1 /*
2  * Copyright 2008, The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "DEBUG"
18 
19 #include "libdebuggerd/utility.h"
20 
21 #include <errno.h>
22 #include <signal.h>
23 #include <string.h>
24 #include <sys/capability.h>
25 #include <sys/prctl.h>
26 #include <sys/ptrace.h>
27 #include <sys/uio.h>
28 #include <sys/wait.h>
29 #include <unistd.h>
30 
31 #include <string>
32 
33 #include <android-base/logging.h>
34 #include <android-base/properties.h>
35 #include <android-base/stringprintf.h>
36 #include <android-base/strings.h>
37 #include <android-base/unique_fd.h>
38 #include <bionic/mte_kernel.h>
39 #include <bionic/reserved_signals.h>
40 #include <debuggerd/handler.h>
41 #include <log/log.h>
42 #include <unwindstack/Memory.h>
43 #include <unwindstack/Unwinder.h>
44 
45 using android::base::unique_fd;
46 
47 // Whitelist output desired in the logcat output.
is_allowed_in_logcat(enum logtype ltype)48 bool is_allowed_in_logcat(enum logtype ltype) {
49   if ((ltype == HEADER)
50    || (ltype == REGISTERS)
51    || (ltype == BACKTRACE)) {
52     return true;
53   }
54   return false;
55 }
56 
should_write_to_kmsg()57 static bool should_write_to_kmsg() {
58   // Write to kmsg if tombstoned isn't up, and we're able to do so.
59   if (!android::base::GetBoolProperty("ro.debuggable", false)) {
60     return false;
61   }
62 
63   if (android::base::GetProperty("init.svc.tombstoned", "") == "running") {
64     return false;
65   }
66 
67   return true;
68 }
69 
70 __attribute__((__weak__, visibility("default")))
_LOG(log_t * log,enum logtype ltype,const char * fmt,...)71 void _LOG(log_t* log, enum logtype ltype, const char* fmt, ...) {
72   va_list ap;
73   va_start(ap, fmt);
74   _VLOG(log, ltype, fmt, ap);
75   va_end(ap);
76 }
77 
78 __attribute__((__weak__, visibility("default")))
_VLOG(log_t * log,enum logtype ltype,const char * fmt,va_list ap)79 void _VLOG(log_t* log, enum logtype ltype, const char* fmt, va_list ap) {
80   bool write_to_tombstone = (log->tfd != -1);
81   bool write_to_logcat = is_allowed_in_logcat(ltype)
82                       && log->crashed_tid != -1
83                       && log->current_tid != -1
84                       && (log->crashed_tid == log->current_tid);
85   static bool write_to_kmsg = should_write_to_kmsg();
86 
87   std::string msg;
88   android::base::StringAppendV(&msg, fmt, ap);
89 
90   if (msg.empty()) return;
91 
92   if (write_to_tombstone) {
93     TEMP_FAILURE_RETRY(write(log->tfd, msg.c_str(), msg.size()));
94   }
95 
96   if (write_to_logcat) {
97     __android_log_buf_write(LOG_ID_CRASH, ANDROID_LOG_FATAL, LOG_TAG, msg.c_str());
98     if (log->amfd_data != nullptr) {
99       *log->amfd_data += msg;
100     }
101 
102     if (write_to_kmsg) {
103       unique_fd kmsg_fd(open("/dev/kmsg_debug", O_WRONLY | O_APPEND | O_CLOEXEC));
104       if (kmsg_fd.get() >= 0) {
105         // Our output might contain newlines which would otherwise be handled by the android logger.
106         // Split the lines up ourselves before sending to the kernel logger.
107         if (msg.back() == '\n') {
108           msg.back() = '\0';
109         }
110 
111         std::vector<std::string> fragments = android::base::Split(msg, "\n");
112         for (const std::string& fragment : fragments) {
113           static constexpr char prefix[] = "<3>DEBUG: ";
114           struct iovec iov[3];
115           iov[0].iov_base = const_cast<char*>(prefix);
116           iov[0].iov_len = strlen(prefix);
117           iov[1].iov_base = const_cast<char*>(fragment.c_str());
118           iov[1].iov_len = fragment.length();
119           iov[2].iov_base = const_cast<char*>("\n");
120           iov[2].iov_len = 1;
121           TEMP_FAILURE_RETRY(writev(kmsg_fd.get(), iov, 3));
122         }
123       }
124     }
125   }
126 }
127 
128 #define MEMORY_BYTES_TO_DUMP 256
129 #define MEMORY_BYTES_PER_LINE 16
130 
dump_memory(log_t * log,unwindstack::Memory * memory,uint64_t addr,const std::string & label)131 void dump_memory(log_t* log, unwindstack::Memory* memory, uint64_t addr, const std::string& label) {
132   // Align the address to the number of bytes per line to avoid confusing memory tag output if
133   // memory is tagged and we start from a misaligned address. Start 32 bytes before the address.
134   addr &= ~(MEMORY_BYTES_PER_LINE - 1);
135   if (addr >= 4128) {
136     addr -= 32;
137   }
138 
139   // We don't want the address tag to appear in the addresses in the memory dump.
140   addr = untag_address(addr);
141 
142   // Don't bother if the address would overflow, taking tag bits into account. Note that
143   // untag_address truncates to 32 bits on 32-bit platforms as a side effect of returning a
144   // uintptr_t, so this also checks for 32-bit overflow.
145   if (untag_address(addr + MEMORY_BYTES_TO_DUMP - 1) < addr) {
146     return;
147   }
148 
149   // Dump 256 bytes
150   uintptr_t data[MEMORY_BYTES_TO_DUMP/sizeof(uintptr_t)];
151   memset(data, 0, MEMORY_BYTES_TO_DUMP);
152   size_t bytes = memory->Read(addr, reinterpret_cast<uint8_t*>(data), sizeof(data));
153   if (bytes % sizeof(uintptr_t) != 0) {
154     // This should never happen, but just in case.
155     ALOGE("Bytes read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t));
156     bytes &= ~(sizeof(uintptr_t) - 1);
157   }
158 
159   uint64_t start = 0;
160   bool skip_2nd_read = false;
161   if (bytes == 0) {
162     // In this case, we might want to try another read at the beginning of
163     // the next page only if it's within the amount of memory we would have
164     // read.
165     size_t page_size = sysconf(_SC_PAGE_SIZE);
166     start = ((addr + (page_size - 1)) & ~(page_size - 1)) - addr;
167     if (start == 0 || start >= MEMORY_BYTES_TO_DUMP) {
168       skip_2nd_read = true;
169     }
170   }
171 
172   if (bytes < MEMORY_BYTES_TO_DUMP && !skip_2nd_read) {
173     // Try to do one more read. This could happen if a read crosses a map,
174     // but the maps do not have any break between them. Or it could happen
175     // if reading from an unreadable map, but the read would cross back
176     // into a readable map. Only requires one extra read because a map has
177     // to contain at least one page, and the total number of bytes to dump
178     // is smaller than a page.
179     size_t bytes2 = memory->Read(addr + start + bytes, reinterpret_cast<uint8_t*>(data) + bytes,
180                                  sizeof(data) - bytes - start);
181     bytes += bytes2;
182     if (bytes2 > 0 && bytes % sizeof(uintptr_t) != 0) {
183       // This should never happen, but we'll try and continue any way.
184       ALOGE("Bytes after second read %zu, is not a multiple of %zu", bytes, sizeof(uintptr_t));
185       bytes &= ~(sizeof(uintptr_t) - 1);
186     }
187   }
188 
189   // If we were unable to read anything, it probably means that the register doesn't contain a
190   // valid pointer. In that case, skip the output for this register entirely rather than emitting 16
191   // lines of dashes.
192   if (bytes == 0) {
193     return;
194   }
195 
196   _LOG(log, logtype::MEMORY, "\n%s:\n", label.c_str());
197 
198   // Dump the code around memory as:
199   //  addr             contents                           ascii
200   //  0000000000008d34 ef000000e8bd0090 e1b00000512fff1e  ............../Q
201   //  0000000000008d44 ea00b1f9e92d0090 e3a070fcef000000  ......-..p......
202   // On 32-bit machines, there are still 16 bytes per line but addresses and
203   // words are of course presented differently.
204   uintptr_t* data_ptr = data;
205   size_t current = 0;
206   size_t total_bytes = start + bytes;
207   for (size_t line = 0; line < MEMORY_BYTES_TO_DUMP / MEMORY_BYTES_PER_LINE; line++) {
208     uint64_t tagged_addr = addr;
209     long tag = memory->ReadTag(addr);
210     if (tag >= 0) {
211       tagged_addr |= static_cast<uint64_t>(tag) << 56;
212     }
213     std::string logline;
214     android::base::StringAppendF(&logline, "    %" PRIPTR, tagged_addr);
215 
216     addr += MEMORY_BYTES_PER_LINE;
217     std::string ascii;
218     for (size_t i = 0; i < MEMORY_BYTES_PER_LINE / sizeof(uintptr_t); i++) {
219       if (current >= start && current + sizeof(uintptr_t) <= total_bytes) {
220         android::base::StringAppendF(&logline, " %" PRIPTR, static_cast<uint64_t>(*data_ptr));
221 
222         // Fill out the ascii string from the data.
223         uint8_t* ptr = reinterpret_cast<uint8_t*>(data_ptr);
224         for (size_t val = 0; val < sizeof(uintptr_t); val++, ptr++) {
225           if (*ptr >= 0x20 && *ptr < 0x7f) {
226             ascii += *ptr;
227           } else {
228             ascii += '.';
229           }
230         }
231         data_ptr++;
232       } else {
233         logline += ' ' + std::string(sizeof(uintptr_t) * 2, '-');
234         ascii += std::string(sizeof(uintptr_t), '.');
235       }
236       current += sizeof(uintptr_t);
237     }
238     _LOG(log, logtype::MEMORY, "%s  %s\n", logline.c_str(), ascii.c_str());
239   }
240 }
241 
drop_capabilities()242 void drop_capabilities() {
243   __user_cap_header_struct capheader;
244   memset(&capheader, 0, sizeof(capheader));
245   capheader.version = _LINUX_CAPABILITY_VERSION_3;
246   capheader.pid = 0;
247 
248   __user_cap_data_struct capdata[2];
249   memset(&capdata, 0, sizeof(capdata));
250 
251   if (capset(&capheader, &capdata[0]) == -1) {
252     PLOG(FATAL) << "failed to drop capabilities";
253   }
254 
255   if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) != 0) {
256     PLOG(FATAL) << "failed to set PR_SET_NO_NEW_PRIVS";
257   }
258 }
259 
signal_has_si_addr(const siginfo_t * si)260 bool signal_has_si_addr(const siginfo_t* si) {
261   // Manually sent signals won't have si_addr.
262   if (si->si_code == SI_USER || si->si_code == SI_QUEUE || si->si_code == SI_TKILL) {
263     return false;
264   }
265 
266   switch (si->si_signo) {
267     case SIGBUS:
268     case SIGFPE:
269     case SIGILL:
270     case SIGSEGV:
271     case SIGTRAP:
272       return true;
273     default:
274       return false;
275   }
276 }
277 
signal_has_sender(const siginfo_t * si,pid_t caller_pid)278 bool signal_has_sender(const siginfo_t* si, pid_t caller_pid) {
279   return SI_FROMUSER(si) && (si->si_pid != 0) && (si->si_pid != caller_pid);
280 }
281 
get_signal_sender(char * buf,size_t n,const siginfo_t * si)282 void get_signal_sender(char* buf, size_t n, const siginfo_t* si) {
283   snprintf(buf, n, " from pid %d, uid %d", si->si_pid, si->si_uid);
284 }
285 
get_signame(const siginfo_t * si)286 const char* get_signame(const siginfo_t* si) {
287   switch (si->si_signo) {
288     case SIGABRT: return "SIGABRT";
289     case SIGBUS: return "SIGBUS";
290     case SIGFPE: return "SIGFPE";
291     case SIGILL: return "SIGILL";
292     case SIGSEGV: return "SIGSEGV";
293     case SIGSTKFLT: return "SIGSTKFLT";
294     case SIGSTOP: return "SIGSTOP";
295     case SIGSYS: return "SIGSYS";
296     case SIGTRAP: return "SIGTRAP";
297     case BIONIC_SIGNAL_DEBUGGER:
298       return "<debuggerd signal>";
299     default: return "?";
300   }
301 }
302 
get_sigcode(const siginfo_t * si)303 const char* get_sigcode(const siginfo_t* si) {
304   // Try the signal-specific codes...
305   switch (si->si_signo) {
306     case SIGILL:
307       switch (si->si_code) {
308         case ILL_ILLOPC: return "ILL_ILLOPC";
309         case ILL_ILLOPN: return "ILL_ILLOPN";
310         case ILL_ILLADR: return "ILL_ILLADR";
311         case ILL_ILLTRP: return "ILL_ILLTRP";
312         case ILL_PRVOPC: return "ILL_PRVOPC";
313         case ILL_PRVREG: return "ILL_PRVREG";
314         case ILL_COPROC: return "ILL_COPROC";
315         case ILL_BADSTK: return "ILL_BADSTK";
316         case ILL_BADIADDR:
317           return "ILL_BADIADDR";
318         case __ILL_BREAK:
319           return "ILL_BREAK";
320         case __ILL_BNDMOD:
321           return "ILL_BNDMOD";
322       }
323       static_assert(NSIGILL == __ILL_BNDMOD, "missing ILL_* si_code");
324       break;
325     case SIGBUS:
326       switch (si->si_code) {
327         case BUS_ADRALN: return "BUS_ADRALN";
328         case BUS_ADRERR: return "BUS_ADRERR";
329         case BUS_OBJERR: return "BUS_OBJERR";
330         case BUS_MCEERR_AR: return "BUS_MCEERR_AR";
331         case BUS_MCEERR_AO: return "BUS_MCEERR_AO";
332       }
333       static_assert(NSIGBUS == BUS_MCEERR_AO, "missing BUS_* si_code");
334       break;
335     case SIGFPE:
336       switch (si->si_code) {
337         case FPE_INTDIV: return "FPE_INTDIV";
338         case FPE_INTOVF: return "FPE_INTOVF";
339         case FPE_FLTDIV: return "FPE_FLTDIV";
340         case FPE_FLTOVF: return "FPE_FLTOVF";
341         case FPE_FLTUND: return "FPE_FLTUND";
342         case FPE_FLTRES: return "FPE_FLTRES";
343         case FPE_FLTINV: return "FPE_FLTINV";
344         case FPE_FLTSUB: return "FPE_FLTSUB";
345         case __FPE_DECOVF:
346           return "FPE_DECOVF";
347         case __FPE_DECDIV:
348           return "FPE_DECDIV";
349         case __FPE_DECERR:
350           return "FPE_DECERR";
351         case __FPE_INVASC:
352           return "FPE_INVASC";
353         case __FPE_INVDEC:
354           return "FPE_INVDEC";
355         case FPE_FLTUNK:
356           return "FPE_FLTUNK";
357         case FPE_CONDTRAP:
358           return "FPE_CONDTRAP";
359       }
360       static_assert(NSIGFPE == FPE_CONDTRAP, "missing FPE_* si_code");
361       break;
362     case SIGSEGV:
363       switch (si->si_code) {
364         case SEGV_MAPERR: return "SEGV_MAPERR";
365         case SEGV_ACCERR: return "SEGV_ACCERR";
366         case SEGV_BNDERR: return "SEGV_BNDERR";
367         case SEGV_PKUERR: return "SEGV_PKUERR";
368         case SEGV_ACCADI:
369           return "SEGV_ACCADI";
370         case SEGV_ADIDERR:
371           return "SEGV_ADIDERR";
372         case SEGV_ADIPERR:
373           return "SEGV_ADIPERR";
374 #if defined(ANDROID_EXPERIMENTAL_MTE)
375         case SEGV_MTEAERR:
376           return "SEGV_MTEAERR";
377         case SEGV_MTESERR:
378           return "SEGV_MTESERR";
379 #endif
380       }
381       static_assert(NSIGSEGV == SEGV_ADIPERR, "missing SEGV_* si_code");
382       break;
383     case SIGSYS:
384       switch (si->si_code) {
385         case SYS_SECCOMP: return "SYS_SECCOMP";
386       }
387       static_assert(NSIGSYS == SYS_SECCOMP, "missing SYS_* si_code");
388       break;
389     case SIGTRAP:
390       switch (si->si_code) {
391         case TRAP_BRKPT: return "TRAP_BRKPT";
392         case TRAP_TRACE: return "TRAP_TRACE";
393         case TRAP_BRANCH: return "TRAP_BRANCH";
394         case TRAP_HWBKPT: return "TRAP_HWBKPT";
395         case TRAP_UNK:
396           return "TRAP_UNDIAGNOSED";
397       }
398       if ((si->si_code & 0xff) == SIGTRAP) {
399         switch ((si->si_code >> 8) & 0xff) {
400           case PTRACE_EVENT_FORK:
401             return "PTRACE_EVENT_FORK";
402           case PTRACE_EVENT_VFORK:
403             return "PTRACE_EVENT_VFORK";
404           case PTRACE_EVENT_CLONE:
405             return "PTRACE_EVENT_CLONE";
406           case PTRACE_EVENT_EXEC:
407             return "PTRACE_EVENT_EXEC";
408           case PTRACE_EVENT_VFORK_DONE:
409             return "PTRACE_EVENT_VFORK_DONE";
410           case PTRACE_EVENT_EXIT:
411             return "PTRACE_EVENT_EXIT";
412           case PTRACE_EVENT_SECCOMP:
413             return "PTRACE_EVENT_SECCOMP";
414           case PTRACE_EVENT_STOP:
415             return "PTRACE_EVENT_STOP";
416         }
417       }
418       static_assert(NSIGTRAP == TRAP_UNK, "missing TRAP_* si_code");
419       break;
420   }
421   // Then the other codes...
422   switch (si->si_code) {
423     case SI_USER: return "SI_USER";
424     case SI_KERNEL: return "SI_KERNEL";
425     case SI_QUEUE: return "SI_QUEUE";
426     case SI_TIMER: return "SI_TIMER";
427     case SI_MESGQ: return "SI_MESGQ";
428     case SI_ASYNCIO: return "SI_ASYNCIO";
429     case SI_SIGIO: return "SI_SIGIO";
430     case SI_TKILL: return "SI_TKILL";
431     case SI_DETHREAD: return "SI_DETHREAD";
432   }
433   // Then give up...
434   return "?";
435 }
436 
log_backtrace(log_t * log,unwindstack::Unwinder * unwinder,const char * prefix)437 void log_backtrace(log_t* log, unwindstack::Unwinder* unwinder, const char* prefix) {
438   if (unwinder->elf_from_memory_not_file()) {
439     _LOG(log, logtype::BACKTRACE,
440          "%sNOTE: Function names and BuildId information is missing for some frames due\n", prefix);
441     _LOG(log, logtype::BACKTRACE,
442          "%sNOTE: to unreadable libraries. For unwinds of apps, only shared libraries\n", prefix);
443     _LOG(log, logtype::BACKTRACE, "%sNOTE: found under the lib/ directory are readable.\n", prefix);
444 #if defined(ROOT_POSSIBLE)
445     _LOG(log, logtype::BACKTRACE,
446          "%sNOTE: On this device, run setenforce 0 to make the libraries readable.\n", prefix);
447 #endif
448   }
449 
450   unwinder->SetDisplayBuildID(true);
451   for (size_t i = 0; i < unwinder->NumFrames(); i++) {
452     _LOG(log, logtype::BACKTRACE, "%s%s\n", prefix, unwinder->FormatFrame(i).c_str());
453   }
454 }
455 
456 #if defined(__aarch64__)
457 #define FAR_MAGIC 0x46415201
458 
459 struct far_context {
460   struct _aarch64_ctx head;
461   __u64 far;
462 };
463 #endif
464 
get_fault_address(const siginfo_t * siginfo,const ucontext_t * ucontext)465 uintptr_t get_fault_address(const siginfo_t* siginfo, const ucontext_t* ucontext) {
466   (void)ucontext;
467 #if defined(__aarch64__)
468   // This relies on a kernel patch:
469   //   https://patchwork.kernel.org/patch/11435077/
470   // that hasn't been accepted into the kernel yet. TODO(pcc): Update this to
471   // use the official interface once it lands.
472   auto* begin = reinterpret_cast<const char*>(ucontext->uc_mcontext.__reserved);
473   auto* end = begin + sizeof(ucontext->uc_mcontext.__reserved);
474   auto* ptr = begin;
475   while (1) {
476     auto* ctx = reinterpret_cast<const _aarch64_ctx*>(ptr);
477     if (ctx->magic == 0) {
478       break;
479     }
480     if (ctx->magic == FAR_MAGIC) {
481       auto* far_ctx = reinterpret_cast<const far_context*>(ctx);
482       return far_ctx->far;
483     }
484     ptr += ctx->size;
485     if (ctx->size % sizeof(void*) != 0 || ptr < begin || ptr >= end) {
486       break;
487     }
488   }
489 #endif
490   return reinterpret_cast<uintptr_t>(siginfo->si_addr);
491 }
492