1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Camera3-HeicCompositeStream"
18 #define ATRACE_TAG ATRACE_TAG_CAMERA
19 //#define LOG_NDEBUG 0
20
21 #include <linux/memfd.h>
22 #include <pthread.h>
23 #include <sys/syscall.h>
24
25 #include <android/hardware/camera/device/3.5/types.h>
26 #include <libyuv.h>
27 #include <gui/Surface.h>
28 #include <utils/Log.h>
29 #include <utils/Trace.h>
30
31 #include <mediadrm/ICrypto.h>
32 #include <media/MediaCodecBuffer.h>
33 #include <media/stagefright/foundation/ABuffer.h>
34 #include <media/stagefright/foundation/MediaDefs.h>
35 #include <media/stagefright/MediaCodecConstants.h>
36
37 #include "common/CameraDeviceBase.h"
38 #include "utils/ExifUtils.h"
39 #include "HeicEncoderInfoManager.h"
40 #include "HeicCompositeStream.h"
41
42 using android::hardware::camera::device::V3_5::CameraBlob;
43 using android::hardware::camera::device::V3_5::CameraBlobId;
44
45 namespace android {
46 namespace camera3 {
47
HeicCompositeStream(wp<CameraDeviceBase> device,wp<hardware::camera2::ICameraDeviceCallbacks> cb)48 HeicCompositeStream::HeicCompositeStream(wp<CameraDeviceBase> device,
49 wp<hardware::camera2::ICameraDeviceCallbacks> cb) :
50 CompositeStream(device, cb),
51 mUseHeic(false),
52 mNumOutputTiles(1),
53 mOutputWidth(0),
54 mOutputHeight(0),
55 mMaxHeicBufferSize(0),
56 mGridWidth(HeicEncoderInfoManager::kGridWidth),
57 mGridHeight(HeicEncoderInfoManager::kGridHeight),
58 mGridRows(1),
59 mGridCols(1),
60 mUseGrid(false),
61 mAppSegmentStreamId(-1),
62 mAppSegmentSurfaceId(-1),
63 mMainImageStreamId(-1),
64 mMainImageSurfaceId(-1),
65 mYuvBufferAcquired(false),
66 mProducerListener(new ProducerListener()),
67 mDequeuedOutputBufferCnt(0),
68 mLockedAppSegmentBufferCnt(0),
69 mCodecOutputCounter(0),
70 mGridTimestampUs(0) {
71 }
72
~HeicCompositeStream()73 HeicCompositeStream::~HeicCompositeStream() {
74 // Call deinitCodec in case stream hasn't been deleted yet to avoid any
75 // memory/resource leak.
76 deinitCodec();
77
78 mInputAppSegmentBuffers.clear();
79 mCodecOutputBuffers.clear();
80
81 mAppSegmentStreamId = -1;
82 mAppSegmentSurfaceId = -1;
83 mAppSegmentConsumer.clear();
84 mAppSegmentSurface.clear();
85
86 mMainImageStreamId = -1;
87 mMainImageSurfaceId = -1;
88 mMainImageConsumer.clear();
89 mMainImageSurface.clear();
90 }
91
isHeicCompositeStream(const sp<Surface> & surface)92 bool HeicCompositeStream::isHeicCompositeStream(const sp<Surface> &surface) {
93 ANativeWindow *anw = surface.get();
94 status_t err;
95 int format;
96 if ((err = anw->query(anw, NATIVE_WINDOW_FORMAT, &format)) != OK) {
97 String8 msg = String8::format("Failed to query Surface format: %s (%d)", strerror(-err),
98 err);
99 ALOGE("%s: %s", __FUNCTION__, msg.string());
100 return false;
101 }
102
103 int dataspace;
104 if ((err = anw->query(anw, NATIVE_WINDOW_DEFAULT_DATASPACE, &dataspace)) != OK) {
105 String8 msg = String8::format("Failed to query Surface dataspace: %s (%d)", strerror(-err),
106 err);
107 ALOGE("%s: %s", __FUNCTION__, msg.string());
108 return false;
109 }
110
111 return ((format == HAL_PIXEL_FORMAT_BLOB) && (dataspace == HAL_DATASPACE_HEIF));
112 }
113
createInternalStreams(const std::vector<sp<Surface>> & consumers,bool,uint32_t width,uint32_t height,int format,camera3_stream_rotation_t rotation,int * id,const String8 & physicalCameraId,std::vector<int> * surfaceIds,int,bool)114 status_t HeicCompositeStream::createInternalStreams(const std::vector<sp<Surface>>& consumers,
115 bool /*hasDeferredConsumer*/, uint32_t width, uint32_t height, int format,
116 camera3_stream_rotation_t rotation, int *id, const String8& physicalCameraId,
117 std::vector<int> *surfaceIds, int /*streamSetId*/, bool /*isShared*/) {
118
119 sp<CameraDeviceBase> device = mDevice.promote();
120 if (!device.get()) {
121 ALOGE("%s: Invalid camera device!", __FUNCTION__);
122 return NO_INIT;
123 }
124
125 status_t res = initializeCodec(width, height, device);
126 if (res != OK) {
127 ALOGE("%s: Failed to initialize HEIC/HEVC codec: %s (%d)",
128 __FUNCTION__, strerror(-res), res);
129 return NO_INIT;
130 }
131
132 sp<IGraphicBufferProducer> producer;
133 sp<IGraphicBufferConsumer> consumer;
134 BufferQueue::createBufferQueue(&producer, &consumer);
135 mAppSegmentConsumer = new CpuConsumer(consumer, kMaxAcquiredAppSegment);
136 mAppSegmentConsumer->setFrameAvailableListener(this);
137 mAppSegmentConsumer->setName(String8("Camera3-HeicComposite-AppSegmentStream"));
138 mAppSegmentSurface = new Surface(producer);
139
140 mStaticInfo = device->info();
141
142 res = device->createStream(mAppSegmentSurface, mAppSegmentMaxSize, 1, format,
143 kAppSegmentDataSpace, rotation, &mAppSegmentStreamId, physicalCameraId, surfaceIds);
144 if (res == OK) {
145 mAppSegmentSurfaceId = (*surfaceIds)[0];
146 } else {
147 ALOGE("%s: Failed to create JPEG App segment stream: %s (%d)", __FUNCTION__,
148 strerror(-res), res);
149 return res;
150 }
151
152 if (!mUseGrid) {
153 res = mCodec->createInputSurface(&producer);
154 if (res != OK) {
155 ALOGE("%s: Failed to create input surface for Heic codec: %s (%d)",
156 __FUNCTION__, strerror(-res), res);
157 return res;
158 }
159 } else {
160 BufferQueue::createBufferQueue(&producer, &consumer);
161 mMainImageConsumer = new CpuConsumer(consumer, 1);
162 mMainImageConsumer->setFrameAvailableListener(this);
163 mMainImageConsumer->setName(String8("Camera3-HeicComposite-HevcInputYUVStream"));
164 }
165 mMainImageSurface = new Surface(producer);
166
167 res = mCodec->start();
168 if (res != OK) {
169 ALOGE("%s: Failed to start codec: %s (%d)", __FUNCTION__,
170 strerror(-res), res);
171 return res;
172 }
173
174 std::vector<int> sourceSurfaceId;
175 //Use YUV_888 format if framework tiling is needed.
176 int srcStreamFmt = mUseGrid ? HAL_PIXEL_FORMAT_YCbCr_420_888 :
177 HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
178 res = device->createStream(mMainImageSurface, width, height, srcStreamFmt, kHeifDataSpace,
179 rotation, id, physicalCameraId, &sourceSurfaceId);
180 if (res == OK) {
181 mMainImageSurfaceId = sourceSurfaceId[0];
182 mMainImageStreamId = *id;
183 } else {
184 ALOGE("%s: Failed to create main image stream: %s (%d)", __FUNCTION__,
185 strerror(-res), res);
186 return res;
187 }
188
189 mOutputSurface = consumers[0];
190 res = registerCompositeStreamListener(getStreamId());
191 if (res != OK) {
192 ALOGE("%s: Failed to register HAL main image stream", __FUNCTION__);
193 return res;
194 }
195
196 initCopyRowFunction(width);
197 return res;
198 }
199
deleteInternalStreams()200 status_t HeicCompositeStream::deleteInternalStreams() {
201 requestExit();
202 auto res = join();
203 if (res != OK) {
204 ALOGE("%s: Failed to join with the main processing thread: %s (%d)", __FUNCTION__,
205 strerror(-res), res);
206 }
207
208 deinitCodec();
209
210 if (mAppSegmentStreamId >= 0) {
211 sp<CameraDeviceBase> device = mDevice.promote();
212 if (!device.get()) {
213 ALOGE("%s: Invalid camera device!", __FUNCTION__);
214 return NO_INIT;
215 }
216
217 res = device->deleteStream(mAppSegmentStreamId);
218 mAppSegmentStreamId = -1;
219 }
220
221 if (mOutputSurface != nullptr) {
222 mOutputSurface->disconnect(NATIVE_WINDOW_API_CAMERA);
223 mOutputSurface.clear();
224 }
225 return res;
226 }
227
onBufferReleased(const BufferInfo & bufferInfo)228 void HeicCompositeStream::onBufferReleased(const BufferInfo& bufferInfo) {
229 Mutex::Autolock l(mMutex);
230
231 if (bufferInfo.mError) return;
232
233 mCodecOutputBufferTimestamps.push(bufferInfo.mTimestamp);
234 ALOGV("%s: [%" PRId64 "]: Adding codecOutputBufferTimestamp (%zu timestamps in total)",
235 __FUNCTION__, bufferInfo.mTimestamp, mCodecOutputBufferTimestamps.size());
236 }
237
238 // We need to get the settings early to handle the case where the codec output
239 // arrives earlier than result metadata.
onBufferRequestForFrameNumber(uint64_t frameNumber,int streamId,const CameraMetadata & settings)240 void HeicCompositeStream::onBufferRequestForFrameNumber(uint64_t frameNumber, int streamId,
241 const CameraMetadata& settings) {
242 ATRACE_ASYNC_BEGIN("HEIC capture", frameNumber);
243
244 Mutex::Autolock l(mMutex);
245 if (mErrorState || (streamId != getStreamId())) {
246 return;
247 }
248
249 mPendingCaptureResults.emplace(frameNumber, CameraMetadata());
250
251 camera_metadata_ro_entry entry;
252
253 int32_t orientation = 0;
254 entry = settings.find(ANDROID_JPEG_ORIENTATION);
255 if (entry.count == 1) {
256 orientation = entry.data.i32[0];
257 }
258
259 int32_t quality = kDefaultJpegQuality;
260 entry = settings.find(ANDROID_JPEG_QUALITY);
261 if (entry.count == 1) {
262 quality = entry.data.i32[0];
263 }
264
265 mSettingsByFrameNumber[frameNumber] = std::make_pair(orientation, quality);
266 }
267
onFrameAvailable(const BufferItem & item)268 void HeicCompositeStream::onFrameAvailable(const BufferItem& item) {
269 if (item.mDataSpace == static_cast<android_dataspace>(kAppSegmentDataSpace)) {
270 ALOGV("%s: JPEG APP segments buffer with ts: %" PRIu64 " ms. arrived!",
271 __func__, ns2ms(item.mTimestamp));
272
273 Mutex::Autolock l(mMutex);
274 if (!mErrorState) {
275 mInputAppSegmentBuffers.push_back(item.mTimestamp);
276 mInputReadyCondition.signal();
277 }
278 } else if (item.mDataSpace == kHeifDataSpace) {
279 ALOGV("%s: YUV_888 buffer with ts: %" PRIu64 " ms. arrived!",
280 __func__, ns2ms(item.mTimestamp));
281
282 Mutex::Autolock l(mMutex);
283 if (!mUseGrid) {
284 ALOGE("%s: YUV_888 internal stream is only supported for HEVC tiling",
285 __FUNCTION__);
286 return;
287 }
288 if (!mErrorState) {
289 mInputYuvBuffers.push_back(item.mTimestamp);
290 mInputReadyCondition.signal();
291 }
292 } else {
293 ALOGE("%s: Unexpected data space: 0x%x", __FUNCTION__, item.mDataSpace);
294 }
295 }
296
getCompositeStreamInfo(const OutputStreamInfo & streamInfo,const CameraMetadata & ch,std::vector<OutputStreamInfo> * compositeOutput)297 status_t HeicCompositeStream::getCompositeStreamInfo(const OutputStreamInfo &streamInfo,
298 const CameraMetadata& ch, std::vector<OutputStreamInfo>* compositeOutput /*out*/) {
299 if (compositeOutput == nullptr) {
300 return BAD_VALUE;
301 }
302
303 compositeOutput->clear();
304
305 bool useGrid, useHeic;
306 bool isSizeSupported = isSizeSupportedByHeifEncoder(
307 streamInfo.width, streamInfo.height, &useHeic, &useGrid, nullptr);
308 if (!isSizeSupported) {
309 // Size is not supported by either encoder.
310 return OK;
311 }
312
313 compositeOutput->insert(compositeOutput->end(), 2, streamInfo);
314
315 // JPEG APPS segments Blob stream info
316 (*compositeOutput)[0].width = calcAppSegmentMaxSize(ch);
317 (*compositeOutput)[0].height = 1;
318 (*compositeOutput)[0].format = HAL_PIXEL_FORMAT_BLOB;
319 (*compositeOutput)[0].dataSpace = kAppSegmentDataSpace;
320 (*compositeOutput)[0].consumerUsage = GRALLOC_USAGE_SW_READ_OFTEN;
321
322 // YUV/IMPLEMENTATION_DEFINED stream info
323 (*compositeOutput)[1].width = streamInfo.width;
324 (*compositeOutput)[1].height = streamInfo.height;
325 (*compositeOutput)[1].format = useGrid ? HAL_PIXEL_FORMAT_YCbCr_420_888 :
326 HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
327 (*compositeOutput)[1].dataSpace = kHeifDataSpace;
328 (*compositeOutput)[1].consumerUsage = useHeic ? GRALLOC_USAGE_HW_IMAGE_ENCODER :
329 useGrid ? GRALLOC_USAGE_SW_READ_OFTEN : GRALLOC_USAGE_HW_VIDEO_ENCODER;
330
331 return NO_ERROR;
332 }
333
isSizeSupportedByHeifEncoder(int32_t width,int32_t height,bool * useHeic,bool * useGrid,int64_t * stall,AString * hevcName)334 bool HeicCompositeStream::isSizeSupportedByHeifEncoder(int32_t width, int32_t height,
335 bool* useHeic, bool* useGrid, int64_t* stall, AString* hevcName) {
336 static HeicEncoderInfoManager& heicManager = HeicEncoderInfoManager::getInstance();
337 return heicManager.isSizeSupported(width, height, useHeic, useGrid, stall, hevcName);
338 }
339
isInMemoryTempFileSupported()340 bool HeicCompositeStream::isInMemoryTempFileSupported() {
341 int memfd = syscall(__NR_memfd_create, "HEIF-try-memfd", MFD_CLOEXEC);
342 if (memfd == -1) {
343 if (errno != ENOSYS) {
344 ALOGE("%s: Failed to create tmpfs file. errno %d", __FUNCTION__, errno);
345 }
346 return false;
347 }
348 close(memfd);
349 return true;
350 }
351
onHeicOutputFrameAvailable(const CodecOutputBufferInfo & outputBufferInfo)352 void HeicCompositeStream::onHeicOutputFrameAvailable(
353 const CodecOutputBufferInfo& outputBufferInfo) {
354 Mutex::Autolock l(mMutex);
355
356 ALOGV("%s: index %d, offset %d, size %d, time %" PRId64 ", flags 0x%x",
357 __FUNCTION__, outputBufferInfo.index, outputBufferInfo.offset,
358 outputBufferInfo.size, outputBufferInfo.timeUs, outputBufferInfo.flags);
359
360 if (!mErrorState) {
361 if ((outputBufferInfo.size > 0) &&
362 ((outputBufferInfo.flags & MediaCodec::BUFFER_FLAG_CODECCONFIG) == 0)) {
363 mCodecOutputBuffers.push_back(outputBufferInfo);
364 mInputReadyCondition.signal();
365 } else {
366 ALOGV("%s: Releasing output buffer: size %d flags: 0x%x ", __FUNCTION__,
367 outputBufferInfo.size, outputBufferInfo.flags);
368 mCodec->releaseOutputBuffer(outputBufferInfo.index);
369 }
370 } else {
371 mCodec->releaseOutputBuffer(outputBufferInfo.index);
372 }
373 }
374
onHeicInputFrameAvailable(int32_t index)375 void HeicCompositeStream::onHeicInputFrameAvailable(int32_t index) {
376 Mutex::Autolock l(mMutex);
377
378 if (!mUseGrid) {
379 ALOGE("%s: Codec YUV input mode must only be used for Hevc tiling mode", __FUNCTION__);
380 return;
381 }
382
383 mCodecInputBuffers.push_back(index);
384 mInputReadyCondition.signal();
385 }
386
onHeicFormatChanged(sp<AMessage> & newFormat)387 void HeicCompositeStream::onHeicFormatChanged(sp<AMessage>& newFormat) {
388 if (newFormat == nullptr) {
389 ALOGE("%s: newFormat must not be null!", __FUNCTION__);
390 return;
391 }
392
393 Mutex::Autolock l(mMutex);
394
395 AString mime;
396 AString mimeHeic(MIMETYPE_IMAGE_ANDROID_HEIC);
397 newFormat->findString(KEY_MIME, &mime);
398 if (mime != mimeHeic) {
399 // For HEVC codec, below keys need to be filled out or overwritten so that the
400 // muxer can handle them as HEIC output image.
401 newFormat->setString(KEY_MIME, mimeHeic);
402 newFormat->setInt32(KEY_WIDTH, mOutputWidth);
403 newFormat->setInt32(KEY_HEIGHT, mOutputHeight);
404 if (mUseGrid) {
405 newFormat->setInt32(KEY_TILE_WIDTH, mGridWidth);
406 newFormat->setInt32(KEY_TILE_HEIGHT, mGridHeight);
407 newFormat->setInt32(KEY_GRID_ROWS, mGridRows);
408 newFormat->setInt32(KEY_GRID_COLUMNS, mGridCols);
409 }
410 }
411 newFormat->setInt32(KEY_IS_DEFAULT, 1 /*isPrimary*/);
412
413 int32_t gridRows, gridCols;
414 if (newFormat->findInt32(KEY_GRID_ROWS, &gridRows) &&
415 newFormat->findInt32(KEY_GRID_COLUMNS, &gridCols)) {
416 mNumOutputTiles = gridRows * gridCols;
417 } else {
418 mNumOutputTiles = 1;
419 }
420
421 mFormat = newFormat;
422
423 ALOGV("%s: mNumOutputTiles is %zu", __FUNCTION__, mNumOutputTiles);
424 mInputReadyCondition.signal();
425 }
426
onHeicCodecError()427 void HeicCompositeStream::onHeicCodecError() {
428 Mutex::Autolock l(mMutex);
429 mErrorState = true;
430 }
431
configureStream()432 status_t HeicCompositeStream::configureStream() {
433 if (isRunning()) {
434 // Processing thread is already running, nothing more to do.
435 return NO_ERROR;
436 }
437
438 if (mOutputSurface.get() == nullptr) {
439 ALOGE("%s: No valid output surface set!", __FUNCTION__);
440 return NO_INIT;
441 }
442
443 auto res = mOutputSurface->connect(NATIVE_WINDOW_API_CAMERA, mProducerListener);
444 if (res != OK) {
445 ALOGE("%s: Unable to connect to native window for stream %d",
446 __FUNCTION__, mMainImageStreamId);
447 return res;
448 }
449
450 if ((res = native_window_set_buffers_format(mOutputSurface.get(), HAL_PIXEL_FORMAT_BLOB))
451 != OK) {
452 ALOGE("%s: Unable to configure stream buffer format for stream %d", __FUNCTION__,
453 mMainImageStreamId);
454 return res;
455 }
456
457 ANativeWindow *anwConsumer = mOutputSurface.get();
458 int maxConsumerBuffers;
459 if ((res = anwConsumer->query(anwConsumer, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
460 &maxConsumerBuffers)) != OK) {
461 ALOGE("%s: Unable to query consumer undequeued"
462 " buffer count for stream %d", __FUNCTION__, mMainImageStreamId);
463 return res;
464 }
465
466 // Cannot use SourceSurface buffer count since it could be codec's 512*512 tile
467 // buffer count.
468 if ((res = native_window_set_buffer_count(
469 anwConsumer, kMaxOutputSurfaceProducerCount + maxConsumerBuffers)) != OK) {
470 ALOGE("%s: Unable to set buffer count for stream %d", __FUNCTION__, mMainImageStreamId);
471 return res;
472 }
473
474 if ((res = native_window_set_buffers_dimensions(anwConsumer, mMaxHeicBufferSize, 1)) != OK) {
475 ALOGE("%s: Unable to set buffer dimension %zu x 1 for stream %d: %s (%d)",
476 __FUNCTION__, mMaxHeicBufferSize, mMainImageStreamId, strerror(-res), res);
477 return res;
478 }
479
480 run("HeicCompositeStreamProc");
481
482 return NO_ERROR;
483 }
484
insertGbp(SurfaceMap * outSurfaceMap,Vector<int32_t> * outputStreamIds,int32_t * currentStreamId)485 status_t HeicCompositeStream::insertGbp(SurfaceMap* /*out*/outSurfaceMap,
486 Vector<int32_t>* /*out*/outputStreamIds, int32_t* /*out*/currentStreamId) {
487 if (outSurfaceMap->find(mAppSegmentStreamId) == outSurfaceMap->end()) {
488 (*outSurfaceMap)[mAppSegmentStreamId] = std::vector<size_t>();
489 outputStreamIds->push_back(mAppSegmentStreamId);
490 }
491 (*outSurfaceMap)[mAppSegmentStreamId].push_back(mAppSegmentSurfaceId);
492
493 if (outSurfaceMap->find(mMainImageStreamId) == outSurfaceMap->end()) {
494 (*outSurfaceMap)[mMainImageStreamId] = std::vector<size_t>();
495 outputStreamIds->push_back(mMainImageStreamId);
496 }
497 (*outSurfaceMap)[mMainImageStreamId].push_back(mMainImageSurfaceId);
498
499 if (currentStreamId != nullptr) {
500 *currentStreamId = mMainImageStreamId;
501 }
502
503 return NO_ERROR;
504 }
505
onShutter(const CaptureResultExtras & resultExtras,nsecs_t timestamp)506 void HeicCompositeStream::onShutter(const CaptureResultExtras& resultExtras, nsecs_t timestamp) {
507 Mutex::Autolock l(mMutex);
508 if (mErrorState) {
509 return;
510 }
511
512 if (mSettingsByFrameNumber.find(resultExtras.frameNumber) != mSettingsByFrameNumber.end()) {
513 ALOGV("%s: [%" PRId64 "]: frameNumber %" PRId64, __FUNCTION__,
514 timestamp, resultExtras.frameNumber);
515 mFrameNumberMap.emplace(resultExtras.frameNumber, timestamp);
516 mSettingsByTimestamp[timestamp] = mSettingsByFrameNumber[resultExtras.frameNumber];
517 mSettingsByFrameNumber.erase(resultExtras.frameNumber);
518 mInputReadyCondition.signal();
519 }
520 }
521
compilePendingInputLocked()522 void HeicCompositeStream::compilePendingInputLocked() {
523 while (!mSettingsByTimestamp.empty()) {
524 auto it = mSettingsByTimestamp.begin();
525 mPendingInputFrames[it->first].orientation = it->second.first;
526 mPendingInputFrames[it->first].quality = it->second.second;
527 mSettingsByTimestamp.erase(it);
528 }
529
530 while (!mInputAppSegmentBuffers.empty()) {
531 CpuConsumer::LockedBuffer imgBuffer;
532 auto it = mInputAppSegmentBuffers.begin();
533 auto res = mAppSegmentConsumer->lockNextBuffer(&imgBuffer);
534 if (res == NOT_ENOUGH_DATA) {
535 // Can not lock any more buffers.
536 break;
537 } else if ((res != OK) || (*it != imgBuffer.timestamp)) {
538 if (res != OK) {
539 ALOGE("%s: Error locking JPEG_APP_SEGMENTS image buffer: %s (%d)", __FUNCTION__,
540 strerror(-res), res);
541 } else {
542 ALOGE("%s: Expecting JPEG_APP_SEGMENTS buffer with time stamp: %" PRId64
543 " received buffer with time stamp: %" PRId64, __FUNCTION__,
544 *it, imgBuffer.timestamp);
545 mAppSegmentConsumer->unlockBuffer(imgBuffer);
546 }
547 mPendingInputFrames[*it].error = true;
548 mInputAppSegmentBuffers.erase(it);
549 continue;
550 }
551
552 if ((mPendingInputFrames.find(imgBuffer.timestamp) != mPendingInputFrames.end()) &&
553 (mPendingInputFrames[imgBuffer.timestamp].error)) {
554 mAppSegmentConsumer->unlockBuffer(imgBuffer);
555 } else {
556 mPendingInputFrames[imgBuffer.timestamp].appSegmentBuffer = imgBuffer;
557 mLockedAppSegmentBufferCnt++;
558 }
559 mInputAppSegmentBuffers.erase(it);
560 }
561
562 while (!mInputYuvBuffers.empty() && !mYuvBufferAcquired) {
563 CpuConsumer::LockedBuffer imgBuffer;
564 auto it = mInputYuvBuffers.begin();
565 auto res = mMainImageConsumer->lockNextBuffer(&imgBuffer);
566 if (res == NOT_ENOUGH_DATA) {
567 // Can not lock any more buffers.
568 break;
569 } else if (res != OK) {
570 ALOGE("%s: Error locking YUV_888 image buffer: %s (%d)", __FUNCTION__,
571 strerror(-res), res);
572 mPendingInputFrames[*it].error = true;
573 mInputYuvBuffers.erase(it);
574 continue;
575 } else if (*it != imgBuffer.timestamp) {
576 ALOGW("%s: Expecting YUV_888 buffer with time stamp: %" PRId64 " received buffer with "
577 "time stamp: %" PRId64, __FUNCTION__, *it, imgBuffer.timestamp);
578 mPendingInputFrames[*it].error = true;
579 mInputYuvBuffers.erase(it);
580 continue;
581 }
582
583 if ((mPendingInputFrames.find(imgBuffer.timestamp) != mPendingInputFrames.end()) &&
584 (mPendingInputFrames[imgBuffer.timestamp].error)) {
585 mMainImageConsumer->unlockBuffer(imgBuffer);
586 } else {
587 mPendingInputFrames[imgBuffer.timestamp].yuvBuffer = imgBuffer;
588 mYuvBufferAcquired = true;
589 }
590 mInputYuvBuffers.erase(it);
591 }
592
593 while (!mCodecOutputBuffers.empty()) {
594 auto it = mCodecOutputBuffers.begin();
595 // Bitstream buffer timestamp doesn't necessarily directly correlate with input
596 // buffer timestamp. Assume encoder input to output is FIFO, use a queue
597 // to look up timestamp.
598 int64_t bufferTime = -1;
599 if (mCodecOutputBufferTimestamps.empty()) {
600 ALOGV("%s: Failed to find buffer timestamp for codec output buffer!", __FUNCTION__);
601 break;
602 } else {
603 // Direct mapping between camera timestamp (in ns) and codec timestamp (in us).
604 bufferTime = mCodecOutputBufferTimestamps.front();
605 mCodecOutputCounter++;
606 if (mCodecOutputCounter == mNumOutputTiles) {
607 mCodecOutputBufferTimestamps.pop();
608 mCodecOutputCounter = 0;
609 }
610
611 mPendingInputFrames[bufferTime].codecOutputBuffers.push_back(*it);
612 ALOGV("%s: [%" PRId64 "]: Pushing codecOutputBuffers (time %" PRId64 " us)",
613 __FUNCTION__, bufferTime, it->timeUs);
614 }
615 mCodecOutputBuffers.erase(it);
616 }
617
618 while (!mFrameNumberMap.empty()) {
619 auto it = mFrameNumberMap.begin();
620 mPendingInputFrames[it->second].frameNumber = it->first;
621 ALOGV("%s: [%" PRId64 "]: frameNumber is %" PRId64, __FUNCTION__, it->second, it->first);
622 mFrameNumberMap.erase(it);
623 }
624
625 while (!mCaptureResults.empty()) {
626 auto it = mCaptureResults.begin();
627 // Negative timestamp indicates that something went wrong during the capture result
628 // collection process.
629 if (it->first >= 0) {
630 if (mPendingInputFrames[it->first].frameNumber == std::get<0>(it->second)) {
631 mPendingInputFrames[it->first].result =
632 std::make_unique<CameraMetadata>(std::get<1>(it->second));
633 } else {
634 ALOGE("%s: Capture result frameNumber/timestamp mapping changed between "
635 "shutter and capture result!", __FUNCTION__);
636 }
637 }
638 mCaptureResults.erase(it);
639 }
640
641 // mErrorFrameNumbers stores frame number of dropped buffers.
642 auto it = mErrorFrameNumbers.begin();
643 while (it != mErrorFrameNumbers.end()) {
644 bool frameFound = false;
645 for (auto &inputFrame : mPendingInputFrames) {
646 if (inputFrame.second.frameNumber == *it) {
647 inputFrame.second.error = true;
648 frameFound = true;
649 break;
650 }
651 }
652
653 if (frameFound) {
654 it = mErrorFrameNumbers.erase(it);
655 } else {
656 ALOGW("%s: Not able to find failing input with frame number: %" PRId64, __FUNCTION__,
657 *it);
658 it++;
659 }
660 }
661
662 // Distribute codec input buffers to be filled out from YUV output
663 for (auto it = mPendingInputFrames.begin();
664 it != mPendingInputFrames.end() && mCodecInputBuffers.size() > 0; it++) {
665 InputFrame& inputFrame(it->second);
666 if (inputFrame.codecInputCounter < mGridRows * mGridCols) {
667 // Available input tiles that are required for the current input
668 // image.
669 size_t newInputTiles = std::min(mCodecInputBuffers.size(),
670 mGridRows * mGridCols - inputFrame.codecInputCounter);
671 for (size_t i = 0; i < newInputTiles; i++) {
672 CodecInputBufferInfo inputInfo =
673 { mCodecInputBuffers[0], mGridTimestampUs++, inputFrame.codecInputCounter };
674 inputFrame.codecInputBuffers.push_back(inputInfo);
675
676 mCodecInputBuffers.erase(mCodecInputBuffers.begin());
677 inputFrame.codecInputCounter++;
678 }
679 break;
680 }
681 }
682 }
683
getNextReadyInputLocked(int64_t * currentTs)684 bool HeicCompositeStream::getNextReadyInputLocked(int64_t *currentTs /*out*/) {
685 if (currentTs == nullptr) {
686 return false;
687 }
688
689 bool newInputAvailable = false;
690 for (auto& it : mPendingInputFrames) {
691 // New input is considered to be available only if:
692 // 1. input buffers are ready, or
693 // 2. App segment and muxer is created, or
694 // 3. A codec output tile is ready, and an output buffer is available.
695 // This makes sure that muxer gets created only when an output tile is
696 // generated, because right now we only handle 1 HEIC output buffer at a
697 // time (max dequeued buffer count is 1).
698 bool appSegmentReady = (it.second.appSegmentBuffer.data != nullptr) &&
699 !it.second.appSegmentWritten && it.second.result != nullptr &&
700 it.second.muxer != nullptr;
701 bool codecOutputReady = !it.second.codecOutputBuffers.empty();
702 bool codecInputReady = (it.second.yuvBuffer.data != nullptr) &&
703 (!it.second.codecInputBuffers.empty());
704 bool hasOutputBuffer = it.second.muxer != nullptr ||
705 (mDequeuedOutputBufferCnt < kMaxOutputSurfaceProducerCount);
706 if ((!it.second.error) &&
707 (it.first < *currentTs) &&
708 (appSegmentReady || (codecOutputReady && hasOutputBuffer) || codecInputReady)) {
709 *currentTs = it.first;
710 if (it.second.format == nullptr && mFormat != nullptr) {
711 it.second.format = mFormat->dup();
712 }
713 newInputAvailable = true;
714 break;
715 }
716 }
717
718 return newInputAvailable;
719 }
720
getNextFailingInputLocked(int64_t * currentTs)721 int64_t HeicCompositeStream::getNextFailingInputLocked(int64_t *currentTs /*out*/) {
722 int64_t res = -1;
723 if (currentTs == nullptr) {
724 return res;
725 }
726
727 for (const auto& it : mPendingInputFrames) {
728 if (it.second.error && !it.second.errorNotified && (it.first < *currentTs)) {
729 *currentTs = it.first;
730 res = it.second.frameNumber;
731 break;
732 }
733 }
734
735 return res;
736 }
737
processInputFrame(nsecs_t timestamp,InputFrame & inputFrame)738 status_t HeicCompositeStream::processInputFrame(nsecs_t timestamp,
739 InputFrame &inputFrame) {
740 ATRACE_CALL();
741 status_t res = OK;
742
743 bool appSegmentReady = inputFrame.appSegmentBuffer.data != nullptr &&
744 !inputFrame.appSegmentWritten && inputFrame.result != nullptr &&
745 inputFrame.muxer != nullptr;
746 bool codecOutputReady = inputFrame.codecOutputBuffers.size() > 0;
747 bool codecInputReady = inputFrame.yuvBuffer.data != nullptr &&
748 !inputFrame.codecInputBuffers.empty();
749 bool hasOutputBuffer = inputFrame.muxer != nullptr ||
750 (mDequeuedOutputBufferCnt < kMaxOutputSurfaceProducerCount);
751
752 ALOGV("%s: [%" PRId64 "]: appSegmentReady %d, codecOutputReady %d, codecInputReady %d,"
753 " dequeuedOutputBuffer %d", __FUNCTION__, timestamp, appSegmentReady,
754 codecOutputReady, codecInputReady, mDequeuedOutputBufferCnt);
755
756 // Handle inputs for Hevc tiling
757 if (codecInputReady) {
758 res = processCodecInputFrame(inputFrame);
759 if (res != OK) {
760 ALOGE("%s: Failed to process codec input frame: %s (%d)", __FUNCTION__,
761 strerror(-res), res);
762 return res;
763 }
764 }
765
766 if (!(codecOutputReady && hasOutputBuffer) && !appSegmentReady) {
767 return OK;
768 }
769
770 // Initialize and start muxer if not yet done so. In this case,
771 // codecOutputReady must be true. Otherwise, appSegmentReady is guaranteed
772 // to be false, and the function must have returned early.
773 if (inputFrame.muxer == nullptr) {
774 res = startMuxerForInputFrame(timestamp, inputFrame);
775 if (res != OK) {
776 ALOGE("%s: Failed to create and start muxer: %s (%d)", __FUNCTION__,
777 strerror(-res), res);
778 return res;
779 }
780 }
781
782 // Write JPEG APP segments data to the muxer.
783 if (appSegmentReady) {
784 res = processAppSegment(timestamp, inputFrame);
785 if (res != OK) {
786 ALOGE("%s: Failed to process JPEG APP segments: %s (%d)", __FUNCTION__,
787 strerror(-res), res);
788 return res;
789 }
790 }
791
792 // Write media codec bitstream buffers to muxer.
793 while (!inputFrame.codecOutputBuffers.empty()) {
794 res = processOneCodecOutputFrame(timestamp, inputFrame);
795 if (res != OK) {
796 ALOGE("%s: Failed to process codec output frame: %s (%d)", __FUNCTION__,
797 strerror(-res), res);
798 return res;
799 }
800 }
801
802 if (inputFrame.pendingOutputTiles == 0) {
803 if (inputFrame.appSegmentWritten) {
804 res = processCompletedInputFrame(timestamp, inputFrame);
805 if (res != OK) {
806 ALOGE("%s: Failed to process completed input frame: %s (%d)", __FUNCTION__,
807 strerror(-res), res);
808 return res;
809 }
810 } else if (mLockedAppSegmentBufferCnt == kMaxAcquiredAppSegment) {
811 ALOGE("%s: Out-of-order app segment buffers reaches limit %u", __FUNCTION__,
812 kMaxAcquiredAppSegment);
813 return INVALID_OPERATION;
814 }
815 }
816
817 return res;
818 }
819
startMuxerForInputFrame(nsecs_t timestamp,InputFrame & inputFrame)820 status_t HeicCompositeStream::startMuxerForInputFrame(nsecs_t timestamp, InputFrame &inputFrame) {
821 sp<ANativeWindow> outputANW = mOutputSurface;
822
823 auto res = outputANW->dequeueBuffer(mOutputSurface.get(), &inputFrame.anb, &inputFrame.fenceFd);
824 if (res != OK) {
825 ALOGE("%s: Error retrieving output buffer: %s (%d)", __FUNCTION__, strerror(-res),
826 res);
827 return res;
828 }
829 mDequeuedOutputBufferCnt++;
830
831 // Combine current thread id, stream id and timestamp to uniquely identify image.
832 std::ostringstream tempOutputFile;
833 tempOutputFile << "HEIF-" << pthread_self() << "-"
834 << getStreamId() << "-" << timestamp;
835 inputFrame.fileFd = syscall(__NR_memfd_create, tempOutputFile.str().c_str(), MFD_CLOEXEC);
836 if (inputFrame.fileFd < 0) {
837 ALOGE("%s: Failed to create file %s. Error no is %d", __FUNCTION__,
838 tempOutputFile.str().c_str(), errno);
839 return NO_INIT;
840 }
841 inputFrame.muxer = new MediaMuxer(inputFrame.fileFd, MediaMuxer::OUTPUT_FORMAT_HEIF);
842 if (inputFrame.muxer == nullptr) {
843 ALOGE("%s: Failed to create MediaMuxer for file fd %d",
844 __FUNCTION__, inputFrame.fileFd);
845 return NO_INIT;
846 }
847
848 res = inputFrame.muxer->setOrientationHint(inputFrame.orientation);
849 if (res != OK) {
850 ALOGE("%s: Failed to setOrientationHint: %s (%d)", __FUNCTION__,
851 strerror(-res), res);
852 return res;
853 }
854 // Set encoder quality
855 {
856 sp<AMessage> qualityParams = new AMessage;
857 qualityParams->setInt32(PARAMETER_KEY_VIDEO_BITRATE, inputFrame.quality);
858 res = mCodec->setParameters(qualityParams);
859 if (res != OK) {
860 ALOGE("%s: Failed to set codec quality: %s (%d)",
861 __FUNCTION__, strerror(-res), res);
862 return res;
863 }
864 }
865
866 ssize_t trackId = inputFrame.muxer->addTrack(inputFrame.format);
867 if (trackId < 0) {
868 ALOGE("%s: Failed to addTrack to the muxer: %zd", __FUNCTION__, trackId);
869 return NO_INIT;
870 }
871
872 inputFrame.trackIndex = trackId;
873 inputFrame.pendingOutputTiles = mNumOutputTiles;
874
875 res = inputFrame.muxer->start();
876 if (res != OK) {
877 ALOGE("%s: Failed to start MediaMuxer: %s (%d)",
878 __FUNCTION__, strerror(-res), res);
879 return res;
880 }
881
882 ALOGV("%s: [%" PRId64 "]: Muxer started for inputFrame", __FUNCTION__,
883 timestamp);
884 return OK;
885 }
886
processAppSegment(nsecs_t timestamp,InputFrame & inputFrame)887 status_t HeicCompositeStream::processAppSegment(nsecs_t timestamp, InputFrame &inputFrame) {
888 size_t app1Size = 0;
889 auto appSegmentSize = findAppSegmentsSize(inputFrame.appSegmentBuffer.data,
890 inputFrame.appSegmentBuffer.width * inputFrame.appSegmentBuffer.height,
891 &app1Size);
892 if (appSegmentSize == 0) {
893 ALOGE("%s: Failed to find JPEG APP segment size", __FUNCTION__);
894 return NO_INIT;
895 }
896
897 std::unique_ptr<ExifUtils> exifUtils(ExifUtils::create());
898 auto exifRes = exifUtils->initialize(inputFrame.appSegmentBuffer.data, app1Size);
899 if (!exifRes) {
900 ALOGE("%s: Failed to initialize ExifUtils object!", __FUNCTION__);
901 return BAD_VALUE;
902 }
903 exifRes = exifUtils->setFromMetadata(*inputFrame.result, mStaticInfo,
904 mOutputWidth, mOutputHeight);
905 if (!exifRes) {
906 ALOGE("%s: Failed to set Exif tags using metadata and main image sizes", __FUNCTION__);
907 return BAD_VALUE;
908 }
909 exifRes = exifUtils->setOrientation(inputFrame.orientation);
910 if (!exifRes) {
911 ALOGE("%s: ExifUtils failed to set orientation", __FUNCTION__);
912 return BAD_VALUE;
913 }
914 exifRes = exifUtils->generateApp1();
915 if (!exifRes) {
916 ALOGE("%s: ExifUtils failed to generate APP1 segment", __FUNCTION__);
917 return BAD_VALUE;
918 }
919
920 unsigned int newApp1Length = exifUtils->getApp1Length();
921 const uint8_t *newApp1Segment = exifUtils->getApp1Buffer();
922
923 //Assemble the APP1 marker buffer required by MediaCodec
924 uint8_t kExifApp1Marker[] = {'E', 'x', 'i', 'f', 0xFF, 0xE1, 0x00, 0x00};
925 kExifApp1Marker[6] = static_cast<uint8_t>(newApp1Length >> 8);
926 kExifApp1Marker[7] = static_cast<uint8_t>(newApp1Length & 0xFF);
927 size_t appSegmentBufferSize = sizeof(kExifApp1Marker) +
928 appSegmentSize - app1Size + newApp1Length;
929 uint8_t* appSegmentBuffer = new uint8_t[appSegmentBufferSize];
930 memcpy(appSegmentBuffer, kExifApp1Marker, sizeof(kExifApp1Marker));
931 memcpy(appSegmentBuffer + sizeof(kExifApp1Marker), newApp1Segment, newApp1Length);
932 if (appSegmentSize - app1Size > 0) {
933 memcpy(appSegmentBuffer + sizeof(kExifApp1Marker) + newApp1Length,
934 inputFrame.appSegmentBuffer.data + app1Size, appSegmentSize - app1Size);
935 }
936
937 sp<ABuffer> aBuffer = new ABuffer(appSegmentBuffer, appSegmentBufferSize);
938 auto res = inputFrame.muxer->writeSampleData(aBuffer, inputFrame.trackIndex,
939 timestamp, MediaCodec::BUFFER_FLAG_MUXER_DATA);
940 delete[] appSegmentBuffer;
941
942 if (res != OK) {
943 ALOGE("%s: Failed to write JPEG APP segments to muxer: %s (%d)",
944 __FUNCTION__, strerror(-res), res);
945 return res;
946 }
947
948 ALOGV("%s: [%" PRId64 "]: appSegmentSize is %zu, width %d, height %d, app1Size %zu",
949 __FUNCTION__, timestamp, appSegmentSize, inputFrame.appSegmentBuffer.width,
950 inputFrame.appSegmentBuffer.height, app1Size);
951
952 inputFrame.appSegmentWritten = true;
953 // Release the buffer now so any pending input app segments can be processed
954 mAppSegmentConsumer->unlockBuffer(inputFrame.appSegmentBuffer);
955 inputFrame.appSegmentBuffer.data = nullptr;
956 mLockedAppSegmentBufferCnt--;
957
958 return OK;
959 }
960
processCodecInputFrame(InputFrame & inputFrame)961 status_t HeicCompositeStream::processCodecInputFrame(InputFrame &inputFrame) {
962 for (auto& inputBuffer : inputFrame.codecInputBuffers) {
963 sp<MediaCodecBuffer> buffer;
964 auto res = mCodec->getInputBuffer(inputBuffer.index, &buffer);
965 if (res != OK) {
966 ALOGE("%s: Error getting codec input buffer: %s (%d)", __FUNCTION__,
967 strerror(-res), res);
968 return res;
969 }
970
971 // Copy one tile from source to destination.
972 size_t tileX = inputBuffer.tileIndex % mGridCols;
973 size_t tileY = inputBuffer.tileIndex / mGridCols;
974 size_t top = mGridHeight * tileY;
975 size_t left = mGridWidth * tileX;
976 size_t width = (tileX == static_cast<size_t>(mGridCols) - 1) ?
977 mOutputWidth - tileX * mGridWidth : mGridWidth;
978 size_t height = (tileY == static_cast<size_t>(mGridRows) - 1) ?
979 mOutputHeight - tileY * mGridHeight : mGridHeight;
980 ALOGV("%s: inputBuffer tileIndex [%zu, %zu], top %zu, left %zu, width %zu, height %zu,"
981 " timeUs %" PRId64, __FUNCTION__, tileX, tileY, top, left, width, height,
982 inputBuffer.timeUs);
983
984 res = copyOneYuvTile(buffer, inputFrame.yuvBuffer, top, left, width, height);
985 if (res != OK) {
986 ALOGE("%s: Failed to copy YUV tile %s (%d)", __FUNCTION__,
987 strerror(-res), res);
988 return res;
989 }
990
991 res = mCodec->queueInputBuffer(inputBuffer.index, 0, buffer->capacity(),
992 inputBuffer.timeUs, 0, nullptr /*errorDetailMsg*/);
993 if (res != OK) {
994 ALOGE("%s: Failed to queueInputBuffer to Codec: %s (%d)",
995 __FUNCTION__, strerror(-res), res);
996 return res;
997 }
998 }
999
1000 inputFrame.codecInputBuffers.clear();
1001 return OK;
1002 }
1003
processOneCodecOutputFrame(nsecs_t timestamp,InputFrame & inputFrame)1004 status_t HeicCompositeStream::processOneCodecOutputFrame(nsecs_t timestamp,
1005 InputFrame &inputFrame) {
1006 auto it = inputFrame.codecOutputBuffers.begin();
1007 sp<MediaCodecBuffer> buffer;
1008 status_t res = mCodec->getOutputBuffer(it->index, &buffer);
1009 if (res != OK) {
1010 ALOGE("%s: Error getting Heic codec output buffer at index %d: %s (%d)",
1011 __FUNCTION__, it->index, strerror(-res), res);
1012 return res;
1013 }
1014 if (buffer == nullptr) {
1015 ALOGE("%s: Invalid Heic codec output buffer at index %d",
1016 __FUNCTION__, it->index);
1017 return BAD_VALUE;
1018 }
1019
1020 sp<ABuffer> aBuffer = new ABuffer(buffer->data(), buffer->size());
1021 res = inputFrame.muxer->writeSampleData(
1022 aBuffer, inputFrame.trackIndex, timestamp, 0 /*flags*/);
1023 if (res != OK) {
1024 ALOGE("%s: Failed to write buffer index %d to muxer: %s (%d)",
1025 __FUNCTION__, it->index, strerror(-res), res);
1026 return res;
1027 }
1028
1029 mCodec->releaseOutputBuffer(it->index);
1030 if (inputFrame.pendingOutputTiles == 0) {
1031 ALOGW("%s: Codec generated more tiles than expected!", __FUNCTION__);
1032 } else {
1033 inputFrame.pendingOutputTiles--;
1034 }
1035
1036 inputFrame.codecOutputBuffers.erase(inputFrame.codecOutputBuffers.begin());
1037
1038 ALOGV("%s: [%" PRId64 "]: Output buffer index %d",
1039 __FUNCTION__, timestamp, it->index);
1040 return OK;
1041 }
1042
processCompletedInputFrame(nsecs_t timestamp,InputFrame & inputFrame)1043 status_t HeicCompositeStream::processCompletedInputFrame(nsecs_t timestamp,
1044 InputFrame &inputFrame) {
1045 sp<ANativeWindow> outputANW = mOutputSurface;
1046 inputFrame.muxer->stop();
1047
1048 // Copy the content of the file to memory.
1049 sp<GraphicBuffer> gb = GraphicBuffer::from(inputFrame.anb);
1050 void* dstBuffer;
1051 auto res = gb->lockAsync(GRALLOC_USAGE_SW_WRITE_OFTEN, &dstBuffer, inputFrame.fenceFd);
1052 if (res != OK) {
1053 ALOGE("%s: Error trying to lock output buffer fence: %s (%d)", __FUNCTION__,
1054 strerror(-res), res);
1055 return res;
1056 }
1057
1058 off_t fSize = lseek(inputFrame.fileFd, 0, SEEK_END);
1059 if (static_cast<size_t>(fSize) > mMaxHeicBufferSize - sizeof(CameraBlob)) {
1060 ALOGE("%s: Error: MediaMuxer output size %ld is larger than buffer sizer %zu",
1061 __FUNCTION__, fSize, mMaxHeicBufferSize - sizeof(CameraBlob));
1062 return BAD_VALUE;
1063 }
1064
1065 lseek(inputFrame.fileFd, 0, SEEK_SET);
1066 ssize_t bytesRead = read(inputFrame.fileFd, dstBuffer, fSize);
1067 if (bytesRead < fSize) {
1068 ALOGE("%s: Only %zd of %ld bytes read", __FUNCTION__, bytesRead, fSize);
1069 return BAD_VALUE;
1070 }
1071
1072 close(inputFrame.fileFd);
1073 inputFrame.fileFd = -1;
1074
1075 // Fill in HEIC header
1076 uint8_t *header = static_cast<uint8_t*>(dstBuffer) + mMaxHeicBufferSize - sizeof(CameraBlob);
1077 struct CameraBlob *blobHeader = (struct CameraBlob *)header;
1078 // Must be in sync with CAMERA3_HEIC_BLOB_ID in android_media_Utils.cpp
1079 blobHeader->blobId = static_cast<CameraBlobId>(0x00FE);
1080 blobHeader->blobSize = fSize;
1081
1082 res = native_window_set_buffers_timestamp(mOutputSurface.get(), timestamp);
1083 if (res != OK) {
1084 ALOGE("%s: Stream %d: Error setting timestamp: %s (%d)",
1085 __FUNCTION__, getStreamId(), strerror(-res), res);
1086 return res;
1087 }
1088
1089 res = outputANW->queueBuffer(mOutputSurface.get(), inputFrame.anb, /*fence*/ -1);
1090 if (res != OK) {
1091 ALOGE("%s: Failed to queueBuffer to Heic stream: %s (%d)", __FUNCTION__,
1092 strerror(-res), res);
1093 return res;
1094 }
1095 inputFrame.anb = nullptr;
1096 mDequeuedOutputBufferCnt--;
1097
1098 ALOGV("%s: [%" PRId64 "]", __FUNCTION__, timestamp);
1099 ATRACE_ASYNC_END("HEIC capture", inputFrame.frameNumber);
1100 return OK;
1101 }
1102
1103
releaseInputFrameLocked(InputFrame * inputFrame)1104 void HeicCompositeStream::releaseInputFrameLocked(InputFrame *inputFrame /*out*/) {
1105 if (inputFrame == nullptr) {
1106 return;
1107 }
1108
1109 if (inputFrame->appSegmentBuffer.data != nullptr) {
1110 mAppSegmentConsumer->unlockBuffer(inputFrame->appSegmentBuffer);
1111 inputFrame->appSegmentBuffer.data = nullptr;
1112 }
1113
1114 while (!inputFrame->codecOutputBuffers.empty()) {
1115 auto it = inputFrame->codecOutputBuffers.begin();
1116 ALOGV("%s: releaseOutputBuffer index %d", __FUNCTION__, it->index);
1117 mCodec->releaseOutputBuffer(it->index);
1118 inputFrame->codecOutputBuffers.erase(it);
1119 }
1120
1121 if (inputFrame->yuvBuffer.data != nullptr) {
1122 mMainImageConsumer->unlockBuffer(inputFrame->yuvBuffer);
1123 inputFrame->yuvBuffer.data = nullptr;
1124 mYuvBufferAcquired = false;
1125 }
1126
1127 while (!inputFrame->codecInputBuffers.empty()) {
1128 auto it = inputFrame->codecInputBuffers.begin();
1129 inputFrame->codecInputBuffers.erase(it);
1130 }
1131
1132 if ((inputFrame->error || mErrorState) && !inputFrame->errorNotified) {
1133 notifyError(inputFrame->frameNumber);
1134 inputFrame->errorNotified = true;
1135 }
1136
1137 if (inputFrame->fileFd >= 0) {
1138 close(inputFrame->fileFd);
1139 inputFrame->fileFd = -1;
1140 }
1141
1142 if (inputFrame->anb != nullptr) {
1143 sp<ANativeWindow> outputANW = mOutputSurface;
1144 outputANW->cancelBuffer(mOutputSurface.get(), inputFrame->anb, /*fence*/ -1);
1145 inputFrame->anb = nullptr;
1146 }
1147 }
1148
releaseInputFramesLocked()1149 void HeicCompositeStream::releaseInputFramesLocked() {
1150 auto it = mPendingInputFrames.begin();
1151 while (it != mPendingInputFrames.end()) {
1152 auto& inputFrame = it->second;
1153 if (inputFrame.error ||
1154 (inputFrame.appSegmentWritten && inputFrame.pendingOutputTiles == 0)) {
1155 releaseInputFrameLocked(&inputFrame);
1156 it = mPendingInputFrames.erase(it);
1157 } else {
1158 it++;
1159 }
1160 }
1161 }
1162
initializeCodec(uint32_t width,uint32_t height,const sp<CameraDeviceBase> & cameraDevice)1163 status_t HeicCompositeStream::initializeCodec(uint32_t width, uint32_t height,
1164 const sp<CameraDeviceBase>& cameraDevice) {
1165 ALOGV("%s", __FUNCTION__);
1166
1167 bool useGrid = false;
1168 AString hevcName;
1169 bool isSizeSupported = isSizeSupportedByHeifEncoder(width, height,
1170 &mUseHeic, &useGrid, nullptr, &hevcName);
1171 if (!isSizeSupported) {
1172 ALOGE("%s: Encoder doesnt' support size %u x %u!",
1173 __FUNCTION__, width, height);
1174 return BAD_VALUE;
1175 }
1176
1177 // Create Looper for MediaCodec.
1178 auto desiredMime = mUseHeic ? MIMETYPE_IMAGE_ANDROID_HEIC : MIMETYPE_VIDEO_HEVC;
1179 mCodecLooper = new ALooper;
1180 mCodecLooper->setName("Camera3-HeicComposite-MediaCodecLooper");
1181 status_t res = mCodecLooper->start(
1182 false, // runOnCallingThread
1183 false, // canCallJava
1184 PRIORITY_AUDIO);
1185 if (res != OK) {
1186 ALOGE("%s: Failed to start codec looper: %s (%d)",
1187 __FUNCTION__, strerror(-res), res);
1188 return NO_INIT;
1189 }
1190
1191 // Create HEIC/HEVC codec.
1192 if (mUseHeic) {
1193 mCodec = MediaCodec::CreateByType(mCodecLooper, desiredMime, true /*encoder*/);
1194 } else {
1195 mCodec = MediaCodec::CreateByComponentName(mCodecLooper, hevcName);
1196 }
1197 if (mCodec == nullptr) {
1198 ALOGE("%s: Failed to create codec for %s", __FUNCTION__, desiredMime);
1199 return NO_INIT;
1200 }
1201
1202 // Create Looper and handler for Codec callback.
1203 mCodecCallbackHandler = new CodecCallbackHandler(this);
1204 if (mCodecCallbackHandler == nullptr) {
1205 ALOGE("%s: Failed to create codec callback handler", __FUNCTION__);
1206 return NO_MEMORY;
1207 }
1208 mCallbackLooper = new ALooper;
1209 mCallbackLooper->setName("Camera3-HeicComposite-MediaCodecCallbackLooper");
1210 res = mCallbackLooper->start(
1211 false, // runOnCallingThread
1212 false, // canCallJava
1213 PRIORITY_AUDIO);
1214 if (res != OK) {
1215 ALOGE("%s: Failed to start media callback looper: %s (%d)",
1216 __FUNCTION__, strerror(-res), res);
1217 return NO_INIT;
1218 }
1219 mCallbackLooper->registerHandler(mCodecCallbackHandler);
1220
1221 mAsyncNotify = new AMessage(kWhatCallbackNotify, mCodecCallbackHandler);
1222 res = mCodec->setCallback(mAsyncNotify);
1223 if (res != OK) {
1224 ALOGE("%s: Failed to set MediaCodec callback: %s (%d)", __FUNCTION__,
1225 strerror(-res), res);
1226 return res;
1227 }
1228
1229 // Create output format and configure the Codec.
1230 sp<AMessage> outputFormat = new AMessage();
1231 outputFormat->setString(KEY_MIME, desiredMime);
1232 outputFormat->setInt32(KEY_BITRATE_MODE, BITRATE_MODE_CQ);
1233 outputFormat->setInt32(KEY_QUALITY, kDefaultJpegQuality);
1234 // Ask codec to skip timestamp check and encode all frames.
1235 outputFormat->setInt64(KEY_MAX_PTS_GAP_TO_ENCODER, kNoFrameDropMaxPtsGap);
1236
1237 int32_t gridWidth, gridHeight, gridRows, gridCols;
1238 if (useGrid || mUseHeic) {
1239 gridWidth = HeicEncoderInfoManager::kGridWidth;
1240 gridHeight = HeicEncoderInfoManager::kGridHeight;
1241 gridRows = (height + gridHeight - 1)/gridHeight;
1242 gridCols = (width + gridWidth - 1)/gridWidth;
1243
1244 if (mUseHeic) {
1245 outputFormat->setInt32(KEY_TILE_WIDTH, gridWidth);
1246 outputFormat->setInt32(KEY_TILE_HEIGHT, gridHeight);
1247 outputFormat->setInt32(KEY_GRID_COLUMNS, gridCols);
1248 outputFormat->setInt32(KEY_GRID_ROWS, gridRows);
1249 }
1250
1251 } else {
1252 gridWidth = width;
1253 gridHeight = height;
1254 gridRows = 1;
1255 gridCols = 1;
1256 }
1257
1258 outputFormat->setInt32(KEY_WIDTH, !useGrid ? width : gridWidth);
1259 outputFormat->setInt32(KEY_HEIGHT, !useGrid ? height : gridHeight);
1260 outputFormat->setInt32(KEY_I_FRAME_INTERVAL, 0);
1261 outputFormat->setInt32(KEY_COLOR_FORMAT,
1262 useGrid ? COLOR_FormatYUV420Flexible : COLOR_FormatSurface);
1263 outputFormat->setInt32(KEY_FRAME_RATE, gridRows * gridCols);
1264 // This only serves as a hint to encoder when encoding is not real-time.
1265 outputFormat->setInt32(KEY_OPERATING_RATE, useGrid ? kGridOpRate : kNoGridOpRate);
1266
1267 res = mCodec->configure(outputFormat, nullptr /*nativeWindow*/,
1268 nullptr /*crypto*/, CONFIGURE_FLAG_ENCODE);
1269 if (res != OK) {
1270 ALOGE("%s: Failed to configure codec: %s (%d)", __FUNCTION__,
1271 strerror(-res), res);
1272 return res;
1273 }
1274
1275 mGridWidth = gridWidth;
1276 mGridHeight = gridHeight;
1277 mGridRows = gridRows;
1278 mGridCols = gridCols;
1279 mUseGrid = useGrid;
1280 mOutputWidth = width;
1281 mOutputHeight = height;
1282 mAppSegmentMaxSize = calcAppSegmentMaxSize(cameraDevice->info());
1283 mMaxHeicBufferSize = mOutputWidth * mOutputHeight * 3 / 2 + mAppSegmentMaxSize;
1284
1285 return OK;
1286 }
1287
deinitCodec()1288 void HeicCompositeStream::deinitCodec() {
1289 ALOGV("%s", __FUNCTION__);
1290 if (mCodec != nullptr) {
1291 mCodec->stop();
1292 mCodec->release();
1293 mCodec.clear();
1294 }
1295
1296 if (mCodecLooper != nullptr) {
1297 mCodecLooper->stop();
1298 mCodecLooper.clear();
1299 }
1300
1301 if (mCallbackLooper != nullptr) {
1302 mCallbackLooper->stop();
1303 mCallbackLooper.clear();
1304 }
1305
1306 mAsyncNotify.clear();
1307 mFormat.clear();
1308 }
1309
1310 // Return the size of the complete list of app segment, 0 indicates failure
findAppSegmentsSize(const uint8_t * appSegmentBuffer,size_t maxSize,size_t * app1SegmentSize)1311 size_t HeicCompositeStream::findAppSegmentsSize(const uint8_t* appSegmentBuffer,
1312 size_t maxSize, size_t *app1SegmentSize) {
1313 if (appSegmentBuffer == nullptr || app1SegmentSize == nullptr) {
1314 ALOGE("%s: Invalid input appSegmentBuffer %p, app1SegmentSize %p",
1315 __FUNCTION__, appSegmentBuffer, app1SegmentSize);
1316 return 0;
1317 }
1318
1319 size_t expectedSize = 0;
1320 // First check for EXIF transport header at the end of the buffer
1321 const uint8_t *header = appSegmentBuffer + (maxSize - sizeof(struct CameraBlob));
1322 const struct CameraBlob *blob = (const struct CameraBlob*)(header);
1323 if (blob->blobId != CameraBlobId::JPEG_APP_SEGMENTS) {
1324 ALOGE("%s: Invalid EXIF blobId %hu", __FUNCTION__, blob->blobId);
1325 return 0;
1326 }
1327
1328 expectedSize = blob->blobSize;
1329 if (expectedSize == 0 || expectedSize > maxSize - sizeof(struct CameraBlob)) {
1330 ALOGE("%s: Invalid blobSize %zu.", __FUNCTION__, expectedSize);
1331 return 0;
1332 }
1333
1334 uint32_t totalSize = 0;
1335
1336 // Verify APP1 marker (mandatory)
1337 uint8_t app1Marker[] = {0xFF, 0xE1};
1338 if (memcmp(appSegmentBuffer, app1Marker, sizeof(app1Marker))) {
1339 ALOGE("%s: Invalid APP1 marker: %x, %x", __FUNCTION__,
1340 appSegmentBuffer[0], appSegmentBuffer[1]);
1341 return 0;
1342 }
1343 totalSize += sizeof(app1Marker);
1344
1345 uint16_t app1Size = (static_cast<uint16_t>(appSegmentBuffer[totalSize]) << 8) +
1346 appSegmentBuffer[totalSize+1];
1347 totalSize += app1Size;
1348
1349 ALOGV("%s: Expected APP segments size %zu, APP1 segment size %u",
1350 __FUNCTION__, expectedSize, app1Size);
1351 while (totalSize < expectedSize) {
1352 if (appSegmentBuffer[totalSize] != 0xFF ||
1353 appSegmentBuffer[totalSize+1] <= 0xE1 ||
1354 appSegmentBuffer[totalSize+1] > 0xEF) {
1355 // Invalid APPn marker
1356 ALOGE("%s: Invalid APPn marker: %x, %x", __FUNCTION__,
1357 appSegmentBuffer[totalSize], appSegmentBuffer[totalSize+1]);
1358 return 0;
1359 }
1360 totalSize += 2;
1361
1362 uint16_t appnSize = (static_cast<uint16_t>(appSegmentBuffer[totalSize]) << 8) +
1363 appSegmentBuffer[totalSize+1];
1364 totalSize += appnSize;
1365 }
1366
1367 if (totalSize != expectedSize) {
1368 ALOGE("%s: Invalid JPEG APP segments: totalSize %u vs expected size %zu",
1369 __FUNCTION__, totalSize, expectedSize);
1370 return 0;
1371 }
1372
1373 *app1SegmentSize = app1Size + sizeof(app1Marker);
1374 return expectedSize;
1375 }
1376
findTimestampInNsLocked(int64_t timeInUs)1377 int64_t HeicCompositeStream::findTimestampInNsLocked(int64_t timeInUs) {
1378 for (const auto& fn : mFrameNumberMap) {
1379 if (timeInUs == ns2us(fn.second)) {
1380 return fn.second;
1381 }
1382 }
1383 for (const auto& inputFrame : mPendingInputFrames) {
1384 if (timeInUs == ns2us(inputFrame.first)) {
1385 return inputFrame.first;
1386 }
1387 }
1388 return -1;
1389 }
1390
copyOneYuvTile(sp<MediaCodecBuffer> & codecBuffer,const CpuConsumer::LockedBuffer & yuvBuffer,size_t top,size_t left,size_t width,size_t height)1391 status_t HeicCompositeStream::copyOneYuvTile(sp<MediaCodecBuffer>& codecBuffer,
1392 const CpuConsumer::LockedBuffer& yuvBuffer,
1393 size_t top, size_t left, size_t width, size_t height) {
1394 ATRACE_CALL();
1395
1396 // Get stride information for codecBuffer
1397 sp<ABuffer> imageData;
1398 if (!codecBuffer->meta()->findBuffer("image-data", &imageData)) {
1399 ALOGE("%s: Codec input buffer is not for image data!", __FUNCTION__);
1400 return BAD_VALUE;
1401 }
1402 if (imageData->size() != sizeof(MediaImage2)) {
1403 ALOGE("%s: Invalid codec input image size %zu, expected %zu",
1404 __FUNCTION__, imageData->size(), sizeof(MediaImage2));
1405 return BAD_VALUE;
1406 }
1407 MediaImage2* imageInfo = reinterpret_cast<MediaImage2*>(imageData->data());
1408 if (imageInfo->mType != MediaImage2::MEDIA_IMAGE_TYPE_YUV ||
1409 imageInfo->mBitDepth != 8 ||
1410 imageInfo->mBitDepthAllocated != 8 ||
1411 imageInfo->mNumPlanes != 3) {
1412 ALOGE("%s: Invalid codec input image info: mType %d, mBitDepth %d, "
1413 "mBitDepthAllocated %d, mNumPlanes %d!", __FUNCTION__,
1414 imageInfo->mType, imageInfo->mBitDepth,
1415 imageInfo->mBitDepthAllocated, imageInfo->mNumPlanes);
1416 return BAD_VALUE;
1417 }
1418
1419 ALOGV("%s: yuvBuffer chromaStep %d, chromaStride %d",
1420 __FUNCTION__, yuvBuffer.chromaStep, yuvBuffer.chromaStride);
1421 ALOGV("%s: U offset %u, V offset %u, U rowInc %d, V rowInc %d, U colInc %d, V colInc %d",
1422 __FUNCTION__, imageInfo->mPlane[MediaImage2::U].mOffset,
1423 imageInfo->mPlane[MediaImage2::V].mOffset,
1424 imageInfo->mPlane[MediaImage2::U].mRowInc,
1425 imageInfo->mPlane[MediaImage2::V].mRowInc,
1426 imageInfo->mPlane[MediaImage2::U].mColInc,
1427 imageInfo->mPlane[MediaImage2::V].mColInc);
1428
1429 // Y
1430 for (auto row = top; row < top+height; row++) {
1431 uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::Y].mOffset +
1432 imageInfo->mPlane[MediaImage2::Y].mRowInc * (row - top);
1433 mFnCopyRow(yuvBuffer.data+row*yuvBuffer.stride+left, dst, width);
1434 }
1435
1436 // U is Cb, V is Cr
1437 bool codecUPlaneFirst = imageInfo->mPlane[MediaImage2::V].mOffset >
1438 imageInfo->mPlane[MediaImage2::U].mOffset;
1439 uint32_t codecUvOffsetDiff = codecUPlaneFirst ?
1440 imageInfo->mPlane[MediaImage2::V].mOffset - imageInfo->mPlane[MediaImage2::U].mOffset :
1441 imageInfo->mPlane[MediaImage2::U].mOffset - imageInfo->mPlane[MediaImage2::V].mOffset;
1442 bool isCodecUvSemiplannar = (codecUvOffsetDiff == 1) &&
1443 (imageInfo->mPlane[MediaImage2::U].mRowInc ==
1444 imageInfo->mPlane[MediaImage2::V].mRowInc) &&
1445 (imageInfo->mPlane[MediaImage2::U].mColInc == 2) &&
1446 (imageInfo->mPlane[MediaImage2::V].mColInc == 2);
1447 bool isCodecUvPlannar =
1448 ((codecUPlaneFirst && codecUvOffsetDiff >=
1449 imageInfo->mPlane[MediaImage2::U].mRowInc * imageInfo->mHeight/2) ||
1450 ((!codecUPlaneFirst && codecUvOffsetDiff >=
1451 imageInfo->mPlane[MediaImage2::V].mRowInc * imageInfo->mHeight/2))) &&
1452 imageInfo->mPlane[MediaImage2::U].mColInc == 1 &&
1453 imageInfo->mPlane[MediaImage2::V].mColInc == 1;
1454 bool cameraUPlaneFirst = yuvBuffer.dataCr > yuvBuffer.dataCb;
1455
1456 if (isCodecUvSemiplannar && yuvBuffer.chromaStep == 2 &&
1457 (codecUPlaneFirst == cameraUPlaneFirst)) {
1458 // UV semiplannar
1459 // The chrome plane could be either Cb first, or Cr first. Take the
1460 // smaller address.
1461 uint8_t *src = std::min(yuvBuffer.dataCb, yuvBuffer.dataCr);
1462 MediaImage2::PlaneIndex dstPlane = codecUvOffsetDiff > 0 ? MediaImage2::U : MediaImage2::V;
1463 for (auto row = top/2; row < (top+height)/2; row++) {
1464 uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[dstPlane].mOffset +
1465 imageInfo->mPlane[dstPlane].mRowInc * (row - top/2);
1466 mFnCopyRow(src+row*yuvBuffer.chromaStride+left, dst, width);
1467 }
1468 } else if (isCodecUvPlannar && yuvBuffer.chromaStep == 1) {
1469 // U plane
1470 for (auto row = top/2; row < (top+height)/2; row++) {
1471 uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::U].mOffset +
1472 imageInfo->mPlane[MediaImage2::U].mRowInc * (row - top/2);
1473 mFnCopyRow(yuvBuffer.dataCb+row*yuvBuffer.chromaStride+left/2, dst, width/2);
1474 }
1475
1476 // V plane
1477 for (auto row = top/2; row < (top+height)/2; row++) {
1478 uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::V].mOffset +
1479 imageInfo->mPlane[MediaImage2::V].mRowInc * (row - top/2);
1480 mFnCopyRow(yuvBuffer.dataCr+row*yuvBuffer.chromaStride+left/2, dst, width/2);
1481 }
1482 } else {
1483 // Convert between semiplannar and plannar, or when UV orders are
1484 // different.
1485 uint8_t *dst = codecBuffer->data();
1486 for (auto row = top/2; row < (top+height)/2; row++) {
1487 for (auto col = left/2; col < (left+width)/2; col++) {
1488 // U/Cb
1489 int32_t dstIndex = imageInfo->mPlane[MediaImage2::U].mOffset +
1490 imageInfo->mPlane[MediaImage2::U].mRowInc * (row - top/2) +
1491 imageInfo->mPlane[MediaImage2::U].mColInc * (col - left/2);
1492 int32_t srcIndex = row * yuvBuffer.chromaStride + yuvBuffer.chromaStep * col;
1493 dst[dstIndex] = yuvBuffer.dataCb[srcIndex];
1494
1495 // V/Cr
1496 dstIndex = imageInfo->mPlane[MediaImage2::V].mOffset +
1497 imageInfo->mPlane[MediaImage2::V].mRowInc * (row - top/2) +
1498 imageInfo->mPlane[MediaImage2::V].mColInc * (col - left/2);
1499 srcIndex = row * yuvBuffer.chromaStride + yuvBuffer.chromaStep * col;
1500 dst[dstIndex] = yuvBuffer.dataCr[srcIndex];
1501 }
1502 }
1503 }
1504 return OK;
1505 }
1506
initCopyRowFunction(int32_t width)1507 void HeicCompositeStream::initCopyRowFunction(int32_t width)
1508 {
1509 using namespace libyuv;
1510
1511 mFnCopyRow = CopyRow_C;
1512 #if defined(HAS_COPYROW_SSE2)
1513 if (TestCpuFlag(kCpuHasSSE2)) {
1514 mFnCopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2;
1515 }
1516 #endif
1517 #if defined(HAS_COPYROW_AVX)
1518 if (TestCpuFlag(kCpuHasAVX)) {
1519 mFnCopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX;
1520 }
1521 #endif
1522 #if defined(HAS_COPYROW_ERMS)
1523 if (TestCpuFlag(kCpuHasERMS)) {
1524 mFnCopyRow = CopyRow_ERMS;
1525 }
1526 #endif
1527 #if defined(HAS_COPYROW_NEON)
1528 if (TestCpuFlag(kCpuHasNEON)) {
1529 mFnCopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON;
1530 }
1531 #endif
1532 #if defined(HAS_COPYROW_MIPS)
1533 if (TestCpuFlag(kCpuHasMIPS)) {
1534 mFnCopyRow = CopyRow_MIPS;
1535 }
1536 #endif
1537 }
1538
calcAppSegmentMaxSize(const CameraMetadata & info)1539 size_t HeicCompositeStream::calcAppSegmentMaxSize(const CameraMetadata& info) {
1540 camera_metadata_ro_entry_t entry = info.find(ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT);
1541 size_t maxAppsSegment = 1;
1542 if (entry.count > 0) {
1543 maxAppsSegment = entry.data.u8[0] < 1 ? 1 :
1544 entry.data.u8[0] > 16 ? 16 : entry.data.u8[0];
1545 }
1546 return maxAppsSegment * (2 + 0xFFFF) + sizeof(struct CameraBlob);
1547 }
1548
threadLoop()1549 bool HeicCompositeStream::threadLoop() {
1550 int64_t currentTs = INT64_MAX;
1551 bool newInputAvailable = false;
1552
1553 {
1554 Mutex::Autolock l(mMutex);
1555 if (mErrorState) {
1556 // In case we landed in error state, return any pending buffers and
1557 // halt all further processing.
1558 compilePendingInputLocked();
1559 releaseInputFramesLocked();
1560 return false;
1561 }
1562
1563
1564 while (!newInputAvailable) {
1565 compilePendingInputLocked();
1566 newInputAvailable = getNextReadyInputLocked(¤tTs);
1567
1568 if (!newInputAvailable) {
1569 auto failingFrameNumber = getNextFailingInputLocked(¤tTs);
1570 if (failingFrameNumber >= 0) {
1571 // We cannot erase 'mPendingInputFrames[currentTs]' at this point because it is
1572 // possible for two internal stream buffers to fail. In such scenario the
1573 // composite stream should notify the client about a stream buffer error only
1574 // once and this information is kept within 'errorNotified'.
1575 // Any present failed input frames will be removed on a subsequent call to
1576 // 'releaseInputFramesLocked()'.
1577 releaseInputFrameLocked(&mPendingInputFrames[currentTs]);
1578 currentTs = INT64_MAX;
1579 }
1580
1581 auto ret = mInputReadyCondition.waitRelative(mMutex, kWaitDuration);
1582 if (ret == TIMED_OUT) {
1583 return true;
1584 } else if (ret != OK) {
1585 ALOGE("%s: Timed wait on condition failed: %s (%d)", __FUNCTION__,
1586 strerror(-ret), ret);
1587 return false;
1588 }
1589 }
1590 }
1591 }
1592
1593 auto res = processInputFrame(currentTs, mPendingInputFrames[currentTs]);
1594 Mutex::Autolock l(mMutex);
1595 if (res != OK) {
1596 ALOGE("%s: Failed processing frame with timestamp: %" PRIu64 ": %s (%d)",
1597 __FUNCTION__, currentTs, strerror(-res), res);
1598 mPendingInputFrames[currentTs].error = true;
1599 }
1600
1601 releaseInputFramesLocked();
1602
1603 return true;
1604 }
1605
onStreamBufferError(const CaptureResultExtras & resultExtras)1606 bool HeicCompositeStream::onStreamBufferError(const CaptureResultExtras& resultExtras) {
1607 bool res = false;
1608 // Buffer errors concerning internal composite streams should not be directly visible to
1609 // camera clients. They must only receive a single buffer error with the public composite
1610 // stream id.
1611 if ((resultExtras.errorStreamId == mAppSegmentStreamId) ||
1612 (resultExtras.errorStreamId == mMainImageStreamId)) {
1613 flagAnErrorFrameNumber(resultExtras.frameNumber);
1614 res = true;
1615 }
1616
1617 return res;
1618 }
1619
onResultError(const CaptureResultExtras & resultExtras)1620 void HeicCompositeStream::onResultError(const CaptureResultExtras& resultExtras) {
1621 // For result error, since the APPS_SEGMENT buffer already contains EXIF,
1622 // simply skip using the capture result metadata to override EXIF.
1623 Mutex::Autolock l(mMutex);
1624
1625 int64_t timestamp = -1;
1626 for (const auto& fn : mFrameNumberMap) {
1627 if (fn.first == resultExtras.frameNumber) {
1628 timestamp = fn.second;
1629 break;
1630 }
1631 }
1632 if (timestamp == -1) {
1633 for (const auto& inputFrame : mPendingInputFrames) {
1634 if (inputFrame.second.frameNumber == resultExtras.frameNumber) {
1635 timestamp = inputFrame.first;
1636 break;
1637 }
1638 }
1639 }
1640
1641 if (timestamp == -1) {
1642 ALOGE("%s: Failed to find shutter timestamp for result error!", __FUNCTION__);
1643 return;
1644 }
1645
1646 mCaptureResults.emplace(timestamp, std::make_tuple(resultExtras.frameNumber, CameraMetadata()));
1647 mInputReadyCondition.signal();
1648 }
1649
onMessageReceived(const sp<AMessage> & msg)1650 void HeicCompositeStream::CodecCallbackHandler::onMessageReceived(const sp<AMessage> &msg) {
1651 sp<HeicCompositeStream> parent = mParent.promote();
1652 if (parent == nullptr) return;
1653
1654 switch (msg->what()) {
1655 case kWhatCallbackNotify: {
1656 int32_t cbID;
1657 if (!msg->findInt32("callbackID", &cbID)) {
1658 ALOGE("kWhatCallbackNotify: callbackID is expected.");
1659 break;
1660 }
1661
1662 ALOGV("kWhatCallbackNotify: cbID = %d", cbID);
1663
1664 switch (cbID) {
1665 case MediaCodec::CB_INPUT_AVAILABLE: {
1666 int32_t index;
1667 if (!msg->findInt32("index", &index)) {
1668 ALOGE("CB_INPUT_AVAILABLE: index is expected.");
1669 break;
1670 }
1671 parent->onHeicInputFrameAvailable(index);
1672 break;
1673 }
1674
1675 case MediaCodec::CB_OUTPUT_AVAILABLE: {
1676 int32_t index;
1677 size_t offset;
1678 size_t size;
1679 int64_t timeUs;
1680 int32_t flags;
1681
1682 if (!msg->findInt32("index", &index)) {
1683 ALOGE("CB_OUTPUT_AVAILABLE: index is expected.");
1684 break;
1685 }
1686 if (!msg->findSize("offset", &offset)) {
1687 ALOGE("CB_OUTPUT_AVAILABLE: offset is expected.");
1688 break;
1689 }
1690 if (!msg->findSize("size", &size)) {
1691 ALOGE("CB_OUTPUT_AVAILABLE: size is expected.");
1692 break;
1693 }
1694 if (!msg->findInt64("timeUs", &timeUs)) {
1695 ALOGE("CB_OUTPUT_AVAILABLE: timeUs is expected.");
1696 break;
1697 }
1698 if (!msg->findInt32("flags", &flags)) {
1699 ALOGE("CB_OUTPUT_AVAILABLE: flags is expected.");
1700 break;
1701 }
1702
1703 CodecOutputBufferInfo bufferInfo = {
1704 index,
1705 (int32_t)offset,
1706 (int32_t)size,
1707 timeUs,
1708 (uint32_t)flags};
1709
1710 parent->onHeicOutputFrameAvailable(bufferInfo);
1711 break;
1712 }
1713
1714 case MediaCodec::CB_OUTPUT_FORMAT_CHANGED: {
1715 sp<AMessage> format;
1716 if (!msg->findMessage("format", &format)) {
1717 ALOGE("CB_OUTPUT_FORMAT_CHANGED: format is expected.");
1718 break;
1719 }
1720 // Here format is MediaCodec's internal copy of output format.
1721 // Make a copy since onHeicFormatChanged() might modify it.
1722 sp<AMessage> formatCopy;
1723 if (format != nullptr) {
1724 formatCopy = format->dup();
1725 }
1726 parent->onHeicFormatChanged(formatCopy);
1727 break;
1728 }
1729
1730 case MediaCodec::CB_ERROR: {
1731 status_t err;
1732 int32_t actionCode;
1733 AString detail;
1734 if (!msg->findInt32("err", &err)) {
1735 ALOGE("CB_ERROR: err is expected.");
1736 break;
1737 }
1738 if (!msg->findInt32("action", &actionCode)) {
1739 ALOGE("CB_ERROR: action is expected.");
1740 break;
1741 }
1742 msg->findString("detail", &detail);
1743 ALOGE("Codec reported error(0x%x), actionCode(%d), detail(%s)",
1744 err, actionCode, detail.c_str());
1745
1746 parent->onHeicCodecError();
1747 break;
1748 }
1749
1750 default: {
1751 ALOGE("kWhatCallbackNotify: callbackID(%d) is unexpected.", cbID);
1752 break;
1753 }
1754 }
1755 break;
1756 }
1757
1758 default:
1759 ALOGE("shouldn't be here");
1760 break;
1761 }
1762 }
1763
1764 }; // namespace camera3
1765 }; // namespace android
1766