColorLayer->setAlpha(alpha);
1101     mCurrentState.bgColorLayer->setDataspace(dataspace);
1102 
1103     return true;
1104 }
1105 
setCornerRadius(float cornerRadius)1106 bool Layer::setCornerRadius(float cornerRadius) {
1107     if (mCurrentState.cornerRadius == cornerRadius) return false;
1108 
1109     mCurrentState.sequence++;
1110     mCurrentState.cornerRadius = cornerRadius;
1111     mCurrentState.modified = true;
1112     setTransactionFlags(eTransactionNeeded);
1113     return true;
1114 }
1115 
setMatrix(const layer_state_t::matrix22_t & matrix,bool allowNonRectPreservingTransforms)1116 bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix,
1117         bool allowNonRectPreservingTransforms) {
1118     ui::Transform t;
1119     t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
1120 
1121     if (!allowNonRectPreservingTransforms && !t.preserveRects()) {
1122         ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER ignored");
1123         return false;
1124     }
1125     mCurrentState.sequence++;
1126     mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx,
1127                                                  matrix.dsdy);
1128     mCurrentState.modified = true;
1129     setTransactionFlags(eTransactionNeeded);
1130     return true;
1131 }
1132 
setTransparentRegionHint(const Region & transparent)1133 bool Layer::setTransparentRegionHint(const Region& transparent) {
1134     mCurrentState.requestedTransparentRegion_legacy = transparent;
1135     mCurrentState.modified = true;
1136     setTransactionFlags(eTransactionNeeded);
1137     return true;
1138 }
setFlags(uint8_t flags,uint8_t mask)1139 bool Layer::setFlags(uint8_t flags, uint8_t mask) {
1140     const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
1141     if (mCurrentState.flags == newFlags) return false;
1142     mCurrentState.sequence++;
1143     mCurrentState.flags = newFlags;
1144     mCurrentState.modified = true;
1145     setTransactionFlags(eTransactionNeeded);
1146     return true;
1147 }
1148 
setCrop_legacy(const Rect & crop,bool immediate)1149 bool Layer::setCrop_legacy(const Rect& crop, bool immediate) {
1150     if (mCurrentState.requestedCrop_legacy == crop) return false;
1151     mCurrentState.sequence++;
1152     mCurrentState.requestedCrop_legacy = crop;
1153     if (immediate && !mFreezeGeometryUpdates) {
1154         mCurrentState.crop_legacy = crop;
1155     }
1156     mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate;
1157 
1158     mCurrentState.modified = true;
1159     setTransactionFlags(eTransactionNeeded);
1160     return true;
1161 }
1162 
setOverrideScalingMode(int32_t scalingMode)1163 bool Layer::setOverrideScalingMode(int32_t scalingMode) {
1164     if (scalingMode == mOverrideScalingMode) return false;
1165     mOverrideScalingMode = scalingMode;
1166     setTransactionFlags(eTransactionNeeded);
1167     return true;
1168 }
1169 
setMetadata(const LayerMetadata & data)1170 bool Layer::setMetadata(const LayerMetadata& data) {
1171     if (!mCurrentState.metadata.merge(data, true /* eraseEmpty */)) return false;
1172     mCurrentState.sequence++;
1173     mCurrentState.modified = true;
1174     setTransactionFlags(eTransactionNeeded);
1175     return true;
1176 }
1177 
setLayerStack(uint32_t layerStack)1178 bool Layer::setLayerStack(uint32_t layerStack) {
1179     if (mCurrentState.layerStack == layerStack) return false;
1180     mCurrentState.sequence++;
1181     mCurrentState.layerStack = layerStack;
1182     mCurrentState.modified = true;
1183     setTransactionFlags(eTransactionNeeded);
1184     return true;
1185 }
1186 
setColorSpaceAgnostic(const bool agnostic)1187 bool Layer::setColorSpaceAgnostic(const bool agnostic) {
1188     if (mCurrentState.colorSpaceAgnostic == agnostic) {
1189         return false;
1190     }
1191     mCurrentState.sequence++;
1192     mCurrentState.colorSpaceAgnostic = agnostic;
1193     mCurrentState.modified = true;
1194     setTransactionFlags(eTransactionNeeded);
1195     return true;
1196 }
1197 
getLayerStack() const1198 uint32_t Layer::getLayerStack() const {
1199     auto p = mDrawingParent.promote();
1200     if (p == nullptr) {
1201         return getDrawingState().layerStack;
1202     }
1203     return p->getLayerStack();
1204 }
1205 
deferTransactionUntil_legacy(const sp<Layer> & barrierLayer,uint64_t frameNumber)1206 void Layer::deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber) {
1207     ATRACE_CALL();
1208     mCurrentState.barrierLayer_legacy = barrierLayer;
1209     mCurrentState.frameNumber_legacy = frameNumber;
1210     // We don't set eTransactionNeeded, because just receiving a deferral
1211     // request without any other state updates shouldn't actually induce a delay
1212     mCurrentState.modified = true;
1213     pushPendingState();
1214     mCurrentState.barrierLayer_legacy = nullptr;
1215     mCurrentState.frameNumber_legacy = 0;
1216     mCurrentState.modified = false;
1217 }
1218 
deferTransactionUntil_legacy(const sp<IBinder> & barrierHandle,uint64_t frameNumber)1219 void Layer::deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber) {
1220     sp<Handle> handle = static_cast<Handle*>(barrierHandle.get());
1221     deferTransactionUntil_legacy(handle->owner.promote(), frameNumber);
1222 }
1223 
1224 // ----------------------------------------------------------------------------
1225 // pageflip handling...
1226 // ----------------------------------------------------------------------------
1227 
isHiddenByPolicy() const1228 bool Layer::isHiddenByPolicy() const {
1229     const State& s(mDrawingState);
1230     const auto& parent = mDrawingParent.promote();
1231     if (parent != nullptr && parent->isHiddenByPolicy()) {
1232         return true;
1233     }
1234     if (usingRelativeZ(LayerVector::StateSet::Drawing)) {
1235         auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
1236         if (zOrderRelativeOf != nullptr) {
1237             if (zOrderRelativeOf->isHiddenByPolicy()) {
1238                 return true;
1239             }
1240         }
1241     }
1242     return s.flags & layer_state_t::eLayerHidden;
1243 }
1244 
getEffectiveUsage(uint32_t usage) const1245 uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
1246     // TODO: should we do something special if mSecure is set?
1247     if (mProtectedByApp) {
1248         // need a hardware-protected path to external video sink
1249         usage |= GraphicBuffer::USAGE_PROTECTED;
1250     }
1251     if (mPotentialCursor) {
1252         usage |= GraphicBuffer::USAGE_CURSOR;
1253     }
1254     usage |= GraphicBuffer::USAGE_HW_COMPOSER;
1255     return usage;
1256 }
1257 
updateTransformHint(const sp<const DisplayDevice> & display) const1258 void Layer::updateTransformHint(const sp<const DisplayDevice>& display) const {
1259     uint32_t orientation = 0;
1260     // Disable setting transform hint if the debug flag is set.
1261     if (!mFlinger->mDebugDisableTransformHint) {
1262         // The transform hint is used to improve performance, but we can
1263         // only have a single transform hint, it cannot
1264         // apply to all displays.
1265         const ui::Transform& planeTransform = display->getTransform();
1266         orientation = planeTransform.getOrientation();
1267         if (orientation & ui::Transform::ROT_INVALID) {
1268             orientation = 0;
1269         }
1270     }
1271     setTransformHint(orientation);
1272 }
1273 
1274 // ----------------------------------------------------------------------------
1275 // debugging
1276 // ----------------------------------------------------------------------------
1277 
1278 // TODO(marissaw): add new layer state info to layer debugging
getLayerDebugInfo() const1279 LayerDebugInfo Layer::getLayerDebugInfo() const {
1280     LayerDebugInfo info;
1281     const State& ds = getDrawingState();
1282     info.mName = getName();
1283     sp<Layer> parent = getParent();
1284     info.mParentName = (parent == nullptr ? std::string("none") : parent->getName().string());
1285     info.mType = std::string(getTypeId());
1286     info.mTransparentRegion = ds.activeTransparentRegion_legacy;
1287     info.mVisibleRegion = visibleRegion;
1288     info.mSurfaceDamageRegion = surfaceDamageRegion;
1289     info.mLayerStack = getLayerStack();
1290     info.mX = ds.active_legacy.transform.tx();
1291     info.mY = ds.active_legacy.transform.ty();
1292     info.mZ = ds.z;
1293     info.mWidth = ds.active_legacy.w;
1294     info.mHeight = ds.active_legacy.h;
1295     info.mCrop = ds.crop_legacy;
1296     info.mColor = ds.color;
1297     info.mFlags = ds.flags;
1298     info.mPixelFormat = getPixelFormat();
1299     info.mDataSpace = static_cast<android_dataspace>(mCurrentDataSpace);
1300     info.mMatrix[0][0] = ds.active_legacy.transform[0][0];
1301     info.mMatrix[0][1] = ds.active_legacy.transform[0][1];
1302     info.mMatrix[1][0] = ds.active_legacy.transform[1][0];
1303     info.mMatrix[1][1] = ds.active_legacy.transform[1][1];
1304     {
1305         sp<const GraphicBuffer> buffer = mActiveBuffer;
1306         if (buffer != 0) {
1307             info.mActiveBufferWidth = buffer->getWidth();
1308             info.mActiveBufferHeight = buffer->getHeight();
1309             info.mActiveBufferStride = buffer->getStride();
1310             info.mActiveBufferFormat = buffer->format;
1311         } else {
1312             info.mActiveBufferWidth = 0;
1313             info.mActiveBufferHeight = 0;
1314             info.mActiveBufferStride = 0;
1315             info.mActiveBufferFormat = 0;
1316         }
1317     }
1318     info.mNumQueuedFrames = getQueuedFrameCount();
1319     info.mRefreshPending = isBufferLatched();
1320     info.mIsOpaque = isOpaque(ds);
1321     info.mContentDirty = contentDirty;
1322     return info;
1323 }
1324 
miniDumpHeader(std::string & result)1325 void Layer::miniDumpHeader(std::string& result) {
1326     result.append("-------------------------------");
1327     result.append("-------------------------------");
1328     result.append("-----------------------------\n");
1329     result.append(" Layer name\n");
1330     result.append("           Z | ");
1331     result.append(" Window Type | ");
1332     result.append(" Comp Type | ");
1333     result.append(" Transform | ");
1334     result.append("  Disp Frame (LTRB) | ");
1335     result.append("         Source Crop (LTRB)\n");
1336     result.append("-------------------------------");
1337     result.append("-------------------------------");
1338     result.append("-----------------------------\n");
1339 }
1340 
miniDump(std::string & result,const sp<DisplayDevice> & displayDevice) const1341 void Layer::miniDump(std::string& result, const sp<DisplayDevice>& displayDevice) const {
1342     auto outputLayer = findOutputLayerForDisplay(displayDevice);
1343     if (!outputLayer) {
1344         return;
1345     }
1346 
1347     std::string name;
1348     if (mName.length() > 77) {
1349         std::string shortened;
1350         shortened.append(mName.string(), 36);
1351         shortened.append("[...]");
1352         shortened.append(mName.string() + (mName.length() - 36), 36);
1353         name = shortened;
1354     } else {
1355         name = std::string(mName.string(), mName.size());
1356     }
1357 
1358     StringAppendF(&result, " %s\n", name.c_str());
1359 
1360     const State& layerState(getDrawingState());
1361     const auto& compositionState = outputLayer->getState();
1362 
1363     if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
1364         StringAppendF(&result, "  rel %6d | ", layerState.z);
1365     } else {
1366         StringAppendF(&result, "  %10d | ", layerState.z);
1367     }
1368     StringAppendF(&result, "  %10d | ", mWindowType);
1369     StringAppendF(&result, "%10s | ", toString(getCompositionType(displayDevice)).c_str());
1370     StringAppendF(&result, "%10s | ",
1371                   toString(getCompositionLayer() ? compositionState.bufferTransform
1372                                                  : static_cast<Hwc2::Transform>(0))
1373                           .c_str());
1374     const Rect& frame = compositionState.displayFrame;
1375     StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
1376     const FloatRect& crop = compositionState.sourceCrop;
1377     StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right,
1378                   crop.bottom);
1379 
1380     result.append("- - - - - - - - - - - - - - - -");
1381     result.append("- - - - - - - - - - - - - - - -");
1382     result.append("- - - - - - - - - - - - - - -\n");
1383 }
1384 
dumpFrameStats(std::string & result) const1385 void Layer::dumpFrameStats(std::string& result) const {
1386     mFrameTracker.dumpStats(result);
1387 }
1388 
clearFrameStats()1389 void Layer::clearFrameStats() {
1390     mFrameTracker.clearStats();
1391 }
1392 
logFrameStats()1393 void Layer::logFrameStats() {
1394     mFrameTracker.logAndResetStats(mName);
1395 }
1396 
getFrameStats(FrameStats * outStats) const1397 void Layer::getFrameStats(FrameStats* outStats) const {
1398     mFrameTracker.getStats(outStats);
1399 }
1400 
dumpFrameEvents(std::string & result)1401 void Layer::dumpFrameEvents(std::string& result) {
1402     StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().string(), getTypeId(), this);
1403     Mutex::Autolock lock(mFrameEventHistoryMutex);
1404     mFrameEventHistory.checkFencesForCompletion();
1405     mFrameEventHistory.dump(result);
1406 }
1407 
onDisconnect()1408 void Layer::onDisconnect() {
1409     Mutex::Autolock lock(mFrameEventHistoryMutex);
1410     mFrameEventHistory.onDisconnect();
1411     mFlinger->mTimeStats->onDestroy(getSequence());
1412 }
1413 
addAndGetFrameTimestamps(const NewFrameEventsEntry * newTimestamps,FrameEventHistoryDelta * outDelta)1414 void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
1415                                      FrameEventHistoryDelta* outDelta) {
1416     if (newTimestamps) {
1417         mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber,
1418                                           getName().c_str(), newTimestamps->postedTime);
1419     }
1420 
1421     Mutex::Autolock lock(mFrameEventHistoryMutex);
1422     if (newTimestamps) {
1423         // If there are any unsignaled fences in the aquire timeline at this
1424         // point, the previously queued frame hasn't been latched yet. Go ahead
1425         // and try to get the signal time here so the syscall is taken out of
1426         // the main thread's critical path.
1427         mAcquireTimeline.updateSignalTimes();
1428         // Push the new fence after updating since it's likely still pending.
1429         mAcquireTimeline.push(newTimestamps->acquireFence);
1430         mFrameEventHistory.addQueue(*newTimestamps);
1431     }
1432 
1433     if (outDelta) {
1434         mFrameEventHistory.getAndResetDelta(outDelta);
1435     }
1436 }
1437 
getChildrenCount() const1438 size_t Layer::getChildrenCount() const {
1439     size_t count = 0;
1440     for (const sp<Layer>& child : mCurrentChildren) {
1441         count += 1 + child->getChildrenCount();
1442     }
1443     return count;
1444 }
1445 
addChild(const sp<Layer> & layer)1446 void Layer::addChild(const sp<Layer>& layer) {
1447     mChildrenChanged = true;
1448     setTransactionFlags(eTransactionNeeded);
1449 
1450     mCurrentChildren.add(layer);
1451     layer->setParent(this);
1452 }
1453 
removeChild(const sp<Layer> & layer)1454 ssize_t Layer::removeChild(const sp<Layer>& layer) {
1455     mChildrenChanged = true;
1456     setTransactionFlags(eTransactionNeeded);
1457 
1458     layer->setParent(nullptr);
1459     return mCurrentChildren.remove(layer);
1460 }
1461 
reparentChildren(const sp<IBinder> & newParentHandle)1462 bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
1463     sp<Handle> handle = nullptr;
1464     sp<Layer> newParent = nullptr;
1465     if (newParentHandle == nullptr) {
1466         return false;
1467     }
1468     handle = static_cast<Handle*>(newParentHandle.get());
1469     newParent = handle->owner.promote();
1470     if (newParent == nullptr) {
1471         ALOGE("Unable to promote Layer handle");
1472         return false;
1473     }
1474 
1475     if (attachChildren()) {
1476         setTransactionFlags(eTransactionNeeded);
1477     }
1478     for (const sp<Layer>& child : mCurrentChildren) {
1479         newParent->addChild(child);
1480     }
1481     mCurrentChildren.clear();
1482 
1483     return true;
1484 }
1485 
setChildrenDrawingParent(const sp<Layer> & newParent)1486 void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
1487     for (const sp<Layer>& child : mDrawingChildren) {
1488         child->mDrawingParent = newParent;
1489         child->computeBounds(newParent->mBounds,
1490                              newParent->getTransformWithScale(
1491                                      newParent->getBufferScaleTransform()));
1492     }
1493 }
1494 
reparent(const sp<IBinder> & newParentHandle)1495 bool Layer::reparent(const sp<IBinder>& newParentHandle) {
1496     bool callSetTransactionFlags = false;
1497 
1498     // While layers are detached, we allow most operations
1499     // and simply halt performing the actual transaction. However
1500     // for reparent != null we would enter the mRemovedFromCurrentState
1501     // state, regardless of whether doTransaction was called, and
1502     // so we need to prevent the update here.
1503     if (mLayerDetached && newParentHandle == nullptr) {
1504         return false;
1505     }
1506 
1507     sp<Layer> newParent;
1508     if (newParentHandle != nullptr) {
1509         auto handle = static_cast<Handle*>(newParentHandle.get());
1510         newParent = handle->owner.promote();
1511         if (newParent == nullptr) {
1512             ALOGE("Unable to promote Layer handle");
1513             return false;
1514         }
1515         if (newParent == this) {
1516             ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str());
1517             return false;
1518         }
1519     }
1520 
1521     sp<Layer> parent = getParent();
1522     if (parent != nullptr) {
1523         parent->removeChild(this);
1524     }
1525 
1526     if (newParentHandle != nullptr) {
1527         newParent->addChild(this);
1528         if (!newParent->isRemovedFromCurrentState()) {
1529             addToCurrentState();
1530         } else {
1531             onRemovedFromCurrentState();
1532         }
1533 
1534         if (mLayerDetached) {
1535             mLayerDetached = false;
1536             callSetTransactionFlags = true;
1537         }
1538     } else {
1539         onRemovedFromCurrentState();
1540     }
1541 
1542     if (callSetTransactionFlags || attachChildren()) {
1543         setTransactionFlags(eTransactionNeeded);
1544     }
1545     return true;
1546 }
1547 
detachChildren()1548 bool Layer::detachChildren() {
1549     for (const sp<Layer>& child : mCurrentChildren) {
1550         sp<Client> parentClient = mClientRef.promote();
1551         sp<Client> client(child->mClientRef.promote());
1552         if (client != nullptr && parentClient != client) {
1553             child->mLayerDetached = true;
1554             child->detachChildren();
1555             child->removeRemoteSyncPoints();
1556         }
1557     }
1558 
1559     return true;
1560 }
1561 
attachChildren()1562 bool Layer::attachChildren() {
1563     bool changed = false;
1564     for (const sp<Layer>& child : mCurrentChildren) {
1565         sp<Client> parentClient = mClientRef.promote();
1566         sp<Client> client(child->mClientRef.promote());
1567         if (client != nullptr && parentClient != client) {
1568             if (child->mLayerDetached) {
1569                 child->mLayerDetached = false;
1570                 changed = true;
1571             }
1572             changed |= child->attachChildren();
1573         }
1574     }
1575 
1576     return changed;
1577 }
1578 
setColorTransform(const mat4 & matrix)1579 bool Layer::setColorTransform(const mat4& matrix) {
1580     static const mat4 identityMatrix = mat4();
1581 
1582     if (mCurrentState.colorTransform == matrix) {
1583         return false;
1584     }
1585     ++mCurrentState.sequence;
1586     mCurrentState.colorTransform = matrix;
1587     mCurrentState.hasColorTransform = matrix != identityMatrix;
1588     mCurrentState.modified = true;
1589     setTransactionFlags(eTransactionNeeded);
1590     return true;
1591 }
1592 
getColorTransform() const1593 mat4 Layer::getColorTransform() const {
1594     mat4 colorTransform = mat4(getDrawingState().colorTransform);
1595     if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
1596         colorTransform = parent->getColorTransform() * colorTransform;
1597     }
1598     return colorTransform;
1599 }
1600 
hasColorTransform() const1601 bool Layer::hasColorTransform() const {
1602     bool hasColorTransform = getDrawingState().hasColorTransform;
1603     if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
1604         hasColorTransform = hasColorTransform || parent->hasColorTransform();
1605     }
1606     return hasColorTransform;
1607 }
1608 
isLegacyDataSpace() const1609 bool Layer::isLegacyDataSpace() const {
1610     // return true when no higher bits are set
1611     return !(mCurrentDataSpace & (ui::Dataspace::STANDARD_MASK |
1612                 ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK));
1613 }
1614 
setParent(const sp<Layer> & layer)1615 void Layer::setParent(const sp<Layer>& layer) {
1616     mCurrentParent = layer;
1617 }
1618 
getZ() const1619 int32_t Layer::getZ() const {
1620     return mDrawingState.z;
1621 }
1622 
usingRelativeZ(LayerVector::StateSet stateSet) const1623 bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const {
1624     const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1625     const State& state = useDrawing ? mDrawingState : mCurrentState;
1626     return state.zOrderRelativeOf != nullptr;
1627 }
1628 
makeTraversalList(LayerVector::StateSet stateSet,bool * outSkipRelativeZUsers)1629 __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
1630         LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
1631     LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
1632                         "makeTraversalList received invalid stateSet");
1633     const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1634     const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1635     const State& state = useDrawing ? mDrawingState : mCurrentState;
1636 
1637     if (state.zOrderRelatives.size() == 0) {
1638         *outSkipRelativeZUsers = true;
1639         return children;
1640     }
1641 
1642     LayerVector traverse(stateSet);
1643     for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
1644         sp<Layer> strongRelative = weakRelative.promote();
1645         if (strongRelative != nullptr) {
1646             traverse.add(strongRelative);
1647         }
1648     }
1649 
1650     for (const sp<Layer>& child : children) {
1651         const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
1652         if (childState.zOrderRelativeOf != nullptr) {
1653             continue;
1654         }
1655         traverse.add(child);
1656     }
1657 
1658     return traverse;
1659 }
1660 
1661 /**
1662  * Negatively signed relatives are before 'this' in Z-order.
1663  */
traverseInZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1664 void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
1665     // In the case we have other layers who are using a relative Z to us, makeTraversalList will
1666     // produce a new list for traversing, including our relatives, and not including our children
1667     // who are relatives of another surface. In the case that there are no relative Z,
1668     // makeTraversalList returns our children directly to avoid significant overhead.
1669     // However in this case we need to take the responsibility for filtering children which
1670     // are relatives of another surface here.
1671     bool skipRelativeZUsers = false;
1672     const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
1673 
1674     size_t i = 0;
1675     for (; i < list.size(); i++) {
1676         const auto& relative = list[i];
1677         if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1678             continue;
1679         }
1680 
1681         if (relative->getZ() >= 0) {
1682             break;
1683         }
1684         relative->traverseInZOrder(stateSet, visitor);
1685     }
1686 
1687     visitor(this);
1688     for (; i < list.size(); i++) {
1689         const auto& relative = list[i];
1690 
1691         if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1692             continue;
1693         }
1694         relative->traverseInZOrder(stateSet, visitor);
1695     }
1696 }
1697 
1698 /**
1699  * Positively signed relatives are before 'this' in reverse Z-order.
1700  */
traverseInReverseZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1701 void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
1702                                     const LayerVector::Visitor& visitor) {
1703     // See traverseInZOrder for documentation.
1704     bool skipRelativeZUsers = false;
1705     LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
1706 
1707     int32_t i = 0;
1708     for (i = int32_t(list.size()) - 1; i >= 0; i--) {
1709         const auto& relative = list[i];
1710 
1711         if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1712             continue;
1713         }
1714 
1715         if (relative->getZ() < 0) {
1716             break;
1717         }
1718         relative->traverseInReverseZOrder(stateSet, visitor);
1719     }
1720     visitor(this);
1721     for (; i >= 0; i--) {
1722         const auto& relative = list[i];
1723 
1724         if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1725             continue;
1726         }
1727 
1728         relative->traverseInReverseZOrder(stateSet, visitor);
1729     }
1730 }
1731 
makeChildrenTraversalList(LayerVector::StateSet stateSet,const std::vector<Layer * > & layersInTree)1732 LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
1733                                              const std::vector<Layer*>& layersInTree) {
1734     LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
1735                         "makeTraversalList received invalid stateSet");
1736     const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1737     const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1738     const State& state = useDrawing ? mDrawingState : mCurrentState;
1739 
1740     LayerVector traverse(stateSet);
1741     for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
1742         sp<Layer> strongRelative = weakRelative.promote();
1743         // Only add relative layers that are also descendents of the top most parent of the tree.
1744         // If a relative layer is not a descendent, then it should be ignored.
1745         if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
1746             traverse.add(strongRelative);
1747         }
1748     }
1749 
1750     for (const sp<Layer>& child : children) {
1751         const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
1752         // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
1753         // descendent of the top most parent of the tree. If it's not a descendent, then just add
1754         // the child here since it won't be added later as a relative.
1755         if (std::binary_search(layersInTree.begin(), layersInTree.end(),
1756                                childState.zOrderRelativeOf.promote().get())) {
1757             continue;
1758         }
1759         traverse.add(child);
1760     }
1761 
1762     return traverse;
1763 }
1764 
traverseChildrenInZOrderInner(const std::vector<Layer * > & layersInTree,LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1765 void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
1766                                           LayerVector::StateSet stateSet,
1767                                           const LayerVector::Visitor& visitor) {
1768     const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
1769 
1770     size_t i = 0;
1771     for (; i < list.size(); i++) {
1772         const auto& relative = list[i];
1773         if (relative->getZ() >= 0) {
1774             break;
1775         }
1776         relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
1777     }
1778 
1779     visitor(this);
1780     for (; i < list.size(); i++) {
1781         const auto& relative = list[i];
1782         relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
1783     }
1784 }
1785 
getLayersInTree(LayerVector::StateSet stateSet)1786 std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
1787     const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1788     const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1789 
1790     std::vector<Layer*> layersInTree = {this};
1791     for (size_t i = 0; i < children.size(); i++) {
1792         const auto& child = children[i];
1793         std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
1794         layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
1795     }
1796 
1797     return layersInTree;
1798 }
1799 
traverseChildrenInZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1800 void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
1801                                      const LayerVector::Visitor& visitor) {
1802     std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
1803     std::sort(layersInTree.begin(), layersInTree.end());
1804     traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
1805 }
1806 
getTransform() const1807 ui::Transform Layer::getTransform() const {
1808     return mEffectiveTransform;
1809 }
1810 
getAlpha() const1811 half Layer::getAlpha() const {
1812     const auto& p = mDrawingParent.promote();
1813 
1814     half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
1815     return parentAlpha * getDrawingState().color.a;
1816 }
1817 
getColor() const1818 half4 Layer::getColor() const {
1819     const half4 color(getDrawingState().color);
1820     return half4(color.r, color.g, color.b, getAlpha());
1821 }
1822 
getRoundedCornerState() const1823 Layer::RoundedCornerState Layer::getRoundedCornerState() const {
1824     const auto& p = mDrawingParent.promote();
1825     if (p != nullptr) {
1826         RoundedCornerState parentState = p->getRoundedCornerState();
1827         if (parentState.radius > 0) {
1828             ui::Transform t = getActiveTransform(getDrawingState());
1829             t = t.inverse();
1830             parentState.cropRect = t.transform(parentState.cropRect);
1831             // The rounded corners shader only accepts 1 corner radius for performance reasons,
1832             // but a transform matrix can define horizontal and vertical scales.
1833             // Let's take the average between both of them and pass into the shader, practically we
1834             // never do this type of transformation on windows anyway.
1835             parentState.radius *= (t[0][0] + t[1][1]) / 2.0f;
1836             return parentState;
1837         }
1838     }
1839     const float radius = getDrawingState().cornerRadius;
1840     return radius > 0 && getCrop(getDrawingState()).isValid()
1841             ? RoundedCornerState(getCrop(getDrawingState()).toFloatRect(), radius)
1842             : RoundedCornerState();
1843 }
1844 
commitChildList()1845 void Layer::commitChildList() {
1846     for (size_t i = 0; i < mCurrentChildren.size(); i++) {
1847         const auto& child = mCurrentChildren[i];
1848         child->commitChildList();
1849     }
1850     mDrawingChildren = mCurrentChildren;
1851     mDrawingParent = mCurrentParent;
1852 }
1853 
extractLayerFromBinder(const wp<IBinder> & weakBinderHandle)1854 static wp<Layer> extractLayerFromBinder(const wp<IBinder>& weakBinderHandle) {
1855     if (weakBinderHandle == nullptr) {
1856         return nullptr;
1857     }
1858     sp<IBinder> binderHandle = weakBinderHandle.promote();
1859     if (binderHandle == nullptr) {
1860         return nullptr;
1861     }
1862     sp<Layer::Handle> handle = static_cast<Layer::Handle*>(binderHandle.get());
1863     if (handle == nullptr) {
1864         return nullptr;
1865     }
1866     return handle->owner;
1867 }
1868 
setInputInfo(const InputWindowInfo & info)1869 void Layer::setInputInfo(const InputWindowInfo& info) {
1870     mCurrentState.inputInfo = info;
1871     mCurrentState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle);
1872     mCurrentState.modified = true;
1873     mCurrentState.inputInfoChanged = true;
1874     setTransactionFlags(eTransactionNeeded);
1875 }
1876 
writeToProtoDrawingState(LayerProto * layerInfo,uint32_t traceFlags) const1877 void Layer::writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags) const {
1878     ui::Transform transform = getTransform();
1879 
1880     if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
1881         for (const auto& pendingState : mPendingStatesSnapshot) {
1882             auto barrierLayer = pendingState.barrierLayer_legacy.promote();
1883             if (barrierLayer != nullptr) {
1884                 BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer();
1885                 barrierLayerProto->set_id(barrierLayer->sequence);
1886                 barrierLayerProto->set_frame_number(pendingState.frameNumber_legacy);
1887             }
1888         }
1889 
1890         auto buffer = mActiveBuffer;
1891         if (buffer != nullptr) {
1892             LayerProtoHelper::writeToProto(buffer,
1893                                            [&]() { return layerInfo->mutable_active_buffer(); });
1894             LayerProtoHelper::writeToProto(ui::Transform(mCurrentTransform),
1895                                            layerInfo->mutable_buffer_transform());
1896         }
1897         layerInfo->set_invalidate(contentDirty);
1898         layerInfo->set_is_protected(isProtected());
1899         layerInfo->set_dataspace(
1900                 dataspaceDetails(static_cast<android_dataspace>(mCurrentDataSpace)));
1901         layerInfo->set_queued_frames(getQueuedFrameCount());
1902         layerInfo->set_refresh_pending(isBufferLatched());
1903         layerInfo->set_curr_frame(mCurrentFrameNumber);
1904         layerInfo->set_effective_scaling_mode(getEffectiveScalingMode());
1905 
1906         layerInfo->set_corner_radius(getRoundedCornerState().radius);
1907         LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform());
1908         LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(),
1909                                                [&]() { return layerInfo->mutable_position(); });
1910         LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); });
1911         LayerProtoHelper::writeToProto(visibleRegion,
1912                                        [&]() { return layerInfo->mutable_visible_region(); });
1913         LayerProtoHelper::writeToProto(surfaceDamageRegion,
1914                                        [&]() { return layerInfo->mutable_damage_region(); });
1915     }
1916 
1917     if (traceFlags & SurfaceTracing::TRACE_EXTRA) {
1918         LayerProtoHelper::writeToProto(mSourceBounds,
1919                                        [&]() { return layerInfo->mutable_source_bounds(); });
1920         LayerProtoHelper::writeToProto(mScreenBounds,
1921                                        [&]() { return layerInfo->mutable_screen_bounds(); });
1922     }
1923 }
1924 
writeToProtoCommonState(LayerProto * layerInfo,LayerVector::StateSet stateSet,uint32_t traceFlags) const1925 void Layer::writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet,
1926                                     uint32_t traceFlags) const {
1927     const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1928     const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1929     const State& state = useDrawing ? mDrawingState : mCurrentState;
1930 
1931     ui::Transform requestedTransform = state.active_legacy.transform;
1932 
1933     if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
1934         layerInfo->set_id(sequence);
1935         layerInfo->set_name(getName().c_str());
1936         layerInfo->set_type(String8(getTypeId()));
1937 
1938         for (const auto& child : children) {
1939             layerInfo->add_children(child->sequence);
1940         }
1941 
1942         for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
1943             sp<Layer> strongRelative = weakRelative.promote();
1944             if (strongRelative != nullptr) {
1945                 layerInfo->add_relatives(strongRelative->sequence);
1946             }
1947         }
1948 
1949         LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy,
1950                                        [&]() { return layerInfo->mutable_transparent_region(); });
1951 
1952         layerInfo->set_layer_stack(getLayerStack());
1953         layerInfo->set_z(state.z);
1954 
1955         LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(),
1956                                                [&]() {
1957                                                    return layerInfo->mutable_requested_position();
1958                                                });
1959 
1960         LayerProtoHelper::writeSizeToProto(state.active_legacy.w, state.active_legacy.h,
1961                                            [&]() { return layerInfo->mutable_size(); });
1962 
1963         LayerProtoHelper::writeToProto(state.crop_legacy,
1964                                        [&]() { return layerInfo->mutable_crop(); });
1965 
1966         layerInfo->set_is_opaque(isOpaque(state));
1967 
1968 
1969         layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
1970         LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); });
1971         LayerProtoHelper::writeToProto(state.color,
1972                                        [&]() { return layerInfo->mutable_requested_color(); });
1973         layerInfo->set_flags(state.flags);
1974 
1975         LayerProtoHelper::writeToProto(requestedTransform,
1976                                        layerInfo->mutable_requested_transform());
1977 
1978         auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
1979         if (parent != nullptr) {
1980             layerInfo->set_parent(parent->sequence);
1981         } else {
1982             layerInfo->set_parent(-1);
1983         }
1984 
1985         auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
1986         if (zOrderRelativeOf != nullptr) {
1987             layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
1988         } else {
1989             layerInfo->set_z_order_relative_of(-1);
1990         }
1991     }
1992 
1993     if (traceFlags & SurfaceTracing::TRACE_INPUT) {
1994         LayerProtoHelper::writeToProto(state.inputInfo, state.touchableRegionCrop,
1995                                        [&]() { return layerInfo->mutable_input_window_info(); });
1996     }
1997 
1998     if (traceFlags & SurfaceTracing::TRACE_EXTRA) {
1999         auto protoMap = layerInfo->mutable_metadata();
2000         for (const auto& entry : state.metadata.mMap) {
2001             (*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend());
2002         }
2003     }
2004 }
2005 
writeToProtoCompositionState(LayerProto * layerInfo,const sp<DisplayDevice> & displayDevice,uint32_t traceFlags) const2006 void Layer::writeToProtoCompositionState(LayerProto* layerInfo,
2007                                          const sp<DisplayDevice>& displayDevice,
2008                                          uint32_t traceFlags) const {
2009     auto outputLayer = findOutputLayerForDisplay(displayDevice);
2010     if (!outputLayer) {
2011         return;
2012     }
2013 
2014     writeToProtoDrawingState(layerInfo, traceFlags);
2015     writeToProtoCommonState(layerInfo, LayerVector::StateSet::Drawing, traceFlags);
2016 
2017     const auto& compositionState = outputLayer->getState();
2018 
2019     const Rect& frame = compositionState.displayFrame;
2020     LayerProtoHelper::writeToProto(frame, [&]() { return layerInfo->mutable_hwc_frame(); });
2021 
2022     const FloatRect& crop = compositionState.sourceCrop;
2023     LayerProtoHelper::writeToProto(crop, [&]() { return layerInfo->mutable_hwc_crop(); });
2024 
2025     const int32_t transform =
2026             getCompositionLayer() ? static_cast<int32_t>(compositionState.bufferTransform) : 0;
2027     layerInfo->set_hwc_transform(transform);
2028 
2029     const int32_t compositionType =
2030             static_cast<int32_t>(compositionState.hwc ? (*compositionState.hwc).hwcCompositionType
2031                                                       : Hwc2::IComposerClient::Composition::CLIENT);
2032     layerInfo->set_hwc_composition_type(compositionType);
2033 }
2034 
isRemovedFromCurrentState() const2035 bool Layer::isRemovedFromCurrentState() const  {
2036     return mRemovedFromCurrentState;
2037 }
2038 
fillInputInfo()2039 InputWindowInfo Layer::fillInputInfo() {
2040     InputWindowInfo info = mDrawingState.inputInfo;
2041 
2042     if (info.displayId == ADISPLAY_ID_NONE) {
2043         info.displayId = getLayerStack();
2044     }
2045 
2046     ui::Transform t = getTransform();
2047     const float xScale = t.sx();
2048     const float yScale = t.sy();
2049     int32_t xSurfaceInset = info.surfaceInset;
2050     int32_t ySurfaceInset = info.surfaceInset;
2051     if (xScale != 1.0f || yScale != 1.0f) {
2052         info.windowXScale *= (xScale != 0.0f) ? 1.0f / xScale : 0.0f;
2053         info.windowYScale *= (yScale != 0.0f) ? 1.0f / yScale : 0.0f;
2054         info.touchableRegion.scaleSelf(xScale, yScale);
2055         xSurfaceInset = std::round(xSurfaceInset * xScale);
2056         ySurfaceInset = std::round(ySurfaceInset * yScale);
2057     }
2058 
2059     // Transform layer size to screen space and inset it by surface insets.
2060     // If this is a portal window, set the touchableRegion to the layerBounds.
2061     Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE
2062             ? getBufferSize(getDrawingState())
2063             : info.touchableRegion.getBounds();
2064     if (!layerBounds.isValid()) {
2065         layerBounds = getCroppedBufferSize(getDrawingState());
2066     }
2067     layerBounds = t.transform(layerBounds);
2068 
2069     // clamp inset to layer bounds
2070     xSurfaceInset = (xSurfaceInset >= 0) ? std::min(xSurfaceInset, layerBounds.getWidth() / 2) : 0;
2071     ySurfaceInset = (ySurfaceInset >= 0) ? std::min(ySurfaceInset, layerBounds.getHeight() / 2) : 0;
2072 
2073     layerBounds.inset(xSurfaceInset, ySurfaceInset, xSurfaceInset, ySurfaceInset);
2074 
2075     // Input coordinate should match the layer bounds.
2076     info.frameLeft = layerBounds.left;
2077     info.frameTop = layerBounds.top;
2078     info.frameRight = layerBounds.right;
2079     info.frameBottom = layerBounds.bottom;
2080 
2081     // Position the touchable region relative to frame screen location and restrict it to frame
2082     // bounds.
2083     info.touchableRegion = info.touchableRegion.translate(info.frameLeft, info.frameTop);
2084     info.visible = canReceiveInput();
2085 
2086     auto cropLayer = mDrawingState.touchableRegionCrop.promote();
2087     if (info.replaceTouchableRegionWithCrop) {
2088         if (cropLayer == nullptr) {
2089             info.touchableRegion = Region(Rect{mScreenBounds});
2090         } else {
2091             info.touchableRegion = Region(Rect{cropLayer->mScreenBounds});
2092         }
2093     } else if (cropLayer != nullptr) {
2094         info.touchableRegion = info.touchableRegion.intersect(Rect{cropLayer->mScreenBounds});
2095     }
2096 
2097     return info;
2098 }
2099 
hasInput() const2100 bool Layer::hasInput() const {
2101     return mDrawingState.inputInfo.token != nullptr;
2102 }
2103 
getCompositionLayer() const2104 std::shared_ptr<compositionengine::Layer> Layer::getCompositionLayer() const {
2105     return nullptr;
2106 }
2107 
canReceiveInput() const2108 bool Layer::canReceiveInput() const {
2109     return !isHiddenByPolicy();
2110 }
2111 
findOutputLayerForDisplay(const sp<const DisplayDevice> & display) const2112 compositionengine::OutputLayer* Layer::findOutputLayerForDisplay(
2113         const sp<const DisplayDevice>& display) const {
2114     return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionLayer().get());
2115 }
2116 
2117 // ---------------------------------------------------------------------------
2118 
2119 }; // namespace android
2120 
2121 #if defined(__gl_h_)
2122 #error "don't include gl/gl.h in this file"
2123 #endif
2124 
2125 #if defined(__gl2_h_)
2126 #error "don't include gl2/gl2.h in this file"
2127 #endif
2128